1
|
Bandara WW, Wijesundera WSS, Hettiarachchi C. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 2022; 12:164. [PMID: 36092969 PMCID: PMC9452616 DOI: 10.1007/s13205-022-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
Productivity of crop plants are enormously affected by biotic and abiotic stresses. The co-occurrence of several abiotic stresses may lead to death of crop plants. Hence, it is the responsibility of plant scientists to develop crop plants equipped with multistress tolerance pathways. A subgroup of zinc finger transcription factor family, known as B-box (BBX) proteins, play a key role in light and hormonal regulation pathways. In addition, BBX proteins act as key regulatory proteins in many abiotic stress regulatory pathways, including Ultraviolet-B (UV-B), salinity, drought, heat and cold, and heavy metal stresses. Most of the BBX proteins identified in Arabidopsis and rice respond to more than one abiotic stress. Considering the requirement of improving rice for multistress tolerance, this review discusses functionally characterized Arabidopsis and rice BBX proteins in the development of abiotic stress responses. Furthermore, it highlights the participation of BBX proteins in multistress regulation and crop improvement through genetic engineering.
Collapse
|
2
|
Zhang YH, Rong JD, Chen LG, Chen LY, He TY, Zheng YS. Construction of cDNA library from Prunus campanulata leaves and preliminary expressed sequence tag (EST) analysis during cold stress. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
QTL mapping and development of candidate gene-derived DNA markers associated with seedling cold tolerance in rice (Oryza sativa L.). Mol Genet Genomics 2014; 289:333-43. [PMID: 24464311 DOI: 10.1007/s00438-014-0813-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
Cold stress at the seedling stage is a major threat to rice production. Cold tolerance is controlled by complex genetic factors. We used an F7 recombinant inbred line (RIL) population of 123 individuals derived from a cross of the cold-tolerant japonica cultivar Jinbu and the cold-susceptible indica cultivar BR29 for QTL mapping. Phenotypic evaluation of the parents and RILs in an 18/8 °C (day/night) cold stress regime revealed continuous variation for cold tolerance. Six QTLs including two on chromosome 1 and one each on chromosomes 2, 4, 10, and 11 for seedling cold tolerance were identified with phenotypic variation (R(2)) ranging from 6.1 to 16.5 %. The QTL combinations (qSCT1 and qSCT11) were detected in all stable cold-tolerant RIL groups, which explained the critical threshold of 27.1 % for the R(2) value determining cold tolerance at the seedling stage. Two QTLs (qSCT1 and qSCT11) on chromosomes 1 and 11, respectively, were fine mapped. The markers In1-c3, derived from the open reading frame (ORF) LOC_Os01g69910 encoding calmodulin-binding transcription activator (CAMTA), and In11-d1, derived from ORF LOC_Os11g37720 (Duf6 gene), co-segregated with seedling cold tolerance. The result may provide useful information on seedling cold tolerance mechanism and provide DNA markers for a marker-assisted breeding program to improve seedling cold tolerance in indica rice varieties.
Collapse
|
4
|
Lourenço T, Sapeta H, Figueiredo DD, Rodrigues M, Cordeiro A, Abreu IA, Saibo NJM, Oliveira MM. Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. PLANT MOLECULAR BIOLOGY 2013; 83:351-363. [PMID: 23780733 DOI: 10.1007/s11103-013-0092-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
Plants can cope with adverse environmental conditions through the activation of stress response signalling pathways, in which the proteasome seems to play an important role. However, the mechanisms underlying the proteasome-mediated stress response in rice are still not fully understood. To address this issue, we have identified a rice E3-ubiquitin ligase, OsHOS1, and characterized its role in the modulation of the cold stress response. Using a RNA interference (RNAi) transgenic approach we found that, under cold conditions, the RNAi::OsHOS1 plants showed a higher expression level of OsDREB1A. This was correlated with an increased amount of OsICE1, a master transcription factor of the cold stress signalling. However, the up-regulation of OsDREB1A was transient and the transgenic plants did not show increased cold tolerance. Nevertheless, we could confirm the interaction of OsHOS1 with OsICE1 by Yeast-Two hybrid and bi-molecular fluorescence complementation in Arabidopsis protoplasts. Moreover, we could also determine through an in vitro degradation assay that the higher amount of OsICE1 in the transgenic plants was correlated with a lower amount of OsHOS1. Hence, we could confirm the involvement of the proteasome in this response mechanism. Taken together our results confirm the importance of OsHOS1, and thus of the proteasome, in the modulation of the cold stress signalling in rice.
