1
|
Choudhary A, Kumar A, Jindal M, Rhuthuparna M, Munshi A. MicroRNA signatures in neuroplasticity, neuroinflammation and neurotransmission in association with depression. J Physiol Biochem 2024:10.1007/s13105-024-01065-4. [PMID: 39695016 DOI: 10.1007/s13105-024-01065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Depression is a multifactorial disorder that occurs mainly on account of the dysregulation of neuroplasticity, neurotransmission and neuroinflammation in the brain. In addition to environmental /lifestyle factors, the pathogenesis of disease has been associated with genetic and epigenetic factors that affect the reprogramming of normal brain function. MicroRNA (miRNAs), a type of non-coding RNAs, are emerging as significant players that play a vital role in the regulation of gene expression and have been extensively explored in neurodegenerative disorders. Recent studies have also shown the role of gut microbiota that forms a complex bidirectional network with gut brain axis, impacting neuroinflammation in case of Parkinson's disease and depression. Translating targeted miRNA-based therapies for the treatment of neurological disorders including depression, into clinical practice remains challenging due to the ineffective delivery of the therapeutic molecules and off-target effects of the specific miRNAs. This review provides significant insights into how miRNAs are emerging as vital players in the development of depression, especially the ones involved in three important processes including neuroplasticity, neurotransmission and neuroinflammation. In this review, the current status of miRNAs as biomarkers for therapeutic interventions in the case of depression has been discussed along with an overview of future perspectives, like use of nanotechnology and gene editing, keeping in view other multifactorial disorders where such interventions by mimics and inhibitors have already reached clinical trials. The challenges for targeting the specific miRNAs for therapeutic outcomes have also been highlighted.
Collapse
Affiliation(s)
- Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Manav Jindal
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bathinda, India
| | - M Rhuthuparna
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
He C, Wang Q, Fan D, Liu X, Bai Y, Zhang H, Zhang H, Yao H, Zhang Z, Xie C. MicroRNA-124 influenced depressive symptoms via large-scale brain connectivity in major depressive disorder patients. Asian J Psychiatr 2024; 95:104025. [PMID: 38522164 DOI: 10.1016/j.ajp.2024.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to investigate the neurobiological mechanisms by which microRNA 124 (miR-124) is involved in major depressive disorder (MDD). We enrolled 53 untreated MDD patients and 38 healthy control (HC) subjects who completed behavior assessments and resting-state functional MRI (rs-fMRI) scans. MiR-124 expression levels were detected in the peripheral blood of all participants. We determined that miR-124 levels could influence depressive symptoms via disrupted large-scale intrinsic intra- and internetwork connectivity, including the default mode network (DMN)-DMN, dorsal attention network (DAN)-salience network (SN), and DAN-cingulo-opercular network (CON). This study deepens our understanding of how miR-124 dysregulation contributes to depression.
Collapse
Affiliation(s)
- Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Dandan Fan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xinyi Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Haisan Zhang
- Department of Radiology, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Xinxiang Key Laboratory of Multimodal Brain Imaging, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Hongxing Zhang
- Department of Psychiatry, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China; Psychology School of Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu 210009, China; The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
3
|
Kaurani L. Clinical Insights into MicroRNAs in Depression: Bridging Molecular Discoveries and Therapeutic Potential. Int J Mol Sci 2024; 25:2866. [PMID: 38474112 PMCID: PMC10931847 DOI: 10.3390/ijms25052866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Depression is a major contributor to the overall global burden of disease. The discovery of biomarkers for diagnosis or prediction of treatment responses and as therapeutic agents is a current priority. Previous studies have demonstrated the importance of short RNA molecules in the etiology of depression. The most extensively researched of these are microRNAs, a major component of cellular gene regulation and function. MicroRNAs function in a temporal and tissue-specific manner to regulate and modify the post-transcriptional expression of target mRNAs. They can also be shuttled as cargo of extracellular vesicles between the brain and the blood, thus informing about relevant mechanisms in the CNS through the periphery. In fact, studies have already shown that microRNAs identified peripherally are dysregulated in the pathological phenotypes seen in depression. Our article aims to review the existing evidence on microRNA dysregulation in depression and to summarize and evaluate the growing body of evidence for the use of microRNAs as a target for diagnostics and RNA-based therapies.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| |
