1
|
Gurgel AMC, Batista AL, Cavalcanti DMLDP, Magalhães A, Zantut-Wittmann DE. Sarcosine, Trigonelline and Phenylalanine as Urinary Metabolites Related to Visceral Fat in Overweight and Obesity. Metabolites 2024; 14:491. [PMID: 39330498 PMCID: PMC11434364 DOI: 10.3390/metabo14090491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
The objective of the present study is to analyze the urinary metabolome profile of patients with obesity and overweight and relate it to different obesity profiles. This is a prospective, cross-sectional study in which patients with a body mass index (BMI) ≥25 kg/m were selected. Anthropometric data were assessed by physical examination and body composition was obtained by bioimpedance (basal metabolic rate, body fat percentile, skeletal muscle mass, gross fat mass and visceral fat). Urine was collected for metabolomic analysis. Patients were classified according to abdominal circumference measurements between 81 and 93, 94 and 104, and >104 cm; visceral fat up to 16 kilos and less than; and fat percentiles of <36%, 36-46% and >46%. Spectral alignment of urinary metabolite signals and bioinformatic analysis were carried out to select the metabolites that stood out. NMR spectrometry was used to detect and quantify the main urinary metabolites and to compare the groups. Seventy-five patients were included, with a mean age of 38.3 years, and 72% females. The urinary metabolomic profile showed no differences in BMI, abdominal circumference and percentage of body fat. Higher concentrations of trigonelline (p = 0.0488), sarcosine (p = 0.0350) and phenylalanine (p = 0.0488) were associated with patients with visceral fat over 16 kg. The cutoff points obtained by the ROC curves were able to accurately differentiate between patients according to the amount of visceral fat: sarcosine 0.043 mg/mL; trigonelline 0.068 mg/mL and phenylalanine 0.204 mg/mL. In conclusion, higher visceral fat was associated with urinary levels of metabolites such as sarcosine, related to insulin resistance; trigonelline, related to muscle mass and strength; and phenylalanine, related to glucose metabolism and abdominal fat. Trigonelline, sarcosine and phenylalanine play significant roles in regulating energy balance and metabolic pathways essential for controlling obesity. Our findings could represent an interesting option for the non-invasive estimation of visceral fat through biomarkers related to alterations in metabolic pathways involved in the pathophysiology of obesity.
Collapse
Affiliation(s)
- Aline Maria Cavalcante Gurgel
- Department of Biological and Health Sciences, Medical Course at the Federal University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (A.M.C.G.); (A.L.B.); (D.M.L.d.P.C.)
| | - Aline Lidiane Batista
- Department of Biological and Health Sciences, Medical Course at the Federal University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (A.M.C.G.); (A.L.B.); (D.M.L.d.P.C.)
| | - Diogo Manuel Lopes de Paiva Cavalcanti
- Department of Biological and Health Sciences, Medical Course at the Federal University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (A.M.C.G.); (A.L.B.); (D.M.L.d.P.C.)
| | - Alviclér Magalhães
- Institute of Organic Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Denise Engelbrecht Zantut-Wittmann
- Endocrinology Division, Department of Internal Medicine, School of Medical Sciences, University of Campinas, Campinas 13083-887, SP, Brazil
| |
Collapse
|
2
|
Sang C, Yan L, Lin J, Lin Y, Gao Q, Shen X. Identification and validation of a lactate metabolism-related six-gene prognostic signature in intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2024; 150:199. [PMID: 38627278 PMCID: PMC11021257 DOI: 10.1007/s00432-024-05723-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (iCCA) is a highly malignant and fatal liver tumor with increasing incidence worldwide. Lactate metabolism has been recently reported as a crucial contributor to tumor progression and immune regulation in the tumor microenvironment. However, it remains poorly identified about the biological functions of lactate metabolism in iCCA, which hinders the development of prognostic tools and therapeutic interventions. METHODS The univariate Cox regression analysis and Boruta algorithm were utilized to identify key lactate metabolism-related genes (LMRGs), and a prognostic signature was constructed based on LMRG scores. Genomic variations and immune cell infiltration were evaluated in the high and low LMRG score groups. Finally, the biological functions of key LMRGs were verified with in vitro and in vivo experiments. RESULTS Patients in the high LMRG score group exhibit a poor prognosis compared to those in the low LMRG score group, with a high frequency of TP53 and KRAS mutations. Moreover, the infiltration and function of NK cells were compromised in the high LMRG score group, consistent with the results from two independent single-cell RNA sequencing datasets and immunohistochemistry of tissue microarrays. Experimental data revealed that lactate dehydrogenase A (LDHA) knockdown inhibited proliferation and migration in iCCA cell lines and tumor growth in immunocompetent mice. CONCLUSION Our study revealed the biological roles of LDHA in iCCA and developed a reliable lactate metabolism-related prognostic signature for iCCA, offering promising therapeutic targets for iCCA in the clinic.
