1
|
Clare SJ, King RM, Tawril AL, Havill JS, Muehlbauer GJ, Carey SB, Harkess A, Bassil N, Altendorf KR. An affordable and convenient diagnostic marker to identify male and female hop plants. G3 (BETHESDA, MD.) 2023; 14:jkad216. [PMID: 37963231 PMCID: PMC10755173 DOI: 10.1093/g3journal/jkad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 11/16/2023]
Abstract
Hop production utilizes exclusively female plants, whereas male plants only serve to generate novel variation within breeding programs through crossing. Currently, hop lacks a rapid and accurate diagnostic marker to determine whether plants are male or female. Without a diagnostic marker, breeding programs may take 1-2 years to determine the sex of new seedlings. Previous research on sex-linked markers was restricted to specific populations or breeding programs and therefore had limited transferability or suffered from low scalability. A large collection of 765 hop genotypes with known sex phenotypes, genotyping-by-sequencing, and genome-wide association mapping revealed a highly significant marker on the sex chromosome (LOD score = 208.7) that predicted sex within our population with 96.2% accuracy. In this study, we developed a PCR allele competitive extension (PACE) assay for the diagnostic SNP and tested three quick DNA extraction methodologies for rapid, high-throughput genotyping. Additionally, the marker was validated in a separate population of 94 individuals from 15 families from the USDA-ARS hop breeding program in Prosser, WA with 96% accuracy. This diagnostic marker is located in a gene predicted to encode the basic helix-loop-helix transcription factor protein, a family of proteins that have been previously implicated in male sterility in a variety of plant species, which may indicate a role in determining hop sex. The marker is diagnostic, accurate, affordable, and highly scalable and has the potential to improve efficiency in hop breeding.
Collapse
Affiliation(s)
- Shaun J Clare
- National Clonal Germplasm Repository, USDA-ARS, 33447 Peoria Road, Corvallis, OR 97333, USA
| | - Ryan M King
- National Clonal Germplasm Repository, USDA-ARS, 33447 Peoria Road, Corvallis, OR 97333, USA
| | - Anna L Tawril
- Forage Seed and Cereal Research Unit, USDA-ARS, 24106 N Bunn Road, Prosser, WA 99350, USA
| | - Joshua S Havill
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St.Paul, MN 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, 1991 Upper Buford Circle, St.Paul, MN 55108, USA
| | - Sarah B Carey
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, 33447 Peoria Road, Corvallis, OR 97333, USA
| | - Kayla R Altendorf
- Forage Seed and Cereal Research Unit, USDA-ARS, 24106 N Bunn Road, Prosser, WA 99350, USA
| |
Collapse
|
2
|
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1094-1102. [PMID: 34096764 PMCID: PMC8761531 DOI: 10.1094/mpmi-03-21-0073-cr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California,
Davis, CA, U.S.A
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi
Avenue, Mt. Carmel, 3498838 Haifa, Israel
- Department of Evolutionary and Environmental Biology,
University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
3
|
Jiang L, Li G, Chern M, Jain R, Pham NT, Martin JA, Schackwitz WS, Zhao J, Ruan D, Huang R, Zheng J, Ronald PC. Whole-Genome Sequencing Identifies a Rice Grain Shape Mutant, gs9-1. RICE (NEW YORK, N.Y.) 2019; 12:52. [PMID: 31321562 PMCID: PMC6639446 DOI: 10.1186/s12284-019-0308-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/27/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Breeding for genes controlling key agronomic traits is an important goal of rice genetic improvement. To gain insight into genes controlling grain morphology, we screened M3 plants derived from 1,000 whole-genome sequenced (WGS) M2 Kitaake mutants to identify lines with altered grain size. RESULTS In this study, we isolated a mutant, named fast-neutron (FN) 60-4, which exhibits a significant reduction in grain size. We crossed FN60-4 with the parental line Kitaake and analyzed the resulting backcross population. Segregation analysis of 113 lines from the BC2F2 population revealed that the mutant phenotype is controlled by a single semi-dominant locus. Mutant FN60-4 is reduced 20% in plant height and 8.8% in 1000-grain weight compared with Kitaake. FN60-4 also exhibits an 8% reduction in cell number and a 9% reduction in cell length along the vertical axis of the glume. We carried out whole-genome sequencing of DNA pools extracted from segregants with long grains or short grains, and revealed that one gene, LOC_Os09g02650, cosegregated with the grain size phenotype in the BC1F2 and BC2F2 populations. This mutant allele was named grain shape 9-1 (gs9-1). gs9-1 carries a 3-bp deletion that affects two amino acids. This locus is a