Collapse
|
4
|
Liu JY, Zheng JQ, Yin CL, Tang WP, Zhang JN. Hotspots and frontiers of the relationship between gastric cancer and depression: A bibliometric study. World J Gastroenterol 2023; 29:6076-6088. [PMID: 38130743 PMCID: PMC10731158 DOI: 10.3748/wjg.v29.i46.6076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 12/02/2023] [Indexed: 12/13/2023] Open
Abstract
BACKGROUND A significant relationship between gastric cancer (GC) and depression has been found in the last 20 years. However, there is no comprehensive information that helps researchers find popular and potential research directions on GC and depression. AIM To determine the research status and hotspots by bibliometric analysis of relevant publications on the relationship between GC and depression. METHODS We used the Web of Science Core Collection to search and collate the literature on GC and depression from 2000 to 2022 on 31 May, 2023. Then, visualization analysis was performed using VOSviewer software (version 1.6.19) and the Bibliometrix package in R software. RESULTS We retrieved 153 pertinent publications from 2000 to 2022. The annual publication count showed an overall upward trend. China had the most prominent publications and significant contributions to this field (n = 64, 41.83%). Before 2020, most studies focused on "the effect of GC on the development and progression of depression in patients." The latest research trends indicate that "the effect of depression on the occurrence and development of GC and its mechanism" will receive more attention in the future. CONCLUSION The study of "the effect of depression on the occurrence and development of GC and its mechanism" has emerged as a novel research theme over the past two years, which may become a research hotspot in this field. This study provides new insights into the hotpots and frontiers of the relationship between GC and depression, potentially guiding researchers toward hot research topics in the future.
Collapse
Affiliation(s)
- Jia-Yu Liu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| | - Ji-Qi Zheng
- School of Health Humanities, Peking University, Beijing 100191, China
| | - Cheng-Liang Yin
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Pei Tang
- School of Health Humanities, Peking University, Beijing 100191, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Hewitt T, Alural B, Tilak M, Wang J, Becke N, Chartley E, Perreault M, Haggarty SJ, Sheridan SD, Perlis RH, Jones N, Mellios N, Lalonde J. Bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca 2+ entry and accelerated differentiation. Mol Psychiatry 2023; 28:5237-5250. [PMID: 37402854 DOI: 10.1038/s41380-023-02152-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
While most of the efforts to uncover mechanisms contributing to bipolar disorder (BD) focused on phenotypes at the mature neuron stage, little research has considered events that may occur during earlier timepoints of neurodevelopment. Further, although aberrant calcium (Ca2+) signaling has been implicated in the etiology of this condition, the possible contribution of store-operated Ca2+ entry (SOCE) is not well understood. Here, we report Ca2+ and developmental dysregulations related to SOCE in BD patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells (BD-NPCs) and cortical-like glutamatergic neurons. First, using a Ca2+ re-addition assay we found that BD-NPCs and neurons had attenuated SOCE. Intrigued by this finding, we then performed RNA-sequencing and uncovered a unique transcriptome profile in BD-NPCs suggesting accelerated neurodifferentiation. Consistent with these results, we measured a slower rate of proliferation, increased neurite outgrowth, and decreased size in neurosphere formations with BD-NPCs. Also, we observed decreased subventricular areas in developing BD cerebral organoids. Finally, BD NPCs demonstrated high expression of the let-7 family while BD neurons had increased miR-34a, both being microRNAs previously implicated in neurodevelopmental deviations and BD etiology. In summary, we present evidence supporting an accelerated transition towards the neuronal stage in BD-NPCs that may be indicative of early pathophysiological features of the disorder.