Collapse
Affiliation(s)
- Chen Sang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lin
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China.
| | - Xia Shen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Kim H, Appel LJ, Lichtenstein AH, Wong KE, Chatterjee N, Rhee EP, Rebholz CM. Metabolomic Profiles Associated With Blood Pressure Reduction in Response to the DASH and DASH-Sodium Dietary Interventions. Hypertension 2023; 80:1494-1506. [PMID: 37161796 PMCID: PMC10262995 DOI: 10.1161/hypertensionaha.123.20901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND The DASH (Dietary Approaches to Stop Hypertension) diets reduced blood pressure (BP) in the DASH and DASH-Sodium trials, but the underlying mechanisms are unclear. We identified metabolites associated with systolic BP or diastolic BP (DBP) changes induced by dietary interventions (DASH versus control arms) in 2 randomized controlled feeding studies-the DASH and DASH-Sodium trials. METHODS Metabolomic profiling was conducted in serum and urine samples collected at the end of diet interventions: DASH (n=219) and DASH-Sodium (n=395). Using multivariable linear regression models, associations were examined between metabolites and change in systolic BP and DBP. Tested for interactions between diet interventions and metabolites were the following comparisons: (1) DASH versus control diets in the DASH trial (serum), (2) DASH high-sodium versus control high-sodium diets in the DASH-Sodium trial (urine), and (3) DASH low-sodium versus control high-sodium diets in the DASH-Sodium trial (urine). RESULTS Sixty-five significant interactions were identified (DASH trial [serum], 12; DASH high sodium [urine], 35; DASH low sodium [urine], 18) between metabolites and systolic BP or DBP. In the DASH trial, serum tryptophan betaine was associated with reductions in DBP in participants consuming the DASH diets but not control diets (P interaction, 0.023). In the DASH-Sodium trial, urine levels of N-methylglutamate and proline derivatives (eg, stachydrine, 3-hydroxystachydrine, N-methylproline, and N-methylhydroxyproline) were associated with reductions in systolic BP or DBP in participants consuming the DASH diets but not control diets (P interaction, <0.05 for all tests). CONCLUSIONS We identified metabolites that were associated with BP lowering in response to dietary interventions. REGISTRATION URL: https://www. CLINICALTRIALS gov/ct2/show/NCT03403166; Unique identifier: NCT03403166 (DASH trial). URL: https://www. CLINICALTRIALS gov/ct2/show/NCT00000608; Unique identifier: NCT00000608 (DASH-Sodium trial).
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology (H.K., L.J.A., C.M.R.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD (H.K., L.J.A., C.M.R.)
| | - Lawrence J. Appel
- Department of Epidemiology (H.K., L.J.A., C.M.R.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (L.J.A., C.M.R.)
| | - Alice H. Lichtenstein
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD (H.K., L.J.A., C.M.R.)
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (A.H.L.)
| | - Kari E. Wong
- Metabolon, Research Triangle Park, Morrisville, NC (K.E.W.)
| | - Nilanjan Chatterjee
- Department of Biostatistics (N.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, MA (E.P.R.)
| | - Casey M. Rebholz
- Department of Epidemiology (H.K., L.J.A., C.M.R.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD (H.K., L.J.A., C.M.R.)