new allele of the BC12/GDD1/MTD1 gene that encodes a kinesin-like protein involved in cell-cycle progression, cellulose microfibril deposition and gibberellic acid (GA) biosynthesis. The GA biosynthesis-related gene KO2 is down-regulated in gs9-1. The dwarf phenotype of gs9-1 can be rescued by adding exogenous GA3. In contrast to the phenotypes for the other alleles, the gs9-1 is less severe, consistent with the nature of the mutation, which does not disrupt the open reading frame as observed for the other alleles. CONCLUSIONS In this study, we isolated a mutant, which exhibits altered grain shape and identified the mutated gene, gs9-1. Our study reveals that gs9-1 is a semi-dominant gene that carries a two-amino acid mutation. gs9-1 is allelic to the BC12/GDD1/MTD1 gene involved in GA biosynthesis. These results demonstrate the efficiency and convenience of cloning genes from the whole-genome sequenced Kitaake mutant population to advance investigations into genes controlling key agronomic traits in rice.
Collapse
Affiliation(s)
- Liangrong Jiang
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Guotian Li
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
- State Key Laboratory of Agricultural Microbiology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Rashmi Jain
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Nhan T. Pham
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Joel A. Martin
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Wendy S. Schackwitz
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598 USA
| | - Juan Zhao
- State Key Laboratory of Agricultural Microbiology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Deling Ruan
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Rongyu Huang
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Jingsheng Zheng
- Xiamen Plant Genetics Key Laboratory, School of Life Sciences, Xiamen University, Xiamen, 361102 People’s Republic of China
| | - Pamela C. Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616 USA
- Feedstocks Division, Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
4
|
Solanki S, Richards J, Ameen G, Wang X, Khan A, Ali H, Stangel A, Tamang P, Gross T, Gross P, Fetch TG, Brueggeman RS. Characterization of genes required for both Rpg1 and rpg4-mediated wheat stem rust resistance in barley. BMC Genomics 2019; 20:495. [PMID: 31200635 PMCID: PMC6570958 DOI: 10.1186/s12864-019-5858-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Puccinia graminis f. sp. tritici (Pgt) race TTKSK and its lineage pose a threat to barley production world-wide justifying the extensive efforts to identify, clone, and characterize the rpg4-mediated resistance locus (RMRL), the only effective resistance to virulent Pgt races in the TTKSK lineage. The RMRL contains two nucleotide-binding domain and leucine-rich repeat (NLR) resistance genes, Rpg5 and HvRga1, which are required for resistance. The two NLRs have head-to-head genome architecture with one NLR, Rpg5, containing an integrated C-terminal protein kinase domain, characteristic of an "integrated sensory domain" resistance mechanism. Fast neutron mutagenesis of line Q21861 was utilized in a forward genetics approach to identify genetic components that function in the RMRL or Rpg1 resistance mechanisms, as Q21861 contains both genes. A mutant was identified that compromises both RMRL and Rpg1-mediated resistances and had stunted seedling roots, designated required for P. graminis resistance 9 (rpr9). RESULTS The rpr9 mutant generated in the Q21861 background was crossed with the Swiss landrace Hv584, which carries RMRL but contains polymorphism across the genome compared to Q21861. To map Rpr9, a Hv584 x rpr9 F6:7 recombinant inbred line (RIL) population was developed. The RIL population was phenotyped with Pgt race QCCJB. The Hv584 x rpr9 RIL population was genotyped with the 9 k Illumina Infinium iSelect marker panel, producing 2701 polymorphic markers. A robust genetic map consisting of 563 noncosegregating markers was generated and used to map Rpr9 to an ~ 3.4 cM region on barley chromosome 3H. The NimbleGen barley exome capture array was utilized to capture rpr9 and wild type Q21861 exons, followed by Illumina sequencing. Comparative analysis, resulting in the identification of a 1.05 Mbp deletion at the chromosome 3H rpr9 locus. The identified deletion contains ten high confidence annotated genes with the best rpr9 candidates encoding a SKP1-like 9 protein and a F-box family protein. CONCLUSION Genetic mapping and exome capture rapidly identified candidate gene/s that function in RMRL and Rpg1 mediated resistance pathway/s. One or more of the identified candidate rpr9 genes are essential in the only two known effective stem rust resistance mechanisms, present in domesticated barley.
