1
|
Li XL, Ji YF, Feng Y, Liu SW. Metabolic disparities between obese and non-obese patients with polycystic ovary syndrome: implications for endometrial receptivity indicators. Gynecol Endocrinol 2024; 40:2312895. [PMID: 38444321 DOI: 10.1080/09513590.2024.2312895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE To investigate the differences in the metabolic indicators and sex hormones between obese and non-obese patients with polycystic ovary syndrome (PCOS), and their impacts on endometrial receptivity (ER). METHODS We selected 255 individuals with PCOS, and categorized them into the obese groups, including the OP group (obese patients with PCOS) and the ON group (obese patients without PCOS), and selected 64 individuals who were categorized in the non-obese groups, namely, the control groups, which comprise the NP group (non-obese patients with PCOS) and the NN group(non-obese patients without PCOS). The one-way analysis of variance (ANOVA) and Mann-Whitney U tests were used to compare the metabolic indicators, and sex hormone-associated and ER-associated indicators between the groups. The correlation between the aforementioned clinical markers and ER was analyzed using the Pearson's correlation coefficient. RESULTS (1) In comparison with the NP group, the OP group exhibited higher levels (p < .01) of free androgen index (FAI), anti-müllerian hormone (AMH), fasting insulin (FINS), insulin level within 60 min, 120 min, and 180 min-60minINS, 120minINS, and 180minINS, respectively, fasting blood glucose (FBG), blood glucose level within two hours (2hGlu), homeostatic model assessment for insulin resistance (HOMA-IR), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), waist-to-hip ratio (WHR), waist circumference, hip circumference, the ratio of the maximum blood flow velocity of the uterine artery during systole to the blood flow velocity of the uterine artery at the end of diastole (uterine artery S/D), and blood flow resistance index (RI) of the uterine artery. In comparison with the NP group, the OP group exhibited lower levels (p < .01) of sex hormone binding globulin (SHBG), dehydroepiandrosterone (DHEA), high molecular weight adiponectin (HMWA), and high-density lipoprotein cholesterol (HDL-C). (2) In the PCOS group, RI was significantly positively correlated with FAI, FINS, 120minINS, HOMA-IR, and WHR (p < .01), and significantly negatively correlated with SHBG, HDL-C, and HMWA (p < .01); uterine artery S/D was significantly positively correlated with FAI, FINS, 2hGlu, HOMA-IR, LDL-C, and WHR (p < .01), significantly positively correlated with 120minINS and FBG (p < .05), and significantly negatively correlated with SHBG and HMWA (p < .01). CONCLUSION (1) The OP group exhibited obvious metabolic disorders and poor ER, which was manifested as low levels of SHBG and HMWA, and high levels of FAI, HOMA-IR, WHR, uterine artery S/D, and RI. (2) In patients with PCOS, there was a substantial correlation between ER-associated indicators RI and uterine artery S/D and FAI, FINS, 120minINS, HOMA-IR, WHR, SHBG, and HMWA.
Collapse
Affiliation(s)
- Xiao-Li Li
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Fei Ji
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Feng
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Wei Liu
- Department of Endocrinology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Wang S, Tan J, Wang C, Huang J, Zhou C. Free Androgen Index Might Not Be a Perfect Predictor of Infertility Outcomes in Patients with Polycystic Ovary Syndrome Undergoing Frozen Embryo Transfer:A Retrospective Cohort Study. Int J Womens Health 2024; 16:1349-1359. [PMID: 39135910 PMCID: PMC11318606 DOI: 10.2147/ijwh.s465541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose It is well known that androgen excess impairs oocyte quality, endometrial receptivity and even embryo invasion to some extent. Free androgen index (FAI) is strongly recommended to evaluate active androgen. Previous studies have showed conflicting conclusions on the effect of hyperandrogenism on the pregnancy outcomes in patients with polycystic ovary syndrome (PCOS). This study aims to analyze the influence of hyperandrogenemia based on FAI on frozen embryo transfer (FET) outcomes in patients with PCOS. Patients and Methods Patients diagnosed with PCOS who underwent their first FET between January 2017 and April 2022 were stratified into two cohorts using FAI, a highly recommended parameter: PCOS with hyperandrogenemia (n=73) and PCOS without hyperandrogenemia (n=255). Basic and infertility characteristics were analyzed using Student's t-test or chi-square (χ2) statistics. Logistic regression analysis was performed to verify whether FAI was helpful in predicting pregnancy outcomes in women with PCOS. Results Body mass index (BMI), total gonadotropin (Gn), basal serum follicle-stimulating hormone (bFSH), basal serum testosterone (bT), sex hormone binding globulin (SHBG), and FAI were significantly different between the two groups. (P=0.005, P<0.001, P<0.001, P<0.001, and P<0.001, respectively). However, clinical pregnancies, abortions, and live births did not differ significantly. Further regression analyses showed that FAI was not related to clinical pregnancy, abortion, or live birth rates (adjusted odds ratio (OR)=0.978, 95% confidence interval (CI)=0.911-1.050, P=0.539; adjusted OR=1.033, 95% CI=0.914-1.168, P=0.604; and adjusted OR=0.976, 95% CI=0.911-1.047, P=0.499, respectively). Conclusion FAI was not associated with pregnancy outcomes in patients with PCOS; that is, it did not reflect any negative effects of hyperandrogenemia on pregnancy outcomes in patients with PCOS and was not an informative clinical parameter. Therefore, more attention should be paid to the factors that influence the accuracy of FAI in reflecting androgen levels in vivo, and further discussion is needed.
Collapse
Affiliation(s)
- Senlan Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jifan Tan
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Can Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jia Huang
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Gillen AD, Hunter I, Ullner E, McEwan IJ. Mechanistic insights into steroid hormone-mediated regulation of the androgen receptor gene. PLoS One 2024; 19:e0304183. [PMID: 39088439 PMCID: PMC11293711 DOI: 10.1371/journal.pone.0304183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/08/2024] [Indexed: 08/03/2024] Open
Abstract
Expression of the androgen receptor is key to the response of cells and tissues to androgenic steroids, such as testosterone or dihydrotestosterone, as well as impacting the benefit of hormone-dependent therapies for endocrine diseases and hormone-dependent cancers. However, the mechanisms controlling androgen receptor expression are not fully understood, limiting our ability to effectively promote or inhibit androgenic signalling therapeutically. An autoregulatory loop has been described in which androgen receptor may repress its own expression in the presence of hormone, although the molecular mechanisms are not fully understood. In this work, we elucidate the mechanisms of autoregulation and demonstrate, for the first time, that a similar repression of the AR gene is facilitated by the progesterone receptor. We show that the progesterone receptor, like the androgen receptor binds to response elements within the AR gene to effect transcriptional repression in response to hormone treatment. Mechanistically, this repression involves hormone-dependent histone deacetylation within the AR 5'UTR region and looping between sequences in intron 2 and the transcription start site (TSS). This novel pathway controlling AR expression in response to hormone stimulation may have important implications for understanding cell or tissue selective receptor signalling.
Collapse
Affiliation(s)
- Andrew D. Gillen
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Irene Hunter
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| | - Ekkehard Ullner
- Department of Physics, Institute of Complex Sciences and Mathematical Biology University of Aberdeen, Scotland, United Kingdom
| | - Iain J. McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Scotland, United Kingdom
| |
Collapse
|
4
|
Hong L, Xiao S, Diao L, Lian R, Chen C, Zeng Y, Liu S. Decreased AMPK/SIRT1/PDK4 induced by androgen excess inhibits human endometrial stromal cell decidualization in PCOS. Cell Mol Life Sci 2024; 81:324. [PMID: 39080028 PMCID: PMC11335245 DOI: 10.1007/s00018-024-05362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/22/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex common endocrine disorder affecting women of reproductive age. Ovulatory dysfunction is recognized as a primary infertile factor, however, even when ovulation is medically induced and restored, PCOS patients continue to experience reduced cumulative pregnancy rates and a higher spontaneous miscarriage rate. Hyperandrogenism, a hallmark feature of PCOS, affects ovarian folliculogenesis, endometrial receptivity, and the establishment and maintenance of pregnancy. Decidualization denotes the transformation that the stromal compart of the endometrium must undergo to accommodate pregnancy, driven by the rising progesterone levels and local cAMP production. However, studies on the impact of hyperandrogenism on decidualization are limited. In this study, we observed that primary endometrial stromal cells from women with PCOS exhibit abnormal responses to progesterone during in vitro decidualization. A high concentration of testosterone inhibits human endometrial stromal cells (HESCs) decidualization. RNA-Seq analysis demonstrated that pyruvate dehydrogenase kinase 4 (PDK4) expression was significantly lower in the endometrium of PCOS patients with hyperandrogenism compared to those without hyperandrogenism. We also characterized that the expression of PDK4 is elevated in the endometrium stroma at the mid-secretory phase. Artificial decidualization could enhance PDK4 expression, while downregulation of PDK4 leads to abnormal decidualization both in vivo and in vitro. Mechanistically, testosterone excess inhibits IGFBP1 and PRL expression, followed by phosphorylating of AMPK that stimulates PDK4 expression. Based on co-immunoprecipitation analysis, we observed an interaction between SIRT1 and PDK4, promoting glycolysis to facilitate decidualization. Restrain of AR activation resumes the AMPK/SIRT1/PDK4 pathway suppressed by testosterone excess, indicating that testosterone primarily acts on decidualization through AR stimulation. Androgen excess in the endometrium inhibits decidualization by disrupting the AMPK/SIRT1/PDK4 signaling pathway. These data demonstrate the critical roles of endometrial PDK4 in regulating decidualization and provide valuable information for understanding the underlying mechanism during decidualization.