Collapse
Affiliation(s)
- Tiago Lourenço
- Genomics of Plant Stress laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Hanumappa M, Preece J, Elser J, Nemeth D, Bono G, Wu K, Jaiswal P. WikiPathways for plants: a community pathway curation portal and a case study in rice and arabidopsis seed development networks. RICE (NEW YORK, N.Y.) 2013; 6:14. [PMID: 24280312 PMCID: PMC4883732 DOI: 10.1186/1939-8433-6-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/22/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Next-generation sequencing and 'omics' platforms are used extensively in plant biology research to unravel new genomes and study their interactions with abiotic and biotic agents in the growth environment. Despite the availability of a large and growing number of genomic data sets, there are only limited resources providing highly-curated and up-to-date metabolic and regulatory networks for plant pathways. RESULTS Using PathVisio, a pathway editor tool associated with WikiPathways, we created a gene interaction network of 430 rice (Oryza sativa) genes involved in the seed development process by curating interactions reported in the published literature. We then applied an InParanoid-based homology search to these genes and used the resulting gene clusters to identify 351 Arabidopsis thaliana genes. Using this list of homologous genes, we constructed a seed development network in Arabidopsis by processing the gene list and the rice network through a Perl utility software called Pathway GeneSWAPPER developed by us. In order to demonstrate the utility of these networks in generating testable hypotheses and preliminary analysis prior to more in-depth downstream analysis, we used the expression viewer and statistical analysis features of PathVisio to analyze publicly-available and published microarray gene expression data sets on diurnal photoperiod response and the seed development time course to discover patterns of coexpressed genes found in the rice and Arabidopsis seed development networks. These seed development networks described herein, along with other plant pathways and networks, are freely available on the plant pathways portal at WikiPathways (http://plants.wikipathways.org). CONCLUSION In collaboration with the WikiPathways project we present a community curation and analysis platform for plant biologists where registered users can freely create, edit, share and monitor pathways supported by published literature. We describe the curation and annotation of a seed development network in rice, and the projection of a similar, gene homology-based network in Arabidopsis. We also demonstrate the utility of the Pathway GeneSWAPPER (PGS) application in saving valuable time and labor when a reference network in one species compiled in GPML format is used to project a similar network in another species based on gene homology.
Collapse
Affiliation(s)
- Mamatha Hanumappa
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Denise Nemeth
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Gina Bono
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Kenny Wu
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| |
Collapse
|
6
|
Gammulla CG, Pascovici D, Atwell BJ, Haynes PA. Differential proteomic response of rice (Oryza sativa) leaves exposed to high- and low-temperature stress. Proteomics 2011; 11:2839-50. [PMID: 21695689 DOI: 10.1002/pmic.201100068] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/05/2011] [Accepted: 04/26/2011] [Indexed: 11/07/2022]
Abstract
Global mean surface temperature has been predicted to increase by 1.8-4°C within this century, accompanied by an increase in the magnitude and frequency of extreme temperature events. Developing rice cultivars better adapted to non-optimal temperatures is essential to increase rice yield in the future and, hence, understanding the molecular response of rice to temperature stress is necessary. In this study, we investigated the proteomic responses of leaves of 24-day-old rice seedlings to sudden temperature changes. Rice seedlings grown at 28/20°C (day/night) were subjected to 3-day exposure to 12/5°C or 20/12°C (day/night) for low-temperature stress, and 36/28°C or 44/36°C (day/night) for high-temperature stress, followed by quantitative label-free shotgun proteomic analysis on biological triplicates of each treatment. Out of over 1100 proteins identified in one or more temperature treatments, more than 400 were found to be responsive to temperature stress. Of these, 43, 126 and 47 proteins were exclusively found at 12/5, 20/12 and 44/36°C (day/night), respectively. Our results showed that a greater change occurs in the rice leaf proteome at 20/12°C (day/night) in comparison to other non-optimal temperature regimes. In addition, our study identified more than 20 novel stress-response proteins.