Collapse
Affiliation(s)
- Shyam Solanki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Jonathan Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70803 USA
| | - Gazala Ameen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Xue Wang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Atiya Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Harris Ali
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Alex Stangel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Thomas Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Patrick Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Thomas G. Fetch
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Robert S. Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| |
Collapse
|
5
|
Sharma Poudel R, Al-Hashel AF, Gross T, Gross P, Brueggeman R. Pyramiding rpg4- and Rpg1-Mediated Stem Rust Resistance in Barley Requires the Rrr1 Gene for Both to Function. FRONTIERS IN PLANT SCIENCE 2018; 9:1789. [PMID: 30568667 PMCID: PMC6290389 DOI: 10.3389/fpls.2018.01789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is an economically important disease of wheat and barley. Rpg1 is the only resistance gene deployed in Midwestern US barley varieties and provides remarkable resistance to most North American races, except Pgt race QCCJB. Rpg1 is also ineffective against Pgt race TTKSK and its lineage that originated in Africa. The barley rpg4-mediated resistance locus (RMRL) conferring resistance to Pgt races QCCJB and TTKSK was isolated from line Q21861, which is resistant to all known Pgt races due to Rpg1 and RMRL. To develop elite barley varieties RMRL was pyramided into the varieties, Pinnacle and Conlon (both contain Rpg1), producing the near isogenic lines (NILs), Pinnacle RMRL-NIL (PRN) and Conlon RMRL-NIL (CRN). The CRN was resistant to Pgt races QCCJB (RMRL specific) and HKHJC (Rpg1 specific) at the seedling stage and Pgt race TTKSK (RMRL specific) at the adult stage. In contrast, PRN was susceptible to QCCJB and HKHJC at the seedling stage and TTKSK at the adult stage. Interestingly, PRN's susceptibility to QCCJB and HKHJC showed that RMRL was non-functional in the Pinnacle background but its presence also suppressed Rpg1-mediated resistance. Thus, in the absence of a gene/s found in the Q21861 background, Rpg1 becomes non-functional if RMRL is present, suggesting that another polymorphic gene, that we designated Rrr1 (required for rpg4-mediated resistance 1), is required for RMRL resistance and Rpg1-mediated resistance in the presence of RMRL. Utilizing a PRN/Q21861 derived recombinant inbred line (RIL) population, Rrr1 was delimited to a ∼0.5 MB physical region, slightly proximal (∼1.8 MB) of RMRL on barley chromosome 5H. A second gene, designated required for Rpg1-mediated resistance 2 (Rrr2), with duplicate gene action to Rrr1 in Rpg1-mediated resistance function, was genetically delimited to a physical region of ∼0.7 MB, slightly distal (∼3.1 MB) to Rpg1 on the short arm of barley chromosome 7H. Thus, Rrr1 is required for RMRL resistance and Rrr1 or Rrr2 is required for functional Rpg1-mediated resistance in the presence of the RMRL introgression. Candidate Rrr1 and Rrr2 genes were identified that need to be considered when pyramiding Rpg1 and RMRL in barley.