| |
Collapse
|
4
|
Wang Z, Qi Y, Wang F, Zhang B, Jianguo T. Circulating sepsis-related metabolite sphinganine could protect against intestinal damage during sepsis. Front Immunol 2023; 14:1151728. [PMID: 37292192 PMCID: PMC10245321 DOI: 10.3389/fimmu.2023.1151728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Sepsis is intricately linked to intestinal damage and barrier dysfunction. At present times, there is a growing interest in a metabolite-based therapy for multiple diseases. Methods Serum samples from septic patients and healthy individuals were collected and their metabonomics profiling assessed using Ultra-Performance Liquid Chromatography-Time of Flight Mass Spectrometry (UPLC-TOFMS). The eXtreme Gradient Boosting algorithms (XGBOOST) method was used to screen essential metabolites associated with sepsis, and five machine learning models, including Logistic Regression, XGBoost, GaussianNB(GNB), upport vector machines(SVM) and RandomForest were constructed to distinguish sepsis including a training set (75%) and validation set(25%). The area under the receiver-operating characteristic curve (AUROC) and Brier scores were used to compare the prediction performances of different models. Pearson analysis was used to analysis the relationship between the metabolites and the severity of sepsis. Both cellular and animal models were used to HYPERLINK "javascript:;" assess the function of the metabolites. Results The occurrence of sepsis involve metabolite dysregulation. The metabolites mannose-6-phosphate and sphinganine as the optimal sepsis-related variables screened by XGBOOST algorithm. The XGBoost model (AUROC=0.956) has the most stable performance to establish diagnostic model among the five machine learning methods. The SHapley Additive exPlanations (SHAP) package was used to interpret the XGBOOST model. Pearson analysis reinforced the expression of Sphinganine, Mannose 6-phosphate were positively associated with the APACHE-II, PCT, WBC, CRP, and IL-6. We also demonstrated that sphinganine strongly diminished the LDH content in LPS-treated Caco-2 cells. In addition, using both in vitro and in vivo examination, we revealed that sphinganine strongly protects against sepsis-induced intestinal barrier injury. Discussion These findings highlighted the potential diagnostic value of the ML, and also provided new insight into enhanced therapy and/or preventative measures against sepsis.
Collapse
|
5
|
Detection of the UV-vis silent biomarker trimethylamine-N-oxide via outer-sphere interactions in a lanthanide metal-organic framework. Commun Chem 2022; 5:74. [PMID: 36697642 PMCID: PMC9814541 DOI: 10.1038/s42004-022-00690-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a biomarker of the cardiovascular disease that is one of the leading causes of worldwide death. Facile detection of TMAO can significantly improve the survival rate of this disease by allowing early prevention. However, the UV-vis silent nature of TMAO makes it intricated to be detected by conventional sensing materials or analytical instruments. Here we show a bilanthanide metal-organic framework functionalized by borono group for the recognition of TMAO. Superior sensitivity, selectivity and anti-interference ability were achieved by the inverse emission intensity changes of the two lanthanide centers. The limit of detection is 15.6 μM, covering the clinical urinary concentration range of TMAO. A smartphone application was developed based on the change in R-G-B chromaticity. The sensing mechanism via a well-matched outer-sphere interaction governing the sensing function was studied in detail, providing fundamentals in molecular level for the design of advanced sensing materials for UV-Vis silent molecules.
Collapse
|
6
|