Collapse
Affiliation(s)
- Tristen Hewitt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Manali Tilak
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Natalina Becke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Ellis Chartley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Melissa Perreault
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Bolouki A, Rahimi M, Azarpira N, Baghban F. Integrated multi-omics analysis identifies epigenetic alteration related to neurodegeneration development in post-traumatic stress disorder patients. Psychiatr Genet 2023; 33:167-181. [PMID: 37222234 DOI: 10.1097/ypg.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD), is associated with an elevated risk of neurodegenerative disorders, but the molecular mechanism was not wholly identified. Aberrant methylation status and miRNA expression pattern have been identified to be associated with PTSD, but their complex regulatory networks remain largely unexplored. METHODS The purpose of this study was to identify the key genes/pathways related to neurodegenerative disorder development in PTSD by evaluating epigenetic regulatory signature (DNA methylation and miRNA) using an integrative bioinformatic analysis. We integrated DNA expression array data with miRNA and DNA methylation array data - obtained from the GEO database- to evaluate the epigenetic regulatory mechanisms. RESULTS Our results indicated that target genes of dysregulated miRNAs were significantly related to several neurodegenerative diseases. Several dysregulated genes in the neurodegeneration pathways interacted with some members of the miR-17 and miR-15/107 families. Our analysis indicated that APP/CaN/NFATs signaling pathway was dysregulated in the peripheral blood samples of PTSD. Besides, the DNMT3a and KMT2D genes, as the encoding DNA and histone methyltransferase enzymes, were upregulated, and DNA methylation and miRNA regulators were proposed as critical molecular mechanisms. Our study found dysregulation of circadian rhythm as the CLOCK gene was upregulated and hypomethylated at TSS1500 CpGs S_shores and was also a target of several dysregulated miRNAs. CONCLUSION In conclusion, we found evidence of a negative feedback loop between stress oxidative, circadian rhythm dysregulation, miR-17 and miR-15/107 families, some essential genes involved in neuronal and brain cell health, and KMT2D/DNMT3a in the peripheral blood samples of PTSD.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
- University of Namur, Department of Biology, Research Unit on Cellular Biology (URBC), Namur, Belgium
| | - Moosa Rahimi
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Baghban
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Relationship between the expression level of miRNA-4485 and the severity of depressive symptoms in major depressive disorder patients. THE EUROPEAN JOURNAL OF PSYCHIATRY 2022. [DOI: 10.1016/j.ejpsy.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Li QS, Galbraith D, Morrison RL, Trivedi MH, Drevets WC. Circulating microRNA associated with future relapse status in major depressive disorder. Front Psychiatry 2022; 13:937360. [PMID: 36061300 PMCID: PMC9428445 DOI: 10.3389/fpsyt.2022.937360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022] Open
Abstract
Major depressive disorder (MDD) is an episodic condition with relapsing and remitting disease course. Elucidating biomarkers that can predict future relapse in individuals responding to an antidepressant treatment holds the potential to identify those patients who are prone to illness recurrence. The current study explored relationships between relapse risk in recurrent MDD and circulating microRNAs (miRNAs) that participate in RNA silencing and post-transcriptional regulation of gene expression. Serum samples were acquired from individuals with a history of recurrent MDD who were followed longitudinally in the observational study, OBSERVEMDD0001 (ClinicalTrials.gov Identifier: NCT02489305). Circulating miRNA data were obtained in 63 participants who relapsed ("relapsers") and 154 participants who did not relapse ("non-relapsers") during follow-up. The miRNA was quantified using the ID3EAL™ miRNA Discovery Platform from MiRXES measuring 575 circulating miRNAs using a patented qPCR technology and normalized with a standard curve from spike-in controls in each plate. The association between miRNAs and subsequent relapse was tested using a linear model, adjusting for age, gender, and plate. Four miRNAs were nominally associated with relapse status during the observational follow-up phase with a false discover rate adjusted p-value < 0.1. Enrichment analysis of experimentally validated targets revealed 112 significantly enriched pathways, including neurogenesis, response to cytokine, neurotrophin signaling, vascular endothelial growth factor signaling, relaxin signaling, and cellular senescence pathways. These data suggest these miRNAs putatively associated with relapse status may have the potential to regulate genes involved in multiple signaling pathways that have previously been associated with MDD. If shown to be significant in a larger, independent sample, these data may hold potential for developing a miRNA signature to identify patients likely to relapse, allowing for earlier intervention.