Collapse
Affiliation(s)
| | | | | | | | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
6
|
Shen Y, Liu N, Li C, Wang X, Xu X, Chen W, Xing G, Zheng W. The early response during the interaction of fungal phytopathogen and host plant. Open Biol 2018; 7:rsob.170057. [PMID: 28469008 PMCID: PMC5451545 DOI: 10.1098/rsob.170057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Na Liu
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiaomeng Xu
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wan Chen
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Guozhen Xing
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
7
|
Gill U, Brueggeman R, Nirmala J, Chai Y, Steffenson B, Kleinhofs A. Molecular and genetic characterization of barley mutants and genetic mapping of mutant rpr2 required for Rpg1-mediated resistance against stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1519-1529. [PMID: 27142847 DOI: 10.1007/s00122-016-2721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
This study describes the generation, screening, genetic and molecular characterization, and high-resolution mapping of barley mutants susceptible to stem rust ( Puccinia graminis f. sp. tritici ) races MCCF and HKHJ. A single gene, Rpg1, has protected barley cultivars against many races of stem rust pathogen (Puccinia graminis f. sp. tritici) for the last 70 years in the United States and Canada. To identify signaling components of protein product RPG1, we employed a mutagenesis approach. Using this approach, six mutants exhibiting susceptibility to Puccinia graminis f. sp. tritici races MCCF and HKHJ were identified in the gamma irradiated M2 population of resistant cultivar Morex, which carries Rpg1 on chromosome 7H. The mutants retained a functional Rpg1 gene and an apparently functional protein, suggesting that the mutated genes were required for downstream or upstream signaling. Selected mutants were non-allelic, hence each mutant represents a unique gene. Low and high-resolution genetic mapping of the rpr2 mutant identified chromosome 6H (bin 6) as the location of the mutated gene. The target region was reduced to 0.6 cM and gene content analyzed. Based on the published barley genomic sequence, the target region contains approximately 157 genes, including a set that encodes putative leucine-rich receptor-like protein kinases, which may be strong candidates for the gene of interest. Overall, this study presents a strong platform for future map-based cloning of genes identified in this mutant screen.
Collapse
Affiliation(s)
- Upinder Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jayaveeramuthu Nirmala
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Cereal Disease Laboratory, USDA-ARS, Saint Paul, MN, 55108, USA
| | - Yuan Chai
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Andris Kleinhofs
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
8
|
Zurn JD, Dugyala S, Borowicz P, Brueggeman R, Acevedo M. Unraveling the Wheat Stem Rust Infection Process on Barley Genotypes Through Relative qPCR and Fluorescence Microscopy. PHYTOPATHOLOGY 2015; 105:707-712. [PMID: 25689517 DOI: 10.1094/phyto-09-14-0251-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The infection process of wheat stem rust (Puccinia graminis f. sp. tritici) on barley (Hordeum vulgare) is often observed as a mesothetic infection type at the seedling stages, and cultivars containing the same major resistance genes often show variation in the level of resistance provided against the same pathogen race or isolate. Thus, robust phenotyping data based on quantification of fungal DNA can improve the ability to elucidate host-pathogen interaction, especially at early time points of infection when disease symptoms are not yet evident. Quantitative real-time polymerase chain reaction (qPCR) was used to determine the amount of fungal DNA relative to host DNA in infected tissue, providing new insights about fungal development and host resistance during the infection process in this pathosystem. The stem rust susceptible 'Steptoe', resistant cultivars containing only Rpg1 ('Beacon', 'Morex', and 'Chevron'), and the resistant line Q21861 containing Rpg1 and the rpg4/Rpg5 complex were evaluated using the traditional 0-to-4 rating scale, fluorescence microscopy, and qPCR. Statistical differences (P<0.05) were observed in fungal development as early as 24 h postinoculation using the qPCR assay. Fungal development observed using fluorescence microscopy displayed the same hierarchal ordering observed using the qPCR assay. The fungal development occurring at 24 and 48 h postinoculation was vastly different than what was expected using the traditional disease phenotyping methodology; with Steptoe appearing more resistant than the barley lines harboring the known Rpg1 and rpg4/Rpg5 resistance complex. These data indicate potential early prehaustorial resistance contributions in a cultivar considered susceptible based on infection type. Moreover, the temporal differences in resistance suggest pre- and post-haustorial resistance mechanisms in the barley-wheat stem rust infection process, indicating potential host genotype contributions related to basal defense during the wheat stem rust infection process.