Collapse
Affiliation(s)
- Ling Hong
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Shan Xiao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Cong Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics and Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Guangdong, China.
| |
Collapse
|
5
|
James DW, Quintela M, Lucini L, Al Kafri NAA, Healey GD, Jones N, Younas K, Bunkheila A, Margarit L, Francis LW, Gonzalez D, Conlan RS. Homeobox regulator Wilms Tumour 1 is displaced by androgen receptor at cis-regulatory elements in the endometrium of PCOS patients. Front Endocrinol (Lausanne) 2024; 15:1368494. [PMID: 38745948 PMCID: PMC11091321 DOI: 10.3389/fendo.2024.1368494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.
Collapse
Affiliation(s)
- David W. James
- Swansea University Medical School, Swansea, United Kingdom
| | | | - Lisa Lucini
- Swansea University Medical School, Swansea, United Kingdom
| | | | | | - Nicholas Jones
- Swansea University Medical School, Swansea, United Kingdom
| | - Kinza Younas
- Swansea University Medical School, Swansea, United Kingdom
- Swansea Bay University Health Board, Swansea, United Kingdom
| | - Adnan Bunkheila
- Swansea University Medical School, Swansea, United Kingdom
- Swansea Bay University Health Board, Swansea, United Kingdom
| | - Lavinia Margarit
- Swansea University Medical School, Swansea, United Kingdom
- Cwm Taf Morgannwg University Health Board, Bridgend, United Kingdom
| | | | | | | |
Collapse
|
6
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
7
|
Li L, Ge H, Zhou J, Wang J, Wang L. Polycystic ovary syndrome and adverse pregnancy outcomes: potential role of decidual function. Drug Discov Ther 2024; 17:378-388. [PMID: 38148009 DOI: 10.5582/ddt.2023.01096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting fertility and mental health among women of reproductive age. In addition to anovulation and hyperandrogenism, patients also experience metabolic issues, such as insulin resistance, obesity, and dyslipidemia, as well as chronic low-grade inflammation throughout the body. Recent studies have shown that even with assisted reproductive technology to treat anovulatory issues, patients with PCOS still have higher rates of adverse pregnancy outcomes and abortion compared to normal pregnancies. These findings suggest that PCOS may impair the endometrium and disrupt the onset and maintenance of healthy pregnancies. Decidualization is a crucial step in the process of healthy pregnancy, during which endometrial stromal cells (ESCs) differentiate into secretory decidual stromal cells (DSCs) regulated by hormones and local metabolism. This article comprehensively reviews the pathological processes of PCOS and the mechanisms involved in its impaired decidualization. In addition, we explore how PCOS increases the incidence of adverse pregnancy outcomes (APO). By gaining a better understanding of the adverse effects of PCOS on pregnancy and its specific mechanisms, we hope to provide a theoretical basis for reducing APO and improving the live birth rate among women with PCOS.
Collapse
Affiliation(s)
- Lisha Li
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Hanting Ge
- Reproductive Medicine Center, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| |
Collapse
|
8
|
Khatun M, Lundin K, Naillat F, Loog L, Saarela U, Tuuri T, Salumets A, Piltonen TT, Tapanainen JS. Induced Pluripotent Stem Cells as a Possible Approach for Exploring the Pathophysiology of Polycystic Ovary Syndrome (PCOS). Stem Cell Rev Rep 2024; 20:67-87. [PMID: 37768523 PMCID: PMC10799779 DOI: 10.1007/s12015-023-10627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine condition among women with pleiotropic sequelae possessing reproductive, metabolic, and psychological characteristics. Although the exact origin of PCOS is elusive, it is known to be a complex multigenic disorder with a genetic, epigenetic, and environmental background. However, the pathogenesis of PCOS, and the role of genetic variants in increasing the risk of the condition, are still unknown due to the lack of an appropriate study model. Since the debut of induced pluripotent stem cell (iPSC) technology, the ability of reprogrammed somatic cells to self-renew and their potential for multidirectional differentiation have made them excellent tools to study different disease mechanisms. Recently, researchers have succeeded in establishing human in vitro PCOS disease models utilizing iPSC lines from heterogeneous PCOS patient groups (iPSCPCOS). The current review sets out to summarize, for the first time, our current knowledge of the implications and challenges of iPSC technology in comprehending PCOS pathogenesis and tissue-specific disease mechanisms. Additionally, we suggest that the analysis of polygenic risk prediction based on genome-wide association studies (GWAS) could, theoretically, be utilized when creating iPSC lines as an additional research tool to identify women who are genetically susceptible to PCOS. Taken together, iPSCPCOS may provide a new paradigm for the exploration of PCOS tissue-specific disease mechanisms.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland.
| | - Karolina Lundin
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Florence Naillat
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Liisa Loog
- Institute of Genomics, University of Tartu, Tartu, 51010, Estonia
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Ulla Saarela
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
| | - Andres Salumets
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, 50406, Estonia
- Competence Centre of Health Technologies, Tartu, 50411, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, 14186, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, Research Unit of Clinical Medicine, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, University of Helsinki, Helsinki University Central Hospital, Haartmaninkatu 8, Helsinki, 00029 HUS, Finland
- Department of Obstetrics and Gynecology, HFR - Cantonal Hospital of Fribourg and University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Guo Y, Dai F, Zheng B, Tao L, Cui T. Which transfer day results in the highest live birth rate for PCOS patients undergoing in vitro fertilization? BMC Pregnancy Childbirth 2023; 23:865. [PMID: 38104082 PMCID: PMC10724904 DOI: 10.1186/s12884-023-06173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) has unusual levels of hormones. The hormone receptors in the endometrium have a hostile effect and make the microenvironment unfavorable for embryo implantation. The use of gonadotropin stimulation during in vitro fertilization (IVF) may have an impact on embryo implantation and live birth rate. According to recent data, the clinical results of day 4 embryo transfer (D4 transfer) were on par with those of day 5 embryo transfer (D5 transfer) in IVF-ET. There are few studies comparing the outcomes of transplants with various etiologies and days. The purpose of this study was to determine which transfer day had the best result for PCOS patients undergoing IVF. METHODS This retrospective cohort study was conducted in the Xingtai Infertility Specialist Hospital between January 2017 and November 2021. A total of 1,664 fresh ART cycles met inclusion criteria, including 242 PCOS transfers and 1422 tubal factor infertility transfers. CONCLUSIONS PCOS individuals had the highest live birth rate on D4 transferred. It was not need to culture embryos to blastocysts to optimize embryo transfer for PCOS women. This could be a novel approach to transplantation for PCOS.
Collapse
Affiliation(s)
- Yuying Guo
- Xingtai Infertility Specialist Hospital/Xingtai Reproduction and Genetics Specialist Hospital, Xingtai City, Hebei Province, China.
