1
|
Capote-Bonato FG, Bonato DV, Ayer IM, Silva de Lima C, Magalhães LF, Spada CA, Magalhães GM, de Mattos Junior E, Maia Teixeira PP, Negri M, Crivellenti LZ, Estivalet Svidzinski TI. Ascending renal infection following experimental candiduria by Candida tropicalis in immunocompromised mice. Microb Pathog 2023; 183:106295. [PMID: 37562493 DOI: 10.1016/j.micpath.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The present study evaluated renal infection resulting from the implantation of C. tropicalis in the bladder of immunosuppressed mice. Yeasts were implanted in two manners: planktonic and via preformed biofilm on a small catheter fragment (SCF). Renal histopathology and cultures was performed 72 and 144 h after cystotomy was carried out in mice from three groups: group I contained non-contaminated mice implanted with a sterile SCF; group II mice received a sterile SCF plus a yeast suspension containing 1 × 107 yeasts/mL in a planktonic form; group III mice were implanted with a SCF containing preformed C. tropicalis biofilm. Viable yeasts were found in the kidneys of mice from both groups II and III. However, after 72 h the planktonic cells (group II) invaded more quickly than the sessile cells (group III). Over a longer period (144 h), group III exhibited a more invasive infection (50% of the animals presented renal infection and the renal fungal load was 3.2 log10 CFU/g tissue) than in group II, where yeasts were not found. C. tropicalis introduced into the bladder in two ways (in planktonic or biofilm form) were able to reach the kidney and establish a renal fungal infection, causing interstitial disorders. The data of the present study therefore support the hypothesis of an ascending pathway for renal infections by C. tropicalis. Furthermore, the biofilm resulted in a greater and progressive risk of renal infection, attributed to the slow detachment of the yeasts.
Collapse
Affiliation(s)
- Francieli Gesleine Capote-Bonato
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University (UNIPAR), Praça Mascarenhas de Moraes, 4282-Centro, 87502-210, Umuarama, Paraná, Brazil.
| | - Denis Vinicius Bonato
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University (UNIPAR), Praça Mascarenhas de Moraes, 4282-Centro, 87502-210, Umuarama, Paraná, Brazil
| | - Ilan Munhoz Ayer
- Department of Veterinary Medicine, Franca University, São Paulo, Brazil
| | | | | | - Cecilia Aparecida Spada
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Paranaense University (UNIPAR), Praça Mascarenhas de Moraes, 4282-Centro, 87502-210, Umuarama, Paraná, Brazil
| | | | | | | | - Melyssa Negri
- Department of Clinical Analysis, Medical Mycology Division, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
2
|
Mahalakshmi V, Balobaid A, Kanisha B, Sasirekha R, Ramkumar Raja M. Artificial Intelligence: A Next-Level Approach in Confronting the COVID-19 Pandemic. Healthcare (Basel) 2023; 11:854. [PMID: 36981511 PMCID: PMC10048108 DOI: 10.3390/healthcare11060854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus diseases (COVID-19) in late 2019 in China created a devastating economical loss and loss of human lives. To date, 11 variants have been identified with minimum to maximum severity of infection and surges in cases. Bacterial co-infection/secondary infection is identified during viral respiratory infection, which is a vital reason for morbidity and mortality. The occurrence of secondary infections is an additional burden to the healthcare system; therefore, the quick diagnosis of both COVID-19 and secondary infections will reduce work pressure on healthcare workers. Therefore, well-established support from Artificial Intelligence (AI) could reduce the stress in healthcare and even help in creating novel products to defend against the coronavirus. AI is one of the rapidly growing fields with numerous applications for the healthcare sector. The present review aims to access the recent literature on the role of AI and how its subfamily machine learning (ML) and deep learning (DL) are used to curb the pandemic's effects. We discuss the role of AI in COVID-19 infections, the detection of secondary infections, technology-assisted protection from COVID-19, global laws and regulations on AI, and the impact of the pandemic on public life.