Collapse
Affiliation(s)
- J D Zurn
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - S Dugyala
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - P Borowicz
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - R Brueggeman
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - M Acevedo
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| |
Collapse
|
9
|
Bolon YT, Stec AO, Michno JM, Roessler J, Bhaskar PB, Ries L, Dobbels AA, Campbell BW, Young NP, Anderson JE, Grant DM, Orf JH, Naeve SL, Muehlbauer GJ, Vance CP, Stupar RM. Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 2014; 198:967-81. [PMID: 25213171 PMCID: PMC4224183 DOI: 10.1534/genetics.114.170340] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/02/2014] [Indexed: 01/14/2023] Open
Abstract
Fast neutron radiation has been used as a mutagen to develop extensive mutant collections. However, the genome-wide structural consequences of fast neutron radiation are not well understood. Here, we examine the genome-wide structural variants observed among 264 soybean [Glycine max (L.) Merrill] plants sampled from a large fast neutron-mutagenized population. While deletion rates were similar to previous reports, surprisingly high rates of segmental duplication were also found throughout the genome. Duplication coverage extended across entire chromosomes and often prevailed at chromosome ends. High-throughput resequencing analysis of selected mutants resolved specific chromosomal events, including the rearrangement junctions for a large deletion, a tandem duplication, and a translocation. Genetic mapping associated a large deletion on chromosome 10 with a quantitative change in seed composition for one mutant. A tandem duplication event, located on chromosome 17 in a second mutant, was found to cosegregate with a short petiole mutant phenotype, and thus may serve as an example of a morphological change attributable to a DNA copy number gain. Overall, this study provides insight into the resilience of the soybean genome, the patterns of structural variation resulting from fast neutron mutagenesis, and the utility of fast neutron-irradiated mutants as a source of novel genetic losses and gains.
Collapse
Affiliation(s)
- Yung-Tsi Bolon
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Adrian O Stec
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Jean-Michel Michno
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Jeffrey Roessler
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Pudota B Bhaskar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Landon Ries
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Austin A Dobbels
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Nathan P Young
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Justin E Anderson
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - David M Grant
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Ames, Iowa 50011
| | - James H Orf
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Seth L Naeve
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Carroll P Vance
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, St. Paul, Minnesota 55108
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
10
|
Domoney C, Knox M, Moreau C, Ambrose M, Palmer S, Smith P, Christodoulou V, Isaac PG, Hegarty M, Blackmore T, Swain M, Ellis N. Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1261-1270. [PMID: 32481193 DOI: 10.1071/fp13147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 07/18/2013] [Indexed: 06/11/2023]
Abstract
A fast neutron (FN)-mutagenised population was generated in Pisum sativum L. (pea) to enable the identification and isolation of genes underlying traits and processes. Studies of several phenotypic traits have clearly demonstrated the utility of the resource by associating gene deletions with phenotype followed by functional tests exploiting additional mutant sources, from both induced and natural variant germplasm. For forward genetic screens, next generation sequencing methodologies provide an opportunity for identifying genes associated with deletions rapidly and systematically. The application of rapid reverse genetic screens of the fast neutron mutant pea population supports conclusions on the frequency of deletions based on phenotype alone. These studies also suggest that large deletions affecting one or more loci can be non-deleterious to the pea genome, yielding mutants that could not be obtained by other means. Deletion mutants affecting genes associated with seed metabolism and storage are providing unique opportunities to identify the products of complex and related gene families, and to study the downstream consequences of such deletions.