Guo P, Furnary T, Vasiliou V, Yan Q, Nyhan K, Jones DP, Johnson CH, Liew Z. Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. ENVIRONMENT INTERNATIONAL 2022; 162:107159. [PMID: 35231839 PMCID: PMC8969205 DOI: 10.1016/j.envint.2022.107159] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To summarize the application of non-targeted metabolomics in epidemiological studies that assessed metabolite and metabolic pathway alterations associated with per- and polyfluoroalkyl substances (PFAS) exposure. RECENT FINDINGS Eleven human studies published before April 1st, 2021 were identified through database searches (PubMed, Dimensions, Web of Science Core Collection, Embase, Scopus), and citation chaining (Citationchaser). The sample sizes of these studies ranged from 40 to 965, involving children and adolescents (n = 3), non-pregnant adults (n = 5), or pregnant women (n = 3). High-resolution liquid chromatography-mass spectrometry was the primary analytical platform to measure both PFAS and metabolome. PFAS were measured in either plasma (n = 6) or serum (n = 5), while metabolomic profiles were assessed using plasma (n = 6), serum (n = 4), or urine (n = 1). Four types of PFAS (perfluorooctane sulfonate(n = 11), perfluorooctanoic acid (n = 10), perfluorohexane sulfonate (n = 9), perfluorononanoic acid (n = 5)) and PFAS mixtures (n = 7) were the most studied. We found that alterations to tryptophan metabolism and the urea cycle were most reported PFAS-associated metabolomic signatures. Numerous lipid metabolites were also suggested to be associated with PFAS exposure, especially key metabolites in glycerophospholipid metabolism which is critical for biological membrane functions, and fatty acids and carnitines which are relevant to the energy supply pathway of fatty acid oxidation. Other important metabolome changes reported included the tricarboxylic acid (TCA) cycle regarding energy generation, and purine and pyrimidine metabolism in cellular energy systems. CONCLUSIONS There is growing interest in using non-targeted metabolomics to study the human physiological changes associated with PFAS exposure. Multiple PFAS were reported to be associated with alterations in amino acid and lipid metabolism, but these results are driven by one predominant type of pathway analysis thus require further confirmation. Standardizing research methods and reporting are recommended to facilitate result comparison. Future studies should consider potential differences in study methodology, use of prospective design, and influence from confounding bias and measurement errors.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Harvey Cushing / John Hay Whitney Medical Library, Yale University, New Haven, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
7
|
Corbacho-Alonso N, Baldán-Martín M, López JA, Rodríguez-Sánchez E, Martínez PJ, Mourino-Alvarez L, Sastre-Oliva T, Cabrera M, Calvo E, Padial LR, Vázquez J, Vivanco F, Alvarez-Llamas G, Ruiz-Hurtado G, Ruilope LM, Barderas MG. Cardiovascular Risk Stratification Based on Oxidative Stress for Early Detection of Pathology. Antioxid Redox Signal 2021; 35:602-617. [PMID: 34036803 DOI: 10.1089/ars.2020.8254] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aims: Current cardiovascular (CV) risk prediction algorithms are able to quantify the individual risk of CV disease. However, CV risk in young adults is underestimated due to the high dependency of age in biomarker-based algorithms. Because oxidative stress is associated with CV disease, we sought to examine CV risk stratification in young adults based on oxidative stress to approach the discovery of new markers for early detection of pathology. Results: Young adults were stratified into (i) healthy controls, (ii) subjects with CV risk factors, and (iii) patients with a reported CV event. Plasma samples were analyzed using FASILOX, a novel approach to interrogate the dynamic thiol redox proteome. We also analyzed irreversible oxidation by targeted searches using the Uniprot database. Irreversible oxidation of cysteine (Cys) residues was greater in patients with reported CV events than in healthy subjects. These results also indicate that oxidation is progressive. Moreover, we found that glutathione reductase and glutaredoxin 1 proteins are differentially expressed between groups and are proteins involved in antioxidant response, which is in line with the impaired redox homeostasis in CV disease. Innovation: This study, for the first time, describes the oxidative stress (reversible and irreversible Cys oxidation) implication in human plasma according to CV risk stratification. Conclusion: The identification of redox targets and the quantification of protein and oxidative changes might help to better understand the role of oxidative stress in CV disease, and aid stratification for CV events beyond traditional prognostic and diagnostic markers. Antioxid. Redox Signal. 35, 602-617.