Collapse
Affiliation(s)
- C Gayani Gammulla
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | | | | | |
Collapse
|
7
|
Laudencia-Chingcuanco D, Ganeshan S, You F, Fowler B, Chibbar R, Anderson O. Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC Genomics 2011; 12:299. [PMID: 21649926 PMCID: PMC3141665 DOI: 10.1186/1471-2164-12-299] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/07/2011] [Indexed: 12/02/2022] Open
Abstract
Background To identify the genes involved in the development of low temperature (LT) tolerance in hexaploid wheat, we examined the global changes in expression in response to cold of the 55,052 potentially unique genes represented in the Affymetrix Wheat Genome microarray. We compared the expression of genes in winter-habit (winter Norstar and winter Manitou) and spring-habit (spring Manitou and spring Norstar)) cultivars, wherein the locus for the vernalization gene Vrn-A1 was swapped between the parental winter Norstar and spring Manitou in the derived near-isogenic lines winter Manitou and spring Norstar. Global expression of genes in the crowns of 3-leaf stage plants cold-acclimated at 6°C for 0, 2, 14, 21, 38, 42, 56 and 70 days was examined. Results Analysis of variance of gene expression separated the samples by genetic background and by the developmental stage before or after vernalization saturation was reached. Using gene-specific ANOVA we identified 12,901 genes (at p < 0.001) that change in expression with respect to both genotype and the duration of cold-treatment. We examined in more detail a subset of these genes (2,771) where expression was highly influenced by the interaction between these two main factors. Functional assignments using GO annotations showed that genes involved in transport, oxidation-reduction, and stress response were highly represented. Clustering based on the pattern of transcript accumulation identified genes that were up or down-regulated by cold-treatment. Our data indicate that the cold-sensitive lines can up-regulate known cold-responsive genes comparable to that of cold-hardy lines. The levels of expression of these genes were highly influenced by the initial rate and the duration of the gene's response to cold. We show that the Vrn-A1 locus controls the duration of gene expression but not its initial rate of response to cold treatment. Furthermore, we provide evidence that Ta.Vrn-A1 and Ta.Vrt1 originally hypothesized to encode for the same gene showed different patterns of expression and therefore are distinct. Conclusion This study provides novel insight into the underlying mechanisms that regulate the expression of cold-responsive genes in wheat. The results support the developmental model of LT tolerance gene regulation and demonstrate the complex genotype by environment interactions that determine LT adaptation in winter annual cereals.
Collapse
|
8
|
Gammulla CG, Pascovici D, Atwell BJ, Haynes PA. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress. Proteomics 2010; 10:3001-19. [PMID: 20645384 DOI: 10.1002/pmic.201000054] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Global mean temperatures are expected to rise by 2-4.5 degrees C by 2100, accompanied by an increase in frequency and amplitude of extreme temperature events. Greater climatic extremes and an expanded range of cultivation will expose rice to increasing stress in the future. Understanding gene expression in disparate thermal regimes is important for the engineering of cultivars with tolerance to nonoptimal temperatures. Our study investigated the proteomic responses of rice cell suspension cultures to sudden temperature changes. Cell cultures grown at 28 degrees C were subjected to 3-day exposure to 12 or 20 degrees C for low-temperature stress, and 36 or 44 degrees C for high-temperature stress. Quantitative label-free shotgun proteomic analysis was performed on biological triplicates of each treatment. Over 1900 proteins were expressed in one or more temperature treatments, and, of these, more than 850 were found to be responsive to either of the temperature extremes. These temperature-responsive proteins included more than 300 proteins which were uniquely expressed at either 12 or 44 degrees C. Our study also identified 40 novel stress-response proteins and observed that switching between the classical and the alternative pathways of sucrose metabolism occurs in response to extremes of temperature.