Collapse
Affiliation(s)
- Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Maggie Knox
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Carol Moreau
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Mike Ambrose
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sarah Palmer
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Peter Smith
- Wherry and Sons Ltd, The Old School, High Street, Rippingale, Bourne, Lincolnshire PE10 0SR, UK
| | | | - Peter G Isaac
- IDna Genetics Ltd, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3EB, UK
| | - Tina Blackmore
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3EB, UK
| | - Martin Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3EB, UK
| | - Noel Ellis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion SY23 3EB, UK
| |
Collapse
|
11
|
Transcriptome comparative profiling of barley eibi1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int J Mol Sci 2013; 14:20478-91. [PMID: 24129180 PMCID: PMC3821626 DOI: 10.3390/ijms141020478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023] Open
Abstract
Wild barley eibi1 mutant with HvABCG31 gene mutation has low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. To better understand how such a mutant plant survives, we performed a genome-wide gene expression analysis. The leaf transcriptomes between the near-isogenic lines eibi1 and the wild type were compared using the 22-k Barley1 Affymetrix microarray. We found that the pleiotropic effect of the single gene HvABCG31 mutation was linked to the co-regulation of metabolic processes and stress-related system. The cuticle development involved cytochrome P450 family members and fatty acid metabolism pathways were significantly up-regulated by the HvABCG31 mutation, which might be anticipated to reduce the levels of cutin monomers or wax and display conspicuous cuticle defects. The candidate genes for responses to stress were induced by eibi1 mutant through activating the jasmonate pathway. The down-regulation of co-expressed enzyme genes responsible for DNA methylation and histone deacetylation also suggested that HvABCG31 mutation may affect the epigenetic regulation for barley development. Comparison of transcriptomic profiling of barley under biotic and abiotic stresses revealed that the functions of HvABCG31 gene to high-water loss rate might be different from other osmotic stresses of gene mutations in barley. The transcriptional profiling of the HvABCG31 mutation provided candidate genes for further investigation of the physiological and developmental changes caused by the mutant.
Collapse
|
12
|
Ballini E, Lauter N, Wise R. Prospects for advancing defense to cereal rusts through genetical genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:117. [PMID: 23641250 PMCID: PMC3640194 DOI: 10.3389/fpls.2013.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/15/2013] [Indexed: 05/03/2023]
Abstract
Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.