| | - Fangfang Dai
- Xingtai Infertility Specialist Hospital/Xingtai Reproduction and Genetics Specialist Hospital, Xingtai City, Hebei Province, China
| | - Bo Zheng
- Xingtai Infertility Specialist Hospital/Xingtai Reproduction and Genetics Specialist Hospital, Xingtai City, Hebei Province, China
| | - Linlin Tao
- Xingtai Infertility Specialist Hospital/Xingtai Reproduction and Genetics Specialist Hospital, Xingtai City, Hebei Province, China
| | - Tieqing Cui
- HEBEI INSTITUTE OF MECHANICAL AND ELECTRICAL TECHNOLOGY, Xingtai City, Hebei Province, China
| |
Collapse
|
10
|
Salamon D, Ujvari D, Hellberg A, Hirschberg AL. DHT and Insulin Upregulate Secretion of the Soluble Decoy Receptor of IL-33 From Decidualized Endometrial Stromal Cells. Endocrinology 2023; 165:bqad174. [PMID: 37972259 PMCID: PMC10681354 DOI: 10.1210/endocr/bqad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Interleukin 33 (IL-33) signaling regulates most of the key processes of pregnancy, including decidualization, trophoblast proliferation and invasion, vascular remodeling, and placental growth. Accordingly, dysregulation of IL-33, its membrane-bound receptor (ST2L, transducer of IL-33 signaling), and its soluble decoy receptor (sST2, inhibitor of IL-33 signaling) has been linked to a wide range of adverse pregnancy outcomes that are common in women with obesity and polycystic ovary syndrome, that is, conditions associated with hyperandrogenism, insulin resistance, and compensatory hyperinsulinemia. To reveal if androgens and insulin might modulate uteroplacental IL-33 signaling, we investigated the effect of dihydrotestosterone (DHT) and/or insulin on the expression of ST2L and sST2 (along with the activity of their promoter regions), IL-33 and sIL1RAP (heterodimerization partner of sST2), during in vitro decidualization of endometrial stromal cells from 9 healthy women. DHT and insulin markedly upregulated sST2 secretion, in addition to the upregulation of its messenger RNA (mRNA) expression, while the proximal ST2 promoter, from which the sST2 transcript originates, was upregulated by insulin, and in a synergistic manner by DHT and insulin combination treatment. On the other hand, sIL1RAP was slightly downregulated by insulin and IL-33 mRNA expression was not affected by any of the hormones, while ST2L mRNA expression and transcription from its promoter region (distal ST2 promoter) could not be detected or showed a negligibly low level. We hypothesize that high levels of androgens and insulin might lead to subfertility and pregnancy complications, at least partially, through the sST2-dependent downregulation of uteroplacental IL-33 signaling.
Collapse
Affiliation(s)
- Daniel Salamon
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Dorina Ujvari
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, National Pandemic Centre, Centre for Translational Microbiome Research, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Anton Hellberg
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institute, SE-171 64 Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
11
|
Yusuf ANM, Amri MF, Ugusman A, Hamid AA, Wahab NA, Mokhtar MH. Hyperandrogenism and Its Possible Effects on Endometrial Receptivity: A Review. Int J Mol Sci 2023; 24:12026. [PMID: 37569402 PMCID: PMC10419014 DOI: 10.3390/ijms241512026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Endometrial receptivity is a state of the endometrium defined by its readiness for embryo implantation. When the receptivity of the endometrium is impaired due to hyperandrogenism or androgen excess, this condition can lead to pregnancy loss or infertility. Hyperandrogenism encompasses a wide range of clinical manifestations, including polycystic ovary syndrome (PCOS), idiopathic hirsutism, hirsutism and hyperandrogaenemia, non-classical congenital adrenal hyperplasia, hyperandrogenism, insulin resistance, acanthosis nigricans (HAIR-AN), ovarian or adrenal androgen-secreting neoplasms, Cushing's syndrome, and hyperprolactinaemia. Recurrent miscarriages have been shown to be closely related to elevated testosterone levels, which alter the endometrial milieu so that it is less favourable for embryo implantation. There are mechanisms for endometrial receptivity that are affected by excess androgen. The HOXA gene, aVβ3 integrin, CDK signalling pathway, MECA-79, and MAGEA-11 were the genes and proteins affect endometrial receptivity in the presence of a hyperandrogenic state. In this review, we would like to explore the other manifestations of androgen excess focusing on causes other than PCOS and learn possible mechanisms of endometrial receptivity behind androgen excess leading to pregnancy loss or infertility.
Collapse
Affiliation(s)
- Allia Najmie Muhammad Yusuf
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mohd Fariz Amri
- Department of Pathology, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
12
|
ElMonier AA, El-Boghdady NA, Fahim SA, Sabry D, Elsetohy KA, Shaheen AA. LncRNA NEAT1 and MALAT1 are involved in polycystic ovary syndrome pathogenesis by functioning as competing endogenous RNAs to control the expression of PCOS-related target genes. Noncoding RNA Res 2023; 8:263-271. [PMID: 36935861 PMCID: PMC10020466 DOI: 10.1016/j.ncrna.2023.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Accumulating evidence has shown an abnormal expression of several non-coding RNAs in ovarian tissues which might be closely linked with the pathogenesis of PCOS. The aim of this study was to identify competing endogenous (ce) RNA network: long non-coding RNA (lncRNA), microRNA (miRNA) and their target genes: androgen receptor (AR), follistatin (FST) and insulin receptor substrate-2 (IRS-2), which are relevant to PCOS, to underline the molecular pathogenesis of PCOS and assist in early diagnosis and treatment. Bioinformatic analysis was performed to retrieve a ceRNA network: [lncRNA (NEAT1 and MALAT1) - miRNA (miR-30a-5p and miR-30d-5p) - mRNA (AR, FST and IRS-2)] linked to PCOS. Expression of the selected RNAs was examined by qPCR in peripheral blood leukocytes obtained from 73 PCOS patients (41 obese and 32 non-obese) and 31 healthy controls. PCOS patients showed significantly higher expression levels of NEAT1, miR-30a-5p, AR, FST and IRS-2, with significantly lower expression levels of MALAT1 and miR-30d-5p relative to controls especially in obese versus non-obese patients. Receiver operating characteristic (ROC) curve analysis indicated that most of the selected RNAs could serve as potential early diagnostic markers for PCOS with the highest efficiency obtained upon combining NEAT1 and miR-30d-5p or MALAT1 and miR-30a-5p with either of PCOS target genes. Moreover, all addressed RNAs had been proved as potential predictors of PCOS. The obtained data of ceRNA network raised the possibility that NEAT1 overexpression may increase the expression levels of AR, FST and IRS-2 by sponging miR-30d-5p, while low expression of MALAT1 may allow higher expression of the above genes via increasing miR-30a-5p, suggesting their involvement in PCOS pathogenesis and promising role for future diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Asmaa A. ElMonier
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
- Corresponding author.
| | - Noha A. El-Boghdady
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Sally A. Fahim
- Department of Biochemistry, School of Pharmacy, Newgiza University (NGU), Newgiza, Km 22 Cairo-Alexandria Desert Road, 12577, Giza, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, 11562, Cairo, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, 12613, Cairo, Egypt
| | - Khaled A. Elsetohy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, 12111, Cairo, Egypt
| | - Amira A. Shaheen
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
13
|
Hu M, Zhang Y, Lu Y, Han J, Guo T, Cui P, Brännström M, Shao LR, Billig H. Regulatory mechanisms of HMGB1 and its receptors in polycystic ovary syndrome-driven gravid uterine inflammation. FEBS J 2023; 290:1874-1906. [PMID: 36380688 PMCID: PMC10952262 DOI: 10.1111/febs.16678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
High-mobility group box 1 (HMGB1) is critical for inflammatory homeostasis and successful pregnancy, and there is a strong association among elevated levels of HMGB1, polycystic ovary syndrome (PCOS), chronic inflammation and pregnancy loss. However, the mechanisms responsible for PCOS-driven regulation of uterine HMGB1 and its candidate receptors [toll-like receptor (TLR) 2 and 4] and inflammatory responses during pregnancy remain unclear. In this study, we found a gestational stage-dependent decrease in uterine HMGB1 and TLR4 protein abundance in rats during normal pregnancy. We demonstrated that increased expression of HMGB1, TLR2 and TLR4 proteins was associated with activation of inflammation-related signalling pathways in the gravid uterus exposed to 5α-dihydrotestosterone and insulin, mimicking the clinical features (hyperandrogenism and insulin resistance) of PCOS and this elevation was completely inhibited by treatment with the androgen receptor (AR) antagonist flutamide. Interestingly, acute exposure to lipopolysaccharide suppressed HMGB1, TLR4 and inflammation-related protein abundance but did not affect androgen levels or AR expression in the gravid uterus with viable fetuses. Furthermore, immunohistochemical analysis revealed that, in addition to being localized predominately in the nuclear compartment, HMGB1 immunoreactivity was also detected in the cytoplasm in the PCOS-like rat uterus, PCOS endometrium and pregnant rat uterus with haemorrhagic and resorbed fetuses, possibly via activation of nuclear factor κB signalling. These results suggest that both AR-dependent and AR-independent mechanisms contribute to the modulation of HMGB1/TLR2/TLR4-mediated uterine inflammation. We propose that the elevation of HMGB1 and its receptors and disruption of the pro-/anti-inflammatory balance in the gravid uterus may participate in the pathophysiology of PCOS-associated pregnancy loss.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Yaxing Lu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Guangzhou Medical UniversityChina
- Institute of Integrated Traditional Chinese Medicine and Western MedicineGuangzhou Medical UniversityChina
| | - Jing Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Tingting Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated HospitalHeilongjiang University of Chinese MedicineHarbinChina
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
- Department of Obstetrics and GynecologyShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineChina
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska AcademyUniversity of GothenburgSweden
| |
Collapse
|
14
|
Wu X, Zhang K, Zhong X, Huo X, Zhang J, Tian W, Yang X, Zhang Y, Wang Y. Androgens in endometrial carcinoma: the killer or helper? J Endocrinol Invest 2023; 46:457-464. [PMID: 36583833 PMCID: PMC9938034 DOI: 10.1007/s40618-022-01916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of this review is to discuss the role of androgens in the progression of endometrial carcinoma (EC) with particular focus on the different kinds of androgenic hormones, androgen receptor (AR) and intracrine androgen metabolism. METHODS A comprehensive literature search within PubMed was performed. Selected publications related to androgens and EC were reviewed. RESULTS There are different kinds of androgenic hormones, and different kinds of androgens may have different effects. Elevated androgens (especially testosterone) have been associated with an increased EC risk in postmenopausal women. 5α-reductases (5α-Reds) and 17β-hydroxysteroid dehydrogenase type 2 (17βHSD2) pathway may inhibit the progression of EC mediated by dihydrotestosterone (DHT), but aromatases stimulate further progression of EC. The most of studies accessing the prognostic value of AR have found that AR expression may be a favorable prognostic indicator. CONCLUSION Androgens may have both oncogenic and tumor suppressive roles. Androgen-specific biases in metabolism and the expression of AR may contribute to the different prognosis of patients with EC.