Collapse
|
9
|
Yun KY, Park MR, Mohanty B, Herath V, Xu F, Mauleon R, Wijaya E, Bajic VB, Bruskiewich R, de los Reyes BG. Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress. BMC PLANT BIOLOGY 2010; 10:16. [PMID: 20100339 PMCID: PMC2826336 DOI: 10.1186/1471-2229-10-16] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 01/25/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND The transcriptional regulatory network involved in low temperature response leading to acclimation has been established in Arabidopsis. In japonica rice, which can only withstand transient exposure to milder cold stress (10 degrees C), an oxidative-mediated network has been proposed to play a key role in configuring early responses and short-term defenses. The components, hierarchical organization and physiological consequences of this network were further dissected by a systems-level approach. RESULTS Regulatory clusters responding directly to oxidative signals were prominent during the initial 6 to 12 hours at 10 degrees C. Early events mirrored a typical oxidative response based on striking similarities of the transcriptome to disease, elicitor and wounding induced processes. Targets of oxidative-mediated mechanisms are likely regulated by several classes of bZIP factors acting on as1/ocs/TGA-like element enriched clusters, ERF factors acting on GCC-box/JAre-like element enriched clusters and R2R3-MYB factors acting on MYB2-like element enriched clusters.Temporal induction of several H2O2-induced bZIP, ERF and MYB genes coincided with the transient H2O2 spikes within the initial 6 to 12 hours. Oxidative-independent responses involve DREB/CBF, RAP2 and RAV1 factors acting on DRE/CRT/rav1-like enriched clusters and bZIP factors acting on ABRE-like enriched clusters. Oxidative-mediated clusters were activated earlier than ABA-mediated clusters. CONCLUSION Genome-wide, physiological and whole-plant level analyses established a holistic view of chilling stress response mechanism of japonica rice. Early response regulatory network triggered by oxidative signals is critical for prolonged survival under sub-optimal temperature. Integration of stress and developmental responses leads to modulated growth and vigor maintenance contributing to a delay of plastic injuries.
Collapse
Affiliation(s)
- Kil-Young Yun
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Myoung Ryoul Park
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Bijayalaxmi Mohanty
- South African National Bioinformatics Institute, University of the Western Cape, Bellville 7535, South Africa
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore
| | - Venura Herath
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Fuyu Xu
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Ramil Mauleon
- Crop Research Informatics Laboratory, International Rice Research Institute, Los Banos, Laguna, Philippines
| | - Edward Wijaya
- Computational Biology Research Center, AIST Tokyo Waterfront, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Vladimir B Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Richard Bruskiewich
- Crop Research Informatics Laboratory, International Rice Research Institute, Los Banos, Laguna, Philippines
| | | |
Collapse
|
10
|
Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Res 2010; 19:809-18. [DOI: 10.1007/s11248-009-9357-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 12/22/2009] [Indexed: 11/26/2022]
|
11
|
Zhang C, Fei SZ, Warnke S, Li L, Hannapel D. Identification of genes associated with cold acclimation in perennial ryegrass. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1436-45. [PMID: 19375818 DOI: 10.1016/j.jplph.2009.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/09/2009] [Accepted: 03/09/2009] [Indexed: 05/21/2023]
Abstract
Cold acclimation dramatically increases freezing tolerance in many temperate plant species. An understanding of cold acclimation is important for extending adaptation areas of perennial ryegrass. Freezing tolerance is greatly increased in perennial ryegrass cv. 'Caddyshack' after cold acclimation. Genes differentially regulated during cold acclimation were identified by analyzing the abundance of expressed sequence tags (ESTs) randomly sampled from two cDNA libraries, one constructed from 14-d cold-acclimated (CA; LT(50)=-12.2 degrees C) and the other from nonacclimated (NA; LT(50)=-7.6 degrees C) leaves of 'Caddyshack'. More than 1400 quality ESTs were generated for each library. Over 60 EST groups were either increased or decreased three times or more in the CA library than in the NA library. Functional classification showed that for nine gene ontology (GO) subcategories, the ratio of CA ESTs to NA ESTs increased twice or more, whereas the ratio decreased by half or more for seven other GO subcategories. Expression analysis of 23 selected genes confirmed that 19 of them exhibited expression patterns consistent with the EST abundance analysis. Our results suggest that up-regulation of cold-regulated (COR), dehydration-responsive, and ice recrystallization inhibition (IRI) genes, and down-regulation of photosynthesis and respiration-related genes are important to increasing freezing tolerance in perennial ryegrass.