Collapse
Affiliation(s)
- Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Montserrat Baldán-Martín
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | - Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Instituto de Investigación i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Paula J Martínez
- Departament of Immunology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | | | | | - Luis R Padial
- Department of Cardiology, Hospital Virgen de la Salud, SESCAM, Toledo, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and CIBER-CV, CNIC, Madrid, Spain
| | - Fernando Vivanco
- Departament of Immunology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Departament of Immunology, IIS-Fundacion Jimenez Diaz-UAM, Madrid, Spain.,RED in REN, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Instituto de Investigación i + 12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Europea de Madrid, Madrid, Spain
| | - Maria G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
8
|
Santiago-Hernandez A, Martinez PJ, Agudiez M, Heredero A, Gonzalez-Calero L, Yuste-Montalvo A, Esteban V, Aldamiz-Echevarria G, Martin-Lorenzo M, Alvarez-Llamas G. Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting. Antioxidants (Basel) 2021; 10:antiox10091369. [PMID: 34573001 PMCID: PMC8466954 DOI: 10.3390/antiox10091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is the predominant pathology associated to premature deaths due to cardiovascular disease. However, early intervention based on a personalized diagnosis of cardiovascular risk is very limited. We have previously identified metabolic alterations during atherosclerosis development in a rabbit model and in subjects suffering from an acute coronary syndrome. Here we aim to identify specific metabolic signatures which may set the basis for novel tools aiding cardiovascular risk diagnosis in clinical practice. In a cohort of subjects with programmed coronary artery bypass grafting (CABG), we have performed liquid chromatography and targeted mass spectrometry analysis in urine and plasma. The role of vascular smooth muscle cells from human aorta (HA-VSMCs) was also investigated by analyzing the intra and extracellular metabolites in response to a pro-atherosclerotic stimulus. Statistically significant variation was considered if p value < 0.05 (Mann-Whitney test). Urinary trimethylamine N-oxide (TMAO), arabitol and spermidine showed higher levels in the CVrisk group compared with a control group; while glutamine and pantothenate showed lower levels. The same trend was found for plasma TMAO and glutamine. Plasma choline, acetylcholine and valine were also decreased in CVrisk group, while pyruvate was found increased. In the secretome of HA-VSMCs, TMAO, pantothenate, glycerophosphocholine, glutathion, spermidine and acetylcholine increased after pro-atherosclerotic stimulus, while secreted glutamine decreased. At intracellular level, TMAO, pantothenate and glycerophosphocholine increased with stimulation. Observed metabolic deregulations pointed to an inflammatory response together with a deregulation of oxidative stress counteraction.
Collapse
Affiliation(s)
- Aranzazu Santiago-Hernandez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Paula J. Martinez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Marta Agudiez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Angeles Heredero
- Department of Cardiac Surgery, Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.H.); (G.A.-E.)
| | - Laura Gonzalez-Calero
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Alma Yuste-Montalvo
- Allergy and Inmunology Department, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.Y.-M.); (V.E.)
| | - Vanesa Esteban
- Allergy and Inmunology Department, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.Y.-M.); (V.E.)
- Red de Asma, Reacciones Adversas y Alergicas, Instituto de Salud Carlos III, 28040 Madrid, Spain
- Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, 28691 Madrid, Spain
| | | | - Marta Martin-Lorenzo
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
| | - Gloria Alvarez-Llamas
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundacion Jimenez Diaz, UAM, 28040 Madrid, Spain; (A.S.-H.); (P.J.M.); (M.A.); (L.G.-C.); (M.M.-L.)
- Red de Investigacion Renal (REDINREN), Instituto de Salud Carlos III, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-915504800 (ext. 2203)
| |
Collapse
|
9
|
TCA Cycle and Fatty Acids Oxidation Reflect Early Cardiorenal Damage in Normoalbuminuric Subjects with Controlled Hypertension. Antioxidants (Basel) 2021; 10:antiox10071100. [PMID: 34356333 PMCID: PMC8301016 DOI: 10.3390/antiox10071100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/22/2023] Open
Abstract
Moderately increased albuminuria, defined by an albumin to creatinine ratio (ACR) > 30 mg/g, is an indicator of subclinical organ damage associated with a higher risk of cardiovascular and renal disease. Normoalbuminuric subjects are considered at no cardiorenal risk in clinical practice, and molecular changes underlying early development are unclear. To decipher subjacent mechanisms, we stratified the normoalbuminuria condition. A total of 37 hypertensive patients under chronic renin–angiotensin system (RAS) suppression with ACR values in the normoalbuminuria range were included and classified as control (C) (ACR < 10 mg/g) and high-normal (HN) (ACR = 10–30 mg/g). Target metabolomic analysis was carried out by liquid chromatography and mass spectrometry to investigate the role of the cardiorenal risk urinary metabolites previously identified. Besides this, urinary free fatty acids (FFAs), fatty acid binding protein 1 (FABP1) and nephrin were analyzed by colorimetric and ELISA assays. A Mann–Whitney test was applied, ROC curves were calculated and Spearman correlation analysis was carried out. Nine metabolites showed significantly altered abundance in HN versus C, and urinary FFAs and FABP1 increased in HN group, pointing to dysregulation in the tricarboxylic acid cycle (TCA) cycle and fatty acids β-oxidation. We showed here how cardiorenal metabolites associate with albuminuria, already in the normoalbuminuric range, evidencing early renal damage at a tubular level and suggesting increased β-oxidation to potentially counteract fatty acids overload in the HN range.