Collapse
Affiliation(s)
- X Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - K Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - X Zhong
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - X Huo
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - J Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China
| | - W Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - X Yang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China.
| | - Y Zhang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong City, China.
| | - Y Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
15
|
Haddad-Filho H, Tosatti JAG, Vale FM, Gomes KB, Reis FM. Updates in diagnosing polycystic ovary syndrome-related infertility. Expert Rev Mol Diagn 2023; 23:123-132. [PMID: 36856088 DOI: 10.1080/14737159.2023.2177536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is a condition that affects approximately 13% of reproductive age women and is characterized by androgen excess, menstrual irregularity and altered ovarian morphology. PCOS presents a complex etiology and pathophysiology, which still requires a detailed investigation of biochemical signatures to identify the molecules and mechanisms that govern it. AREAS COVERED This narrative review summarizes the main molecular alterations found in the ovarian follicular fluid, endometrium and placenta of women with PCOS, and the genotypes potentially associated with the outcome of infertility treatments in PCOS. EXPERT OPINION PCOS is associated with multiple alterations in growth factors, sex steroid hormones, reactive oxygen species, proinflammatory cytokines and adipokines, which contribute to follicle arrest/ anovulation or suboptimal corpus luteum function, and ultimately to menstrual irregularity and hyperandrogenic symptoms. A panel of PCOS biomarkers should include, besides ovarian products, markers of adipose tissue function, insulin resistance, vascular health, and low-grade chronic inflammation. The effects of ovarian stimulation drugs on infertile women with PCOS are likely to be modified by genetic factors, but the available evidence is heterogeneous; therefore, future studies should evaluate standard treatments and pre-specified outcomes of interest to provide more conclusive answers.
Collapse
Affiliation(s)
- Hélio Haddad-Filho
- Graduate Program in Surgery, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Medicine, Universidade Federal de Lavras, Lavras, Brazil
| | - Jéssica A G Tosatti
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda M Vale
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Karina B Gomes
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Gao W, Feng F, Ma X, Zhang R, Li L, Yue F, Lv M, Liu L. Progress of oxidative stress in endometrium decidualization. J OBSTET GYNAECOL 2022; 42:3429-3434. [PMID: 36373471 DOI: 10.1080/01443615.2022.2144171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The difficulty in maintaining the balance between oxides and antioxidants causes a phenomenon named oxidative stress. Oxidative stress often leads to tissue damage and participates in the pathogenesis of a series of diseases. Decidua provides the 'soil' for embryo implantation, and the normal decidualization shows the characteristics of strong antioxidation. Once the mechanism of antioxidant stress goes awry, it will lead to a series of pregnancy-related diseases. In recent years, more and more studies have shown that oxidative stress is involved in pregnancy-related diseases caused by abnormal decidualization of the endometrium. In order to have a more comprehensive understanding of the role of oxidative stress in decidual defect diseases, this paper reviews the common decidual defect diseases in conjunction with relevant regulatory molecules, in order to arouse thinking about the importance of oxidative stress, and to provide more theoretical basis for the aetiology of decidual defects.
Collapse
Affiliation(s)
- Wenxin Gao
- The first Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Fei Feng
- Ultrasound Department, The first Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoling Ma
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Rui Zhang
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lifei Li
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Feng Yue
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Meng Lv
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| | - Lin Liu
- Reproductive Medicine Center, The first Hospital of Lanzhou University, Lanzhou, China
- Gansu key Laboratory of Reproductive Medicine and Embryology, Lanzhou, China
| |
Collapse
|
17
|
Zhang M, Zong W, Zou D, Wang G, Zhao W, Yang F, Wu S, Zhang X, Guo X, Ma Y, Xiong Z, Zhang Z, Bao Y, Li R. MethBank 4.0: an updated database of DNA methylation across a variety of species. Nucleic Acids Res 2022; 51:D208-D216. [PMID: 36318250 PMCID: PMC9825483 DOI: 10.1093/nar/gkac969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
DNA methylation, as the most intensively studied epigenetic mark, regulates gene expression in numerous biological processes including development, aging, and disease. With the rapid accumulation of whole-genome bisulfite sequencing data, integrating, archiving, analyzing, and visualizing those data becomes critical. Since its first publication in 2015, MethBank has been continuously updated to include more DNA methylomes across more diverse species. Here, we present MethBank 4.0 (https://ngdc.cncb.ac.cn/methbank/), which reports an increase of 309% in data volume, with 1449 single-base resolution methylomes of 23 species, covering 236 tissues/cell lines and 15 biological contexts. Value-added information, such as more rigorous quality evaluation, more standardized metadata, and comprehensive downstream annotations have been integrated in the new version. Moreover, expert-curated knowledge modules of featured differentially methylated genes associated with biological contexts and methylation analysis tools have been incorporated as new components of MethBank. In addition, MethBank 4.0 is equipped with a series of new web interfaces to browse, search, and visualize DNA methylation profiles and related information. With all these improvements, we believe the updated MethBank 4.0 will serve as a fundamental resource to provide a wide range of data services for the global research community.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China
| | - Song Wu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xutong Guo
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingke Ma
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China
| | - Zhuang Xiong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- Correspondence may also be addressed to Zhang Zhang. Tel: +86 10 84097261;
| | - Yiming Bao
- Correspondence may also be addressed to Yiming Bao. Tel: +86 10 84097858;
| | - Rujiao Li
- To whom correspondence should be addressed. Tel: +86 10 84097638;
| |
Collapse
|
18
|
Wang W, Hao J, Shi Y. IL23 suppresses proliferation and promotes apoptosis of human granulosa-like tumor cell line KGN by targeting the androgen receptor signal pathway. Gynecol Endocrinol 2022; 38:965-970. [PMID: 36123810 DOI: 10.1080/09513590.2022.2123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Polycystic ovary syndrome (PCOS) is associated with chronic low-grade inflammation. IL23 is a classic pro-inflammatory factor, which has been found that serum levels of IL23 were higher in patients with PCOS. However, the exact function of IL23 in regulating the pathogenesis of PCOS has not been elucidated. This study aimed to investigate the role of IL23 in the pathogenesis of PCOS and uncover the possible molecular mechanism. Methods: We investigated the role of IL23 in the proliferation, cell cycle progression and apoptosis of granulosa cells (GCs) using the human granulosa-like tumor cell line KGN. Results: IL23 suppressed the proliferation, arrested cell cycle progression, and increased apoptosis of KGN cells. We also found that IL23 decreases proliferation and promotes apoptosis in KGN cells is mediated by androgen receptor (AR) signaling. Conclusions: Our results demonstrated that IL23 suppressed cell proliferation and promoted apoptosis of KGN cells, which might provide new evidence for abnormal proliferation and apoptosis of GCs in PCOS.
Collapse
Affiliation(s)
- Wenqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, China
- Department of Obstetrics and Gynecology, Taian Central Hospital, Taian, Shandong
| | - Jing Hao
- Key Laboratory of The Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuhua Shi
- Center for Reproductive Medicine, Shandong University, Jinan, China
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| |
Collapse
|
19
|
Acupuncture Improves Endometrial Angiogenesis by Activating PI3K/AKT Pathway in a Rat Model with PCOS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1790041. [PMID: 36062171 PMCID: PMC9433287 DOI: 10.1155/2022/1790041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Background. Acupuncture, a treatment derived from traditional Chinese medicine, can effectively relieve the symptoms and improve pregnancy outcome in patients with polycystic ovary syndrome (PCOS); however, its mechanism remains unclear. This study aimed at investigating whether acupuncture could improve endometrial angiogenesis and thus endometrial receptivity via activating PI3K/AKT pathway in PCOS rats. Methods. We established a rat model with PCOS, which was induced by DHEA. Acupuncture was performed every other day for 15 days, and the PI3K inhibitor (LY294002) was intraperitoneal injected 30 mins before acupuncture treatment. Females rats were mated with male SPF SD rats in a ratio of 2 : 1 after treatment and sacrificed on the 5th day when the vaginal plug was identified. The number of implantation sites was observed, followed by ovarian and endometrial morphology detected with hematoxylin-eosin staining and a scanning electron microscope, estrous cycle detected with vaginal smear analysis, and sex hormones and angiogenesis-related PI3K/AKT gene/protein expression detected with enzyme-linked immunosorbent assay, western blotting, immune histochemistry, and quantitative real-time PCR. Results. Acupuncture notably improved implantation sites’ number, endometrial receptivity factors including endometrial morphology, pinopodes, HOX-10, and LIF protein expression, as well as angiogenesis and PI3K/AKT pathway factors such as VEGF, VEGFR2, Ang-1, PI3K, AKT, and P-AKT gene/protein expression and the level of eNOS and NO in the endometrium of rats with PCOS; PCOS-like symptoms were alleviated as well. The efficacy of acupuncture on a rat model with PCOS was counteracted by the combination with the PI3K inhibitor. Conclusion. Acupuncture improves endometrial angiogenesis by activating the PI3K/AKT pathway, thus promoting endometrial receptivity and the number of implantation sites in rats with PCOS.