Collapse
Affiliation(s)
- Chunzhen Zhang
- Department of Horticulture, Iowa State University, Ames, IA 50011-1100, USA
| | | | | | | | | |
Collapse
|
12
|
Gao S, Zhang H, Tian Y, Li F, Zhang Z, Lu X, Chen X, Huang R. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. PLANT CELL REPORTS 2008; 27:1787-95. [PMID: 18777179 DOI: 10.1007/s00299-008-0602-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/29/2008] [Accepted: 08/24/2008] [Indexed: 05/09/2023]
Abstract
Drought and high-salinity are the important constraints that severely affect plant development and crop yield worldwide. It has been established that ethylene response factor (ERF) proteins play important regulatory roles in plant response to abiotic and biotic stresses. Our previous researches have revealed that transgenic tobacco over-expressing TERF1 (encoding a tomato ERF protein) showed enhanced tolerance to abiotic stress. Here, we further investigate the function of TERF1 in transgenic rice. Compared with the wild-type plants, overexpression of TERF1 resulted in an increased tolerance to drought and high-salt in transgenic rice. And the enhanced tolerance may be associated with the accumulation of proline and the decrease of water loss. Furthermore, TERF1 can effectively regulate the expression of stress-related functional genes Lip5, Wcor413-l, OsPrx and OsABA2, as well as regulatory genes OsCDPK7, OsCDPK13 and OsCDPK19 under normal growth conditions. Our analyses of cis-acting elements show that there exist DRE/CRT and/or GCC-box existing in TERF1 targeted gene promoters. Our results revealed that ectopic expression of TERF1 in rice caused a series of molecular and physiological alterations and resulted in the transgenic rice with enhanced tolerance to abiotic stress, indicating that TERF1 might have similar regulatory roles in response to abiotic stress in tobacco and rice.
Collapse
Affiliation(s)
- Shumei Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics 2008; 8:4808-21. [DOI: 10.1002/pmic.200701164] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 2008; 36:115-23. [DOI: 10.1007/s00726-008-0039-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 01/25/2008] [Indexed: 10/22/2022]
|
15
|
Yu XM, Yu XD, Qu ZP, Huang XJ, Guo J, Han QM, Zhao J, Huang LL, Kang ZS. Cloning of a putative hypersensitive induced reaction gene from wheat infected by stripe rust fungus. Gene 2007; 407:193-8. [PMID: 17980516 DOI: 10.1016/j.gene.2007.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 09/12/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
The hypersensitive response (HR) is one of the most efficient forms of plant defense against biotrophic pathogens and results in localized cell death and the formation of necrotic lesions. In this study, a novel putative hypersensitive induced reaction (HIR) gene from wheat leaves infected by incompatible stripe rust pathogen CY23, designated as Ta-hir1, was identified by using rapid amplification of cDNA ends (RACE). Ta-hir1 encodes 284 amino acids, with a predicted molecular mass of 31.31 KDa. A phylogenetic analysis showed that Ta-hir1 was highly homologous to Hv-hir1 from barley at both cDNA and deduced amino-acid levels. Amino-acid sequence analysis of the wheat HIR protein indicated the presence of the SPFH (Stomatins, Prohibitins, Flotillins and HflK/C) protein domain typical for stomatins which served as a negative regulator of univalent cation permeability, especially for potassium. The expression profile of the Ta-hir1 transcript detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time polymerase chain reaction (real time-PCR), respectively, showed that the highest expression occurred 48 h post inoculation (hpi), which is consistent with our previous histopathology observations during the stripe rust fungus-wheat incompatible reaction.
Collapse
Affiliation(s)
- Xiu-Mei Yu
- College of Plant Protection and Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A and F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling-tolerant japonica rice. BMC Genomics 2007; 8:175. [PMID: 17577400 PMCID: PMC1925099 DOI: 10.1186/1471-2164-8-175] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 06/18/2007] [Indexed: 12/30/2022] Open
Abstract
Background Plants respond to low temperature through an intricately coordinated transcriptional network. The CBF/DREB-regulated network of genes has been shown to play a prominent role in freeze-tolerance of Arabidopsis through the process of cold acclimation (CA). Recent evidence also showed that the CBF/DREB regulon is not unique to CA but evolutionarily conserved between chilling-insensitive (temperate) and chilling-sensitive (warm-season) plants. In this study, the wide contrast in chilling sensitivity between indica and japonica rice was used as model to identify other regulatory clusters by integrative analysis of promoter architecture (ab initio) and gene expression profiles. Results Transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' genes that were upregulated during the initial 24 hours at 10°C. Among this group were four transcription factors including ROS-bZIP1 and another larger sub-group with a common feature of having as1/ocs-like elements in their promoters. Cold-induction of ROS-bZIP1 preceded the induction of as1/ocs-like element-containing genes and they were also induced by exogenous H2O2 at ambient temperature. Coordinated expression patterns and similar promoter architectures among the 'early response' genes suggest that they belong to a potential regulon (ROS-bZIP – as1/ocs regulatory module) that responds to elevated levels of ROS during chilling stress. Cultivar-specific expression signatures of the candidate genes indicate a positive correlation between the activity of the putative regulon and genotypic variation in chilling tolerance. Conclusion A hypothetical model of an ROS-mediated regulon (ROS-bZIP – as1/ocs) triggered by chilling stress was assembled in rice. Based on the current results, it appears that this regulon is independent of ABA and CBF/DREB, and that its activation has an important contribution in configuring the rapid responses of rice seedlings to chilling stress.