Collapse
Affiliation(s)
| | | | - Roger Wise
- Corn Insects and Crop Genetics Research, Department of Plant Pathology and Microbiology, US Department of Agriculture - Agricultural Research Service, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
13
|
Moscou MJ, Lauter N, Steffenson B, Wise RP. Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 2011; 7:e1002208. [PMID: 21829384 PMCID: PMC3145622 DOI: 10.1371/journal.pgen.1002208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 06/13/2011] [Indexed: 11/21/2022] Open
Abstract
Stem rust (Puccinia graminis f. sp. tritici; Pgt) is a devastating fungal disease of wheat and barley. Pgt race TTKSK (isolate Ug99) is a serious threat to these Triticeae grain crops because resistance is rare. In barley, the complex Rpg-TTKSK locus on chromosome 5H is presently the only known source of qualitative resistance to this aggressive Pgt race. Segregation for resistance observed on seedlings of the Q21861 × SM89010 (QSM) doubled-haploid (DH) population was found to be predominantly qualitative, with little of the remaining variance explained by loci other than Rpg-TTKSK. In contrast, analysis of adult QSM DH plants infected by field inoculum of Pgt race TTKSK in Njoro, Kenya, revealed several additional quantitative trait loci that contribute to resistance. To molecularly characterize these loci, Barley1 GeneChips were used to measure the expression of 22,792 genes in the QSM population after inoculation with Pgt race TTKSK or mock-inoculation. Comparison of expression Quantitative Trait Loci (eQTL) between treatments revealed an inoculation-dependent expression polymorphism implicating Actin depolymerizing factor3 (within the Rpg-TTKSK locus) as a candidate susceptibility gene. In parallel, we identified a chromosome 2H trans-eQTL hotspot that co-segregates with an enhancer of Rpg-TTKSK-mediated, adult plant resistance discovered through the Njoro field trials. Our genome-wide eQTL studies demonstrate that transcript accumulation of 25% of barley genes is altered following challenge by Pgt race TTKSK, but that few of these genes are regulated by the qualitative Rpg-TTKSK on chromosome 5H. It is instead the chromosome 2H trans-eQTL hotspot that orchestrates the largest inoculation-specific responses, where enhanced resistance is associated with transcriptional suppression of hundreds of genes scattered throughout the genome. Hence, the present study associates the early suppression of genes expressed in this host-pathogen interaction with enhancement of R-gene mediated resistance.
Collapse
Affiliation(s)
- Matthew J. Moscou
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Center for Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
| | - Nick Lauter
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, Agricultural Research Service, United States Department of Agriculture, Iowa State University, Ames, Iowa, United States of America
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Roger P. Wise
- Bioinformatics and Computational Biology Graduate Program, Iowa State University, Ames, Iowa, United States of America
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- Center for Responses to Environmental Stresses, Iowa State University, Ames, Iowa, United States of America
- Corn Insects and Crop Genetics Research, Agricultural Research Service, United States Department of Agriculture, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
14
|
Bolon YT, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, Gerhardt DJ, Jeddeloh JA, Stacey G, Muehlbauer GJ, Orf JH, Naeve SL, Stupar RM, Vance CP. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. PLANT PHYSIOLOGY 2011; 156:240-53. [PMID: 21321255 PMCID: PMC3091049 DOI: 10.1104/pp.110.170811] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 02/11/2011] [Indexed: 05/18/2023]
Abstract
Mutagenized populations have become indispensable resources for introducing variation and studying gene function in plant genomics research. In this study, fast neutron (FN) radiation was used to induce deletion mutations in the soybean (Glycine max) genome. Approximately 120,000 soybean seeds were exposed to FN radiation doses of up to 32 Gray units to develop over 23,000 independent M2 lines. Here, we demonstrate the utility of this population for phenotypic screening and associated genomic characterization of striking and agronomically important traits. Plant variation was cataloged for seed composition, maturity, morphology, pigmentation, and nodulation traits. Mutants that showed significant increases or decreases in seed protein and oil content across multiple generations and environments were identified. The application of comparative genomic hybridization (CGH) to lesion-induced mutants for deletion mapping was validated on a midoleate x-ray mutant, M23, with a known FAD2-1A (for fatty acid desaturase) gene deletion. Using CGH, a subset of mutants was characterized, revealing deletion regions and candidate genes associated with phenotypes of interest. Exome resequencing and sequencing of PCR products confirmed FN-induced deletions detected by CGH. Beyond characterization of soybean FN mutants, this study demonstrates the utility of CGH, exome sequence capture, and next-generation sequencing approaches for analyses of mutant plant genomes. We present this FN mutant soybean population as a valuable public resource for future genetic screens and functional genomics research.
Collapse
Affiliation(s)
- Yung-Tsi Bolon
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, St. Paul, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bischof M, Eichmann R, Hückelhoven R. Pathogenesis-associated transcriptional patterns in Triticeae. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:9-19. [PMID: 20674077 DOI: 10.1016/j.jplph.2010.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 05/08/2023]
Abstract
The Triticeae tribe of