Collapse
|
20
|
Amjadi F, Zandieh Z, Mehdizadeh M, Ajdary M, Aghamajidi A, Raoufi E, Aflatoonian R. Molecular signature of immunological mechanism behind impaired endometrial receptivity in polycystic ovarian syndrome. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:303-311. [PMID: 35551681 PMCID: PMC9832857 DOI: 10.20945/2359-3997000000476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022]
Abstract
Objective Despite the treatment of anovulation, infertility is still one of the main complications in PCOS women during reproductive age, which appears to be mainly due to impaired uterine receptivity. This study investigated the transcriptome profiles of endometrium in PCOS patients and healthy fertile individuals as the control group. Methods Total mRNA was extracted from endometrial tissues of PCOS patients (n = 12) and healthy fertile individuals (n = 10) during the luteal phase. After cDNA synthesis, PCR array was performed using Human Female Infertility RT2 Profiler PCR Array kit (Qiagen, Cat.No: PAHS-164Z) for evaluating expression of 84 genes contributing to the female infertility. Results PCR Array data analysis identified significantly greater expression of CSF, IL11, IL15, IL1r1, IL1b, TNF, LIF, TNFRSF10B, TGFβ, C3, ITGA4 (Cd49d), SPP1, and Calca in PCOS women than in controls (P < 0.05). However, the expression of LIFR, C2, CD55, CFD, CALCA, LAM1, LAMC2, MMP2, MMP7, MMP9, ESR, SELL, ITGB3, and VCAM1 was significantly lower in PCOS group than in controls (P < 0.05). The results revealed dysregulation of immune-inflammatory molecules, complement activation and downregulation of IGF-I as well as adhesion molecules in PCOS group. Conclusion The findings of this study indicated some potential causes of reduced receptivity of endometrium thus compromising the fertility in PCOS patients.
Collapse
Affiliation(s)
- Fatemehsadat Amjadi
- Akbarabadi IVF clinic, Akbarabadi Hospital, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Akbarabadi IVF clinic, Akbarabadi Hospital, Iran University of Medical Science, Tehran, Iran
- Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Raoufi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Vaccines and Immunotherapeutics, Bioluence Biopharmaceutical Company, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,
| |
Collapse
|
21
|
Ramadhan RS, Algafari RN, Jarallah AL. Investigating pathogenic SNPs in androgen receptor with direct influence on polycystic ovary syndrome (PCOS) in women. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) became one of the main reasons for infertility in women. It has an obvious effect on phenotype represented by hirsutism, increased body mass index, obesity, and acne, while biochemical tests show adverse hormonal imbalance with hyperandrogenism as testosterone levels increases. From molecular level point of view, pathogenic SNPs may change CAG repeats number along androgen receptor (AR) resulting in altered function of the gene causing different affinity to androgen hormones.
Methods
Recruiting 150 patients diagnosed with PCOS for the study, genomic DNA was extracted and amplified using specifically designed exon 1 PCR primers employing gene walking technique. The resulting amplicons were sequenced and thoroughly analyzed for polymorphism and CAG repeats number.
Results
Data obtained from recruiting 150 patients diagnosed with PCOS showed that sequences X:67545209–67545742; X:67545503–67545739 of exon 1 harbored 7 SNPs altered secondary structure of the resulting protein and forced toward the use of CAA as synonymous codon instead of the normal CAGs stretches. This led to produced alternative mRNA that eventually changed nonsense-mediated mRNA decay mechanism.
Conclusion
Probability of PCOS in women with polymorphic AR gene is higher than others, especially women with high number of CAG stretches. The new finding and highlight of this study is that alternative codon usage (CAAs) to produce the same amino acid (Gln) and compensate the reduced number of CAG repeats number may be attributed to epigenetic mechanism to mitigate the adverse effect of such change and maintain a normal function of AR gene. This finding was not previously reported in former studies.
Collapse
|
22
|
Dehghan Z, Mohammadi-Yeganeh S, Sameni M, Mirmotalebisohi SA, Zali H, Salehi M. Repurposing new drug candidates and identifying crucial molecules underlying PCOS Pathogenesis Based On Bioinformatics Analysis. Daru 2021; 29:353-366. [PMID: 34480296 PMCID: PMC8416576 DOI: 10.1007/s40199-021-00413-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDS Polycystic ovary syndrome affects 7% of women of reproductive ages. Poor-quality oocytes, along with lower cleavage and implantation rates, reduce fertilization. OBJECTIVE This study aimed to determine crucial molecular mechanisms behind PCOS pathogenesis and repurpose new drug candidates interacting with them. To predict a more in-depth insight, we applied a novel bioinformatics approach to analyze interactions between the drug-related and PCOS proteins in PCOS patients. METHODS The newest proteomics data was retrieved from 16 proteomics datasets and was used to construct the PCOS PPI network using Cytoscape. The topological network analysis determined hubs and bottlenecks. The MCODE Plugin was used to identify highly connected regions, and the associations between PCOS clusters and drug-related proteins were evaluated using the Chi-squared/Fisher's exact test. The crucial PPI hub-bottlenecks and the shared molecules (between the PCOS clusters and drug-related proteins) were then investigated for their drug-protein interactions with previously US FDA-approved drugs to predict new drug candidates. RESULTS The PI3K/AKT pathway was significantly related to one PCOS subnetwork and most drugs (metformin, letrozole, pioglitazone, and spironolactone); moreover, VEGF, EGF, TGFB1, AGT, AMBP, and RBP4 were identified as the shared proteins between the PCOS subnetwork and the drugs. The shared top biochemical pathways between another PCOS subnetwork and rosiglitazone included metabolic pathways, carbon metabolism, and citrate cycle, while the shared proteins included HSPB1, HSPD1, ACO2, TALDO1, VDAC1, and MDH2. We proposed some new candidate medicines for further PCOS treatment investigations, such as copper and zinc compounds, reteplase, alteplase, gliclazide, Etc. CONCLUSION Some of the crucial molecules suggested by our model have already been experimentally reported as critical molecules in PCOS pathogenesis. Moreover, some repurposed medications have already shown beneficial effects on infertility treatment. These previous experimental reports confirm our suggestion for investigating our other repurposed drugs (in vitro and in vivo).
Collapse
Affiliation(s)
- Zeinab Dehghan
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Khatun M, Meltsov A, Lavogina D, Loid M, Kask K, Arffman RK, Rossi HR, Lättekivi F, Jääger K, Krjutškov K, Rinken A, Salumets A, Piltonen TT. Decidualized endometrial stromal cells present with altered androgen response in PCOS. Sci Rep 2021; 11:16287. [PMID: 34381107 PMCID: PMC8357821 DOI: 10.1038/s41598-021-95705-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Hyperandrogenic women with PCOS show disrupted decidualization (DE) and placentation. Dihydrotestosterone (DHT) is reported to enhance DE in non-PCOS endometrial stromal cells (eSCCtrl); however, this has not been assessed in PCOS cells (eSCPCOS). Therefore, we studied the transcriptome profile of non-decidualized (non-DE) and DE eSCs from women with PCOS and Ctrl in response to short-term estradiol (E2) and/or progesterone (P4) exposure with/without (±) DHT. The non-DE eSCs were subjected to E2 ± DHT treatment, whereas the DE (0.5 mM 8-Br-cAMP, 96 h) eSCs were post-treated with E2 and P4 ± DHT, and RNA-sequenced. Validation was performed by immunofluorescence and immunohistochemistry. The results showed that, regardless of treatment, the PCOS and Ctrl samples clustered separately. The comparison of DE vs. non-DE eSCPCOS without DHT revealed PCOS-specific differentially expressed genes (DEGs) involved in mitochondrial function and progesterone signaling. When further adding DHT, we detected altered responses for lysophosphatidic acid (LPA), inflammation, and androgen signaling. Overall, the results highlight an underlying defect in decidualized eSCPCOS, present with or without DHT exposure, and possibly linked to the altered pregnancy outcomes. We also report novel factors which elucidate the mechanisms of endometrial dysfunction in PCOS.