Collapse
|
17
|
Mahmood T, Hyder MZ, Naqvi SMS. Cloning and sequence analysis of germin-like protein gene 2 promoter from Oryza sativa L. ssp. indica. ACTA ACUST UNITED AC 2007; 18:26-32. [PMID: 17364810 DOI: 10.1080/10425170600986688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Germin and germin-like proteins (GLPs) are water soluble extracellular proteins reportedly expressed in response to some environmental and developmental signals. Some enzymatic activities have also been associated with germin/GLPs. However, their role in overall metabolism has not been fully understood. Significant insight into their function may also be gained by analysis of their promoter. During this study, about 1107 bp 5'region of OsRGLP2 gene was amplified, cloned and sequenced. The sequence analysis by BLAST showed that this promoter sequence has five common regions (CR1-CR5) of different sizes, which are repeated at 3-6 other locations in 30 kb region in which this gene driven by its promoter is located. Interestingly, all the genes driven by promoter harboring these common regions are GLPs/putative germins. Analysis of these common regions located on OsRGLP2 indicated presence of many elements including those for light responsiveness, dehydration and dark induced senescence, stresses (pathogen and salt), plant growth regulators, pollen specific expression and elements related to seed storage proteins. Analysis of the 30 kb germin/GLP clustered region by GenScan detected each gene to have a putative 40 bp promoter which contains TATA box and Dof factor which turned out to be a part of CR2.
Collapse
Affiliation(s)
- Tariq Mahmood
- Department of Biochemistry, University of Arid Agriculture Rawalpindi. Rawalpindi, Pakistan
| | | | | |
Collapse
|
18
|
Vij S, Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:361-80. [PMID: 17430544 DOI: 10.1111/j.1467-7652.2007.00239.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.
Collapse
Affiliation(s)
- Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
19
|
Andaya VC, Tai TH. Fine mapping of the qCTS12 locus, a major QTL for seedling cold tolerance in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 113:467-75. [PMID: 16741739 DOI: 10.1007/s00122-006-0311-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 05/06/2006] [Indexed: 05/03/2023]
Abstract
The temperate japonica rice cultivar M202 is the predominant variety grown in California due to its tolerance to low temperature stress, good grain quality and high yield. Earlier analysis of a recombinant inbred line mapping population derived from a cross between M202 and IR50, an indica cultivar that is highly sensitive to cold stress, resulted in the identification of a number of QTL conferring tolerance to cold-induced wilting and necrosis. A major QTL, qCTS12, located on the short arm of chromosome 12, contributes over 40% of the phenotypic variance. To identify the gene(s) underlying qCTS12, we have undertaken the fine mapping of this locus. Saturating the short arm of chromosome 12 with microsatellite markers revealed that qCTS12 is closest to RM7003. Using RM5746 and RM3103, which are immediately outside of RM7003, we screened 1,954 F(5)-F(10) lines to find recombinants in the qCTS12 region. Additional microsatellite markers were identified from publicly available genomic sequence and used to fine map qCTS12 to a region of approximately 87 kb located on the BAC clone OSJNBb0071I17. This region contains ten open reading frames (ORFs) consisting of five hypothetical and expressed proteins of unknown function, a transposon protein, a putative NBS-LRR disease resistance protein, two zeta class glutathione S-transferases (OsGSTZ1 and OsGSTZ2), and a DAHP synthetase. Further fine mapping with markers developed from the ORFs delimited the QTL to a region of about 55 kb. The most likely candidates for the gene(s) underlying qCTS12 are OsGSTZ1 and OsGSTZ2.