Collapse
Affiliation(s)
- V. Mahalakshmi
- Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Awatef Balobaid
- Department of Computer Science, College of Computer Science & Information Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - B. Kanisha
- Department of Computer Science and Engineering, School of Computing, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu 603203, India
| | - R. Sasirekha
- Department of Computing Technologies, SRM Institute of Science and Technology, Kattankulathur Campus, Chengalpattu 603203, India
| | - M. Ramkumar Raja
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
3
|
Increased Levels of (p)ppGpp Correlate with Virulence and Biofilm Formation, but Not with Growth, in Strains of Uropathogenic Escherichia coli. Int J Mol Sci 2023; 24:ijms24043315. [PMID: 36834725 PMCID: PMC9962837 DOI: 10.3390/ijms24043315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Urinary tract infections are one of the most frequent bacterial diseases worldwide. UPECs are the most prominent group of bacterial strains among pathogens responsible for prompting such infections. As a group, these extra-intestinal infection-causing bacteria have developed specific features that allow them to sustain and develop in their inhabited niche of the urinary tract. In this study, we examined 118 UPEC isolates to determine their genetic background and antibiotic resistance. Moreover, we investigated correlations of these characteristics with the ability to form biofilm and to induce a general stress response. We showed that this strain collection expressed unique UPEC attributes, with the highest representation of FimH, SitA, Aer, and Sfa factors (100%, 92.5%, 75%, and 70%, respectively). According to CRA (Congo red agar) analysis, the strains particularly predisposed to biofilm formation represented 32.5% of the isolates. Those biofilm forming strains presented a significant ability to accumulate multi-resistance traits. Most notably, these strains presented a puzzling metabolic phenotype-they showed elevated basal levels of (p)ppGpp in the planktonic phase and simultaneously exhibited a shorter generation time when compared to non-biofilm-forming strains. Moreover, our virulence analysis showed these phenotypes to be crucial for the development of severe infections in the Galleria mellonella model.
Collapse
|
4
|
Abstract
Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.
Collapse
Affiliation(s)
| | - Anne-Catrin Uhlemann
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| | - Jonathan Barasch
- Department of Medicine and Pathology and Urology, Columbia University, New York, NY, USA;
| |
Collapse
|
5
|
Kot B. Antibiotic Resistance Among Uropathogenic Escherichia coli. Pol J Microbiol 2019; 68:403-415. [PMID: 31880885 PMCID: PMC7260639 DOI: 10.33073/pjm-2019-048] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infections (UTIs) belong to the most common community-acquired and nosocomial infections. A main etiological factor of UTIs is uropathogenic Escherichia coli (UPEC). This review describes the current state of knowledge on the resistance of UPEC to antibiotics recommended for the treatment of UTIs based on the available literature data. Nitrofurantoin and fosfomycin are recommended as first-line therapy in the treatment of uncomplicated cystitis, and the resistance to these antimicrobial agents remains low between UPEC. Recently, in many countries, the increasing resistance is observed to trimethoprim-sulfamethoxazole, which is widely used as the first-line antimicrobial in the treatment of uncomplicated UTIs. In European countries, the resistance of UPEC to this antimicrobial agent ranges from 14.6% to 60%. The widespread use of fluoroquinolones (FQs), especially ciprofloxacin, in the outpatients is the cause of a continuous increase in resistance to these drugs. The resistance of UPEC to FQs is significantly higher in developing countries (55.5–85.5%) than in developed countries (5.1–32.0%). Amoxicillin-clavulanic acid is recommended as first line-therapy for pyelonephritis or complicated UTI. Resistance rates of UPEC to amoxicillin-clavulanic acid are regionally variable. In European countries the level of resistance to this antimicrobial ranges from 5.3% (Germany) to 37.6% (France). Increasing rates of UPEC resistance to antimicrobials indicate that careful monitoring of their use for UTI treatment is necessary.
Collapse
Affiliation(s)
- Barbara Kot
- Department of Microbiology, Faculty of Natural Sciences, Siedlce University of Natural Sciences and Humanities , Siedlce , Poland
| |
Collapse
|
6
|
Correlation of Antibiotic Resistance and Restriction Mapping of Plasmid DNA Isolated from E. coli Causing Urinary Tract Infection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Nitroxoline: an option for the treatment of urinary tract infection with multi-resistant uropathogenic bacteria. Infection 2018; 47:493-495. [DOI: 10.1007/s15010-018-1253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
8
|
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol 2017; 8:1566. [PMID: 28861072 PMCID: PMC5559502 DOI: 10.3389/fmicb.2017.01566] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs.
Collapse
Affiliation(s)
| | | | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of TurinTorino, Italy
| |
Collapse
|