Collapse
Affiliation(s)
- Masuma Khatun
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Alvin Meltsov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Darja Lavogina
- Competence Centre on Health Technologies, Tartu, Estonia.,Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Marina Loid
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Keiu Kask
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Riikka K Arffman
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Henna-Riikka Rossi
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Kersti Jääger
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Kaarel Krjutškov
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Terhi T Piltonen
- Department of Obstetrics and Gynaecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland.
| |
Collapse
|
24
|
Bai X, Zheng L, Li D, Xu Y. Research progress of endometrial receptivity in patients with polycystic ovary syndrome: a systematic review. Reprod Biol Endocrinol 2021; 19:122. [PMID: 34362377 PMCID: PMC8344130 DOI: 10.1186/s12958-021-00802-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a neuroendocrine heterogeneous disease that frequently occurs in women of reproductive age, causing serious damage to the fertility, quality of life, and physical and mental health of patients. The current studies have proved that satisfactory endometrial receptivity is one of the conditions that must be met during the process of spermatovum position, adhesion and invasion, as well as the subsequent blastocyst division and embryo development. Women with PCOS may suffer a series of pathological processes such as changes in the expression levels of hormones and related receptors, imbalances in the proportion of miscellaneous cytokines, insulin resistance, low-grade chronic inflammation and endometrial morphological changes, which will damage endometrial receptivity from various aspects and obstruct fertilized egg nidation and embryonic development, thus causing adverse reproductive health events including infertility and abortion. This article reviews the research progress about characteristics and related influencing factors of endometrial receptivity in PCOS patients.
Collapse
Affiliation(s)
- Xuechun Bai
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| | - Lianwen Zheng
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| | - Dandan Li
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| | - Ying Xu
- The Second Hospital of Jilin University, Jilin Province Changchun City, China
| |
Collapse
|
25
|
Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl 2021; 14:1693-1715. [PMID: 34295358 PMCID: PMC8288001 DOI: 10.1111/eva.13244] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 12/15/2022] Open
Abstract
Evolutionary and comparative approaches can yield novel insights into human adaptation and disease. Endometriosis and polycystic ovary syndrome (PCOS) each affect up to 10% of women and significantly reduce the health, fertility, and quality of life of those affected. PCOS and endometriosis have yet to be considered as related to one another, although both conditions involve alterations to prenatal testosterone levels and atypical functioning of the hypothalamic-pituitary-gonadal (HPG) axis. Here, we propose and evaluate the novel hypothesis that endometriosis and PCOS represent extreme and diametric (opposite) outcomes of variation in HPG axis development and activity, with endometriosis mediated in notable part by low prenatal and postnatal testosterone, while PCOS is mediated by high prenatal testosterone. This diametric disorder hypothesis predicts that, for characteristics shaped by the HPG axis, including hormonal profiles, reproductive physiology, life-history traits, and body morphology, women with PCOS and women with endometriosis will manifest opposite phenotypes. To evaluate these predictions, we review and synthesize existing evidence from developmental biology, endocrinology, physiology, life history, and epidemiology. The hypothesis of diametric phenotypes between endometriosis and PCOS is strongly supported across these diverse fields of research. Furthermore, the contrasts between endometriosis and PCOS in humans parallel differences among nonhuman animals in effects of low versus high prenatal testosterone on female reproductive traits. These findings suggest that PCOS and endometriosis represent maladaptive extremes of both female life-history variation and expression of sexually dimorphic female reproductive traits. The diametric disorder hypothesis for endometriosis and PCOS provides novel, unifying, proximate, and evolutionary explanations for endometriosis risk, synthesizes diverse lines of research concerning the two most common female reproductive disorders, and generates future avenues of research for improving the quality of life and health of women.
Collapse
Affiliation(s)
| | - Bernard J. Crespi
- Department of Biological SciencesSimon Fraser UniversityBurnabyBCCanada
| |
Collapse
|
26
|
Jiang NX, Li XL. The Disorders of Endometrial Receptivity in PCOS and Its Mechanisms. Reprod Sci 2021; 29:2465-2476. [PMID: 34046867 DOI: 10.1007/s43032-021-00629-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a mysterious and complicated endocrine disease with the combination of metabolic, reproductive, psychological dysfunctions. Impaired endometrial receptivity and ovulation disorders/anovulation are both important causes of PCOS-related infertility. However, change in endometrium has never received the same attention as ovulatory dysfunction. Besides, putting emphasis on endometrial function may be more realistic for PCOS-related infertility, given the wide use of assisted reproductive technology. The present review focuses on the disorders of endometrial receptivity of patients with PCOS, summarizes the changes of the indicators of endometrial receptivity including leukemia inhibitory factor, homeobox genes A, pinopodes, αvβ3-integrin, and intercellular junctions and also analyzes the possible mechanisms of decreased endometrial receptivity and its relationship with the main endocrine and metabolic disorders of PCOS such as hyperandrogenism, inflammation, insulin resistance, and obesity. Despite several biomarkers have been found to be associated with decreased endometrial receptivity in PCOS, the clinical relevance of these findings still awaits future clarification.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
27
|
Nikolakopoulou K, Turco MY. Investigation of infertility using endometrial organoids. Reproduction 2021; 161:R113-R127. [PMID: 33621191 PMCID: PMC8052517 DOI: 10.1530/rep-20-0428] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022]
Abstract
Infertility is a common problem in modern societies with significant socio-psychological implications for women. Therapeutic interventions are often needed which, depending on the cause, can either be medical treatment, surgical procedures or assisted reproductive technology (ART). However, the treatment of infertility is not always successful due to our limited understanding of the preparation of the lining of the uterus, the endometrium, for pregnancy. The endometrium is of central importance for successful reproduction as it is the site of placental implantation providing the interface between the mother and her baby. Due to the dynamic, structural and functional changes the endometrium undergoes throughout the menstrual cycle, it is challenging to study. A major advancement is the establishment of 3D organoid models of the human endometrium to study this dynamic tissue in health and disease. In this review, we describe the changes that the human endometrium undergoes through the different phases of the menstrual cycle in preparation for pregnancy. We discuss defects in the processes of endometrial repair, decidualization and acquisition of receptivity that are associated with infertility. Organoids could be utilized to investigate the underlying cellular and molecular mechanisms occurring in non-pregnant endometrium and early pregnancy. These studies may lead to therapeutic applications that could transform the treatment of reproductive failure.
Collapse
Affiliation(s)
- Konstantina Nikolakopoulou
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, Cambridgeshire, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, Cambridgeshire, UK
| |
Collapse
|
28
|
Hu M, Zhang Y, Li X, Cui P, Sferruzzi-Perri AN, Brännström M, Shao LR, Billig H. TLR4-Associated IRF-7 and NFκB Signaling Act as a Molecular Link Between Androgen and Metformin Activities and Cytokine Synthesis in the PCOS Endometrium. J Clin Endocrinol Metab 2021; 106:1022-1040. [PMID: 33382900 DOI: 10.1210/clinem/dgaa951] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 12/19/2022]
Abstract
CONTEXT Low-grade chronic inflammation is commonly seen in polycystic ovary syndrome (PCOS) patients with elevated levels of inflammatory cytokines in the endometrium. OBJECTIVE This work aimed to increase the limited understanding of the mechanisms underlying cytokine synthesis and increased endometrial inflammation in PCOS patients. METHODS Endometrial biopsy samples were collected from non-PCOS (n = 17) and PCOS (n = 22) patients either during the proliferative phase of the menstrual cycle or with hyperplasia. Endometrial explants were prepared from PCOS patients and underwent pharmacological manipulation in vitro. The expression and localization of toll-like receptor 2 (TLR2)/4, key elements of innate immune signal transduction and nuclear factor κB (NFκB) signaling pathways, and multiple cytokines were comprehensively evaluated by Western blotting, immunohistochemistry, and immunofluorescence in endometrial tissues. RESULTS We demonstrated the distribution of protein expression and localization associated with the significantly increased androgen receptor, TLR2, and TLR4-mediated activation of interferon regulatory factor-7 (IRF-7) and NFκB signaling, cytokine production, and endometrial inflammation in PCOS patients compared to non-PCOS patients with and without endometrial hyperplasia. In vitro experiments showed that 5-dihydrotestosterone (DHT) enhanced androgen receptor, TLR4, IRF-7, and p-NFκB p65 protein expression along with increased interferon α (IFNα) and IFNɣ abundance. The effects of DHT on IRF-7, p-NFκB p65, and IFN abundance were abolished by flutamide, an antiandrogen. Although 17β-estradiol (E2) decreased p-IRF-7 expression with little effect on TLR-mediated IRF7 and NFκB signaling or on cytokine protein levels, exposure to metformin alone or in combination with E2 suppressed interleukin-1 receptor-associated kinase 4 (IRAK4), p-IRF-7, IRF-7, IκB kinase α (IKKα), p-NFκB p65, IFNɣ, and tumor necrosis factor α protein expression. CONCLUSION Cytokine synthesis and increased endometrial inflammation in PCOS patients are coupled to androgen-induced TLR4/IRF-7/NFκB signaling, which is inhibited by metformin treatment.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin Li
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Molecular Mechanisms of Endometrial Functioning in Women with Polycystic Ovary Syndrome. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: a comprehensive review. Hum Reprod Update 2020; 27:584-618. [PMID: 33302299 DOI: 10.1093/humupd/dmaa051] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. An endometrial component has been suggested to contribute to subfertility and poor reproductive outcomes in affected women. OBJECTIVE AND RATIONALE The aim of this review was to determine whether there is sufficient evidence to support that endometrial function is altered in women with PCOS, whether clinical features of PCOS affect the endometrium, and whether there are evidence-based interventions to improve endometrial dysfunction in PCOS women. SEARCH METHODS An extensive literature search was performed from 1970 up to July 2020 using PubMed and Web of Science without language restriction. The search included all titles and abstracts assessing a relationship between PCOS and endometrial function, the role played by clinical and biochemical/hormonal factors related to PCOS and endometrial function, and the potential interventions aimed to improve endometrial function in women with PCOS. All published papers were included if considered relevant. Studies having a specific topic/hypothesis regarding endometrial cancer/hyperplasia in women with PCOS were excluded from the analysis. OUTCOMES Experimental and clinical data suggest that the endometrium differs in women with PCOS when compared to healthy controls. Clinical characteristics related to the syndrome, alone and/or in combination, may contribute to dysregulation of endometrial expression of sex hormone receptors and co-receptors, increase endometrial insulin-resistance with impaired glucose transport and utilization, and result in chronic low-grade inflammation, immune dysfunction, altered uterine vascularity, abnormal endometrial gene expression and cellular abnormalities in women with PCOS. Among several interventions to improve endometrial function in women with PCOS, to date, only lifestyle modification, metformin and bariatric surgery have the highest scientific evidence for clinical benefit. WIDER IMPLICATIONS Endometrial dysfunction and abnormal trophoblast invasion and placentation in PCOS women can predispose to miscarriage and pregnancy complications. Thus, patients and their health care providers should advise about these risks. Although currently no intervention can be universally recommended to reverse endometrial dysfunction in PCOS women, lifestyle modifications and metformin may improve underlying endometrial dysfunction and pregnancy outcomes in obese and/or insulin resistant patients. Bariatric surgery has shown its efficacy in severely obese PCOS patients, but a careful evaluation of the benefit/risk ratio is warranted. Large scale randomized controlled clinical trials should address these possibilities.
Collapse
Affiliation(s)
- Stefano Palomba
- Unit of Obstetrics and Gynecology, Grande Ospedale Metropolitano of Reggio Calabria, Reggio Calabria, Italy
| | - Terhi T Piltonen
- Department of Obstetrics and Gynecology, PEDEGO Research Unit, Medical Research Center, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Linda C Giudice
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
31
|
Paravati R, De Mello N, Onyido EK, Francis LW, Brüsehafer K, Younas K, Spencer-Harty S, Conlan RS, Gonzalez D, Margarit L. Differential regulation of osteopontin and CD44 correlates with infertility status in PCOS patients. J Mol Med (Berl) 2020; 98:1713-1725. [PMID: 33047155 PMCID: PMC7679339 DOI: 10.1007/s00109-020-01985-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 01/12/2023]
Abstract
Endometrial receptivity is mediated by adhesion molecules at the endometrium-trophoblast interface where osteopontin (OPN) and CD44 form a protein complex that plays an important role in embryo recognition. Here, we undertook a prospective study investigating the expression and regulation of OPN and CD44 in 50 fertile and 31 infertile ovulatory polycystic ovarian syndrome (PCOS) patients in the proliferative and secretory phases of the natural menstrual cycle and in 12 infertile anovulatory PCOS patients. Endometrial biopsies and blood samples were evaluated for expression of OPN and CD44 using RT-PCR, immunohistochemistry and ELISA analysis to determine circulating levels of OPN, CD44, TNF-α, IFN-γ and OPN and CD44 levels in biopsy media. Our findings highlighted an increased level of circulating OPN and CD44 in serum from infertile patients that inversely correlated with expression levels in endometrial tissue and positively correlated with levels secreted into biopsy media. OPN and CD44 levels positively correlated to each other in serum and media from fertile and PCOS patients, as well as to circulating TNF-α and IFN-γ. In vitro analysis revealed that hormone treatment induced recruitment of ERα to the OPN and CD44 promoters with a concomitant increase in the expression of these genes. In infertile patients, inflammatory cytokines led to recruitment of NF-κB and STAT1 proteins to the OPN and CD44 promoters, resulting in their overexpression. These observations suggest that the endometrial epithelial OPN-CD44 adhesion complex is deficient in ovulatory PCOS patients and displays an altered stoichiometry in anovulatory patients, which in both cases may perturb apposition. This, together with elevated circulating and local secreted levels of these proteins, may hinder endometrium-trophoblast interactions by saturating OPN and CD44 receptors on the surface of the blastocyst, thereby contributing to the infertility associated with ovulating PCOS patients. KEY MESSAGES: • Endometrial epithelial OPN-CD44 adhesion complex levels are deficient in ovulatory PCOS patients contributing to the endometrial infertility associated with ovulating PCOS patients. • Circulating levels of OPN, CD44 and inflammatory cytokines TNF-α and IFN-γ are altered in infertile PCOS patients. • Increased levels of both OPN and CD44 in biopsy media and serum inversely correlate with endometrial expression of these markers in endometrial tissue. • In infertile PCOS patients, high levels of oestrogens and inflammatory cytokines stimulate the recruitment of transcription factors to the OPN and CD44 promoters to enhance gene transcription. • Our study identifies a novel crosstalk between the CD44-OPN adhesion complex, ERα, STAT1 and NF-κB pathways modulating endometrial receptivity.
Collapse
Affiliation(s)
- R Paravati
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - N De Mello
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - E K Onyido
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - L W Francis
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - K Brüsehafer
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - K Younas
- Swansea Bay University Health Board, Obstetrics Gynaecology Department, Singleton Hospital, Sketty Lane, Swansea, SA2 8QA, UK
| | - S Spencer-Harty
- Swansea Bay University Health Board, Cellular Pathology Department, Singleton Hospital, Sketty Lane, Swansea, SA2 8QA, UK
| | - R S Conlan
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - D Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Lavinia Margarit
- Reproductive Biology and Gynaecological Oncology Group, Institute for Life Science 2, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
- Cwm Taf Morgannwg University Health Board, Obstetrics Gynaecology Department, Princess of Wales Hospital, Coity Road, Bridgend, CF31 1RQ, UK.
| |
Collapse
|
32
|
Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K, Potts PR. Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem 2020; 295:16121-16155. [PMID: 32921631 PMCID: PMC7681028 DOI: 10.1074/jbc.rev120.008029] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
The melanoma antigen (MAGE) proteins all contain a MAGE homology domain. MAGE genes are conserved in all eukaryotes and have expanded from a single gene in lower eukaryotes to ∼40 genes in humans and mice. Whereas some MAGEs are ubiquitously expressed in tissues, others are expressed in only germ cells with aberrant reactivation in multiple cancers. Much of the initial research on MAGEs focused on exploiting their antigenicity and restricted expression pattern to target them with cancer immunotherapy. Beyond their potential clinical application and role in tumorigenesis, recent studies have shown that MAGE proteins regulate diverse cellular and developmental pathways, implicating them in many diseases besides cancer, including lung, renal, and neurodevelopmental disorders. At the molecular level, many MAGEs bind to E3 RING ubiquitin ligases and, thus, regulate their substrate specificity, ligase activity, and subcellular localization. On a broader scale, the MAGE genes likely expanded in eutherian mammals to protect the germline from environmental stress and aid in stress adaptation, and this stress tolerance may explain why many cancers aberrantly express MAGEs Here, we present an updated, comprehensive review on the MAGE family that highlights general characteristics, emphasizes recent comparative studies in mice, and describes the diverse functions exerted by individual MAGEs.