Collapse
Affiliation(s)
- Qingqin S Li
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, United States.,JRD Data Science, Janssen Research and Development, LLC, Titusville, NJ, United States
| | | | - Randall L Morrison
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, Titusville, NJ, United States
| | - Madhukar H Trivedi
- Department of Psychiatry, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, United States
| | - Wayne C Drevets
- Neuroscience Therapeutic Area, Janssen Research and Development, LLC, San Diego, CA, United States
| |
Collapse
|
9
|
MicroRNA Sequencing Analysis in Obstructive Sleep Apnea and Depression: Anti-Oxidant and MAOA-Inhibiting Effects of miR-15b-5p and miR-92b-3p through Targeting PTGS1-NF-κB-SP1 Signaling. Antioxidants (Basel) 2021; 10:antiox10111854. [PMID: 34829725 PMCID: PMC8614792 DOI: 10.3390/antiox10111854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
The aim of this study was to identify novel microRNAs related to obstructive sleep apnea (OSA) characterized by intermittent hypoxia with re-oxygenation (IHR) injury. Illumina MiSeq was used to identify OSA-associated microRNAs, which were validated in an independent cohort. The interaction between candidate microRNA and target genes was detected in the human THP-1, HUVEC, and SH-SY5Y cell lines. Next-generation sequencing analysis identified 22 differentially expressed miRs (12 up-regulated and 10 down-regulated) in OSA patients. Enriched predicted target pathways included senescence, adherens junction, and AGE-RAGE/TNF-α/HIF-1α signaling. In the validation cohort, miR-92b-3p and miR-15b-5p gene expressions were decreased in OSA patients, and negatively correlated with an apnea hypopnea index. PTGS1 (COX1) gene expression was increased in OSA patients, especially in those with depression. Transfection with miR-15b-5p/miR-92b-3p mimic in vitro reversed IHR-induced early apoptosis, reactive oxygen species production, MAOA hyperactivity, and up-regulations of their predicted target genes, including PTGS1, ADRB1, GABRB2, GARG1, LEP, TNFSF13B, VEGFA, and CXCL5. The luciferase assay revealed the suppressed PTGS1 expression by miR-92b-3p. Down-regulated miR-15b-5p/miR-92b-3p in OSA patients could contribute to IHR-induced oxidative stress and MAOA hyperactivity through the eicosanoid inflammatory pathway via directly targeting PTGS1-NF-κB-SP1 signaling. Over-expression of the miR-15b-5p/miR-92b-3p may be a new therapeutic strategy for OSA-related depression.
Collapse
|
10
|
Li Y, Fan C, Wang L, Lan T, Gao R, Wang W, Yu SY. MicroRNA-26a-3p rescues depression-like behaviors in male rats via preventing hippocampal neuronal anomalies. J Clin Invest 2021; 131:e148853. [PMID: 34228643 DOI: 10.1172/jci148853] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Depression is a neuropsychiatric disease associated with neuronal anomalies within specific brain regions. In the present study, we screened microRNA (miRNA) expression profiles in the dentate gyrus (DG) of the hippocampus and found that miR-26a-3p was markedly downregulated in a rat model of depression, whereas upregulation of miR-26a-3p within DG regions rescued the neuronal deterioration and depression-like phenotypes resulting from stress exposure, effects that appear to be mediated by the PTEN pathway. The knockdown of miR-26a-3p in DG regions of normal control rats induced depression-like behaviors, effects that were accompanied by activation of the PTEN/PI3K/Akt signaling pathway and neuronal deterioration via suppression of autophagy, impairments in synaptic plasticity, and promotion of neuronal apoptosis. In conclusion, these results suggest that miR-26a-3p deficits within the hippocampal DG mediated the neuronal anomalies contributing to the display of depression-like behaviors. This miRNA may serve as a potential therapeutic target for the treatment of depression.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology and
| | | | - Liyan Wang
- Morphological Experimental Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | | | - Rui Gao
- Department of Microorganism, Jinan Nursing Vocational College, Lvyoulu Road, Jinan, Shandong Province, China
| | | | - Shu Yan Yu
- Department of Physiology and.,Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|