Collapse
|
10
|
Martin-Lorenzo M, Ramos-Barron A, Gutierrez-Garcia P, Martin-Blazquez A, Santiago-Hernandez A, Rodrigo Calabia E, Gomez-Alamillo C, Alvarez-Llamas G. Urinary Spermidine Predicts and Associates with In-Hospital Acute Kidney Injury after Cardiac Surgery. Antioxidants (Basel) 2021; 10:antiox10060896. [PMID: 34199603 PMCID: PMC8229689 DOI: 10.3390/antiox10060896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
Acute Kidney Injury (AKI) affects up to 30% of the patients who undergo cardiac surgery (CVS) and is related to higher mortality. We aim to investigate molecular features associated with in-hospital AKI development and determine the predictive value of these features when analyzed preoperatively. This is a case-control study. From an initial cohort of 110 recruited subjects, a total of 60 patients undergoing cardiac surgery were included: 20 (33%) developed in-hospital AKI (CVS-AKI) and 40 did not (controls, CVS-C). Pre- and post-surgery samples were collected and a prospective study was carried out. A total of 312 serum samples and 258 urine samples were analyzed by nuclear magnetic resonance, mass spectrometry and ELISA. Six features predicted AKI development in pre-surgery samples: urinary kidney functional loss marker kidney injury molecule-1 (uKIM-1), 2-hydroxybutyric acid, 2-hydroxyphenylacetic acid, hippuric acid, phosphoethanolamine and spermidine. Two of them stood out as powerful predictors. Pre-surgery uKIM-1 levels were increased in CVS-AKI vs. CVS-C (AUC = 0.721, p-value = 0.0392) and associated strongly with the outcome (OR = 5.333, p-value = 0.0264). Spermidine showed higher concentration in CVS-AKI (p-value < 0.0001, AUC = 0.970) and had a strong association with the outcome (OR = 69.75, p-value < 0.0001). uKIM-1 and particularly spermidine predict in-hospital AKI associated with CVS in preoperative samples. These findings may aid in preventing postoperative AKI and improve prognosis of CVS.
Collapse
Affiliation(s)
- Marta Martin-Lorenzo
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Angeles Ramos-Barron
- Nephrology Department, Hospital Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (A.R.-B.); (E.R.C.); (C.G.-A.)
| | - Paula Gutierrez-Garcia
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Ariadna Martin-Blazquez
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Aranzazu Santiago-Hernandez
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
| | - Emilio Rodrigo Calabia
- Nephrology Department, Hospital Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (A.R.-B.); (E.R.C.); (C.G.-A.)
- REDInREN, 28040 Madrid, Spain
| | - Carlos Gomez-Alamillo
- Nephrology Department, Hospital Marqués de Valdecilla, IDIVAL, 39008 Santander, Spain; (A.R.-B.); (E.R.C.); (C.G.-A.)
| | - Gloria Alvarez-Llamas
- Department of Immunology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain; (M.M.-L.); (P.G.-G.); (A.M.-B.); (A.S.-H.)
- REDInREN, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
11
|
Contribution of Multiplex Immunoassays to Rheumatoid Arthritis Management: From Biomarker Discovery to Personalized Medicine. J Pers Med 2020; 10:jpm10040202. [PMID: 33142977 PMCID: PMC7712300 DOI: 10.3390/jpm10040202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial, inflammatory and progressive autoimmune disease that affects approximately 1% of the population worldwide. RA primarily involves the joints and causes local inflammation and cartilage destruction. Immediate and effective therapies are crucial to control inflammation and prevent deterioration, functional disability and unfavourable progression in RA patients. Thus, early diagnosis is critical to prevent joint damage and physical disability, increasing the chance of achieving remission. A large number of biomarkers have been investigated in RA, although only a few have made it through the discovery and validation phases and reached the clinic. The single biomarker approach mostly used in clinical laboratories is not sufficiently accurate due to its low sensitivity and specificity. Multiplex immunoassays could provide a more complete picture of the disease and the pathways involved. In this review, we discuss the latest proposed protein biomarkers and the advantages of using protein panels for the clinical management of RA. Simultaneous analysis of multiple proteins could yield biomarker signatures of RA subtypes to enable patients to benefit from personalized medicine.
Collapse
|