Collapse
Affiliation(s)
- Rebecca R Florke Gee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Helen Chen
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Anna K Lee
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christina A Daly
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Benjamin A Wilander
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Klementina Fon Tacer
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA.
| | - Patrick Ryan Potts
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
33
|
Tian L, Zou Y, Tan J, Wang Y, Chen J, Xia L, Xu L, Chen G, Wu Q, Huang O. Androgen receptor gene mutations in 258 Han Chinese patients with polycystic ovary syndrome. Exp Ther Med 2020; 21:31. [PMID: 33262817 PMCID: PMC7690241 DOI: 10.3892/etm.2020.9463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 8-13% of reproductive-age females worldwide and mutations or aberrant expression of androgen receptor (AR) may cause the onset of this disease. In the present study, 258 samples from Han Chinese patients with PCOS were analyzed for the presence of AR mutations via sequencing of all coding exons of the AR gene. A total of five heterozygous missense mutations, namely p.V3M, p.Q72R, p.S158L, p.S176R and p.G396R, were identified in five of the patients. Among these, p.S158L was a novel mutation that, to the best of our knowledge, has not been reported previously. Although the remaining four mutations have been reported previously, they existed at low frequencies or were absent in the control subjects and in the Exome Aggregation Consortium database. The results of evolutionary conservation and in silico analysis revealed that the p.V3M, p.S158L and p.S176R mutations were pathogenic, whereas the p.Q72R and p.G396R mutations were benign. Compared with the patients with PCOS without AR mutations or with benign AR mutations, markedly lower estrogen levels on the day of human chorionic gonadotropin injection were observed in the three patients with PCOS with potentially pathogenic mutations. In addition, patients with PCOS with pathogenic mutations had lower numbers of oocytes; however, the difference was not statistically significant. Of note, these observations should be interpreted with caution due to the relatively small sample size in the present study. Therefore, a larger number of samples should be collected to validate the results of the present study in future studies. In summary, the present study identified three potential pathogenic mutations in 258 Han Chinese patients with PCOS and these mutations may have an implication in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Lifeng Tian
- Department of Gynecology and Obstetrics, Jiangxi Medical College, Graduate School of Nanchang University, Nanchang, Jiangxi 330031, P.R. China.,Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Jun Tan
- Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yaoqing Wang
- Department of Gynecology and Obstetrics, Jiangxi Medical College, Graduate School of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Jia Chen
- Department of Gynecology and Obstetrics, Jiangxi Medical College, Graduate School of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Leizhen Xia
- Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Lixian Xu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ge Chen
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfang Wu
- Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ouping Huang
- Department of Gynecology and Obstetrics, Jiangxi Medical College, Graduate School of Nanchang University, Nanchang, Jiangxi 330031, P.R. China.,Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Effect of Three Androgen Indexes (FAI, FT, and TT) on Clinical, Biochemical, and Fertility Outcomes in Women with Polycystic Ovary Syndrome. Reprod Sci 2020; 28:775-784. [PMID: 32989632 DOI: 10.1007/s43032-020-00316-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
This work sought to evaluate the effects of three androgen indexes of free testosterone (FT), total testosterone (TT), and free-androgen index (FAI) on clinical phenotype, endocrine metabolic disorders, and fertility outcomes in women with polycystic ovary syndrome. The data in this study came from a large, multicenter, randomized double-blind controlled clinical trial involving 1000 infertile PCOS patients. Baseline phenotypic, endocrine, and metabolic parameters and fertility outcomes undergoing ovulation induction were collected. FAI is superior to FT, and FT is superior to TT in terms of their correlation with anthropometric parameters and metabolic profile. FT and TT were significantly positively correlated with LH/FSH. FAI and FT were significantly correlated with the incidence of metabolic syndrome. FAI, FT, and TT were significantly positively correlated with polycystic ovary morphology and menstrual period. FAI was significantly related ovulations per cycle, pregnancy, conception, and live birth rates. After adjusting for age, the increased FT level was significantly related to the decreased rates of ovulations per cycle, conception, and pregnancy. FAI is superior to FT and FT is superior to TT in terms of their correlation with phenotypic and metabolic parameters in PCOS patients. FAI and FT are important factors related to the fertility outcomes of infertile PCOS patients. Clinical trial registration number: NCT01573858.
Collapse
|
35
|
Zhang C, Yang C, Li N, Liu X, He J, Chen X, Ding Y, Tong C, Peng C, Yin H, Wang Y, Gao R. Elevated insulin levels compromise endometrial decidualization in mice with decrease in uterine apoptosis in early-stage pregnancy. Arch Toxicol 2019; 93:3601-3615. [PMID: 31642978 DOI: 10.1007/s00204-019-02601-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/15/2019] [Indexed: 01/21/2023]
Abstract
Women with hyperinsulinism and insulin resistance have reduced fertility, but the underlying mechanism is still poorly understood. Aberrant endometrial decidualization in early pregnancy was linked to pregnancy complications. In this study, we aimed to test whether elevated insulin levels compromise decidualization in early-stage pregnancy. C57BL/6J mice in high insulin-exposed group were given a subcutaneous injection of recombinant insulin at a concentration of 0.05 IU daily. During decidualization in early pregnancy, serum levels of insulin, E2, P4, LH, FSH and blood glucose were significantly altered in mice treated with high insulin levels. The number of embryo implantation sites and endometrial decidual markers BMP2, ER, PR was significantly decreased by high insulin levels in vivo. Artificial decidual induction in primary mouse endometrial stromal cells and immortal human endometrial stromal cells line were all compromised after treated with 100 nmol/L insulin levels. All these results on flow cytometry, transmission electron microscopy and western blotting of Bax, Bcl2, cleaved Caspase3, cleaved PARP proteins level showed that decidual cells apoptosis was significantly decreased. Mitochondrial transmembrane potential also significantly increased by the influence of high insulin levels. PI3K and p-Akt were much higher after insulin exposure and the compromised decidualization by high insulin treatment was rescued by PI3K/Akt inhibitor LY294002 both in vitro and in vivo. In conclusion, we demonstrated that elevated insulin levels could compromise mice decidualization in early-stage pregnancy and PI3K/p-Akt-regulated apoptosis was essential for this role. It provides a clue for future investigation on compromised reproduction in women with hyperinsulinemia.
Collapse
Affiliation(s)
- Chen Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengshun Yang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Na Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Chao Tong
- Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Peng
- Laboratory of Maternal and Fetal Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China. .,Joint International Research Laboratory of Reproduction and Development, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
36
|
Delaroche L, Dupont C, Oger P, Aubriot FX, Lamazou F, Yazbeck C. [Polycystic ovary syndrome does not affect blastulation nor cumulative live birth rates]. ACTA ACUST UNITED AC 2019; 47:655-661. [PMID: 31336185 DOI: 10.1016/j.gofs.2019.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Polycystic ovarian syndrome (PCOS) brings complications in the management of the assisted reproductive technology (ART) because of an oocyte quality probably impaired due to modifications of intra- and extra-ovarian factors. Our study aimed to investigate the extended culture in PCOS patients and its influence on the cumulative live birth rates. METHODS Fifty-nine PCOS patients (as defined by the Rotterdam criteria) and 114 normo-ovulatory patients (i.e. with tubal, male or idiopathic infertility, regular cycles and AMH>2ng/mL) aged<37years old who underwent a 1st or 2nd ART attempt with extended culture to day 6 were included from October 2015 to December 2017. The blastulation and cumulative live birth rates were compared between the two groups. RESULTS The PCOS and control patients were 32.22 and 32.91years old respectively (P=0.05). The median number of oocytes retrieved was significantly higher in the PCOS group and the median oocyte maturity rate significantly lower compared with controls. The blastulation rates were similar between the PCOS and the control groups, respectively 57.8% vs. 58.6%, P=0.88. Because of the risks of hyperstimulation syndrome, a freeze all strategy was achieved for 38.9% of PCOS patients vs. 14.0% of the control patients (P<0.01). The cumulative live birth rates were not statistically different: 31.7% in the PCOS group vs. 37.2% in the control group, P=0.50. CONCLUSIONS PCOS was not observed to affect the extended culture nor the cumulative live birth rates in comparison to normo-ovulatory patients, supporting the blastocyst transfer strategy as a suitable option to PCOS patients.
Collapse
Affiliation(s)
- L Delaroche
- Laboratoire Eylau-Unilabs, 55-57, rue Saint-Didier, 75116 Paris, France.
| | - C Dupont
- Inserm équipe lipodystrophies génétiques et acquises, service de biologie de la reproduction-CECOS, Saint-Antoine Research center, hôpital Tenon, Sorbonne université, AP-HP, 75020 Paris, France
| | - P Oger
- Centre d'AMP de la clinique Pierre-Cherest, 5, rue Pierre-Cherest, 92200 Neuilly-sur-Seine, France
| | - F-X Aubriot
- Centre d'AMP de la clinique Pierre-Cherest, 5, rue Pierre-Cherest, 92200 Neuilly-sur-Seine, France
| | - F Lamazou
- Centre d'AMP de la clinique Pierre-Cherest, 5, rue Pierre-Cherest, 92200 Neuilly-sur-Seine, France
| | - C Yazbeck
- Centre d'AMP de la clinique Pierre-Cherest, 5, rue Pierre-Cherest, 92200 Neuilly-sur-Seine, France
| |
Collapse
|