Collapse
Affiliation(s)
- V C Andaya
- Crops Pathology and Genetics Research Unit, Department of Plant Sciences, USDA-ARS, Davis, CA 95616, USA
| | | |
Collapse
|
20
|
Shiozaki N, Yamada M, Yoshiba Y. Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:1177-86. [PMID: 15791452 DOI: 10.1007/s00122-005-1931-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 01/11/2005] [Indexed: 05/08/2023]
Abstract
To clarify the mechanisms of stress tolerance in rice and to search for rice genes associated with these mechanisms, we analyzed genes induced by a high salinity treatment using the PCR-subtractive hybridization method (PCR-subtraction). Seedlings of the salt-tolerant rice cultivar Dee-geo-woo-gen (DGWG) were either treated with 250 mM NaCl for 5 h or left untreated, and PCR-subtraction was then performed using the untreated (control) plants as a driver and the NaCl-treated plants as a tester. We obtained 384 clones of tester-specific cDNAs as salt-inducible candidates. Northern analysis performed with the cDNA fragments showed that 65 clones had been induced by the NaCl treatment. Sequence analysis and database searching indicated that these clones have homology to proteins functional for detoxification, stress response, and signal transduction in plants. Of these clones, 22% coded for unknown proteins and 12% gave no hits. We selected eight clones from each functional category and analyzed their expression pattern in DGWG. For temporal analysis, seedlings were treated with H(2)O or 250 mM NaCl for 0, 0.5, 1, 2, 5, 10 or 24 h. Different patterns of transcript regulation were found. For the analysis of expression in response to various types of stress and abscisic acid (ABA) treatments, seedlings were treated for 5 h or 10 h with H(2)O, dehydration, cold (4 degrees C), heat (40 degrees C), mannitol, ABA, or wounding. All clones were strongly up-regulated by osmotic stress (dehydration and mannitol) and the ABA treatment.
Collapse
Affiliation(s)
- Noriko Shiozaki
- Life Science Research Center, Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama, 350-0395, Japan
| | | | | |
Collapse
|
21
|
Morsy MR, Almutairi AM, Gibbons J, Yun SJ, de Los Reyes BG. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 2005; 344:171-80. [PMID: 15656983 DOI: 10.1016/j.gene.2004.09.033] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/27/2004] [Accepted: 09/23/2004] [Indexed: 11/29/2022]
Abstract
Rice (Oryza sativa L.) is sensitive to chilling particularly at early stages of seedling establishment. Two closely related genes (OsLti6a, OsLti6b), which are induced by low temperature during seedling emergence were isolated from a cold tolerant temperate japonica rice cultivar. These genes are closely related to the Arabidopsis rare cold-inducible (RCI2) and barley low-temperature-inducible (BLT101) genes. Based on direct biochemical and indirect physiological evidence and similarity with a conserved protein domain in the Cluster of Orthologous Groups (COG) database (e.g., yeast PMP3), the rice genes belong to a class of low-molecular-weight hydrophobic proteins involved in maintaining the integrity of the plasma membrane during cold, dehydration and salt stress conditions. Both genes exhibit a genotype-specific expression signature characterized by early and late stress-inducible expression in tolerant and intolerant genotypes, respectively. The differences in temporal expression profiles are consistent with cultivar differences in cold-induced membrane leakiness and seedling vigor. The presence of CRT/DRE promoter cis-elements is consistent with the synchronized expression of OsLti6 genes with the C-repeat binding factor/drought responsive element-binding protein (CBF/DREB) transcriptional activator. The present results indicate that the Oslti6 genes are part of a battery of cold stress defense-related genes regulated by a common switch.
Collapse
Affiliation(s)
- Mustafa R Morsy
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | |
Collapse
|
22
|
Kurata N, Miyoshi K, Nonomura KI, Yamazaki Y, Ito Y. Rice mutants and genes related to organ development, morphogenesis and physiological traits. PLANT & CELL PHYSIOLOGY 2005; 46:48-62. [PMID: 15659430 DOI: 10.1093/pcp/pci506] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in genomic studies and the sequenced genome information have made it possible to utilize phenotypic mutants for characterizing relevant genes at the molecular level and reveal their functions. Various mutants and strains expressing phenotypic and physiological variations provide an indispensable source for functional analysis of genes. In this review, we cover almost all of the rice mutants found to date and the variant strains that are important in developmental, physiological and agronomical studies. Mutants and genes showing defects in vegetative organs, i.e. leaf, culm and root, inflorescence reproductive organ and seeds with an embryo and endosperm are described with regards to their phenotypic and molecular characteristics. A variety of alleles detected by quantitative trait locus analysis, such as heading date, disease/insect resistance and stress tolerance, are also shown.
Collapse
Affiliation(s)
- Nori Kurata
- Genetic Strains Research Center, National Institute of Genetics, Mishima, 411-8540 Japan.
| | | | | | | | | |
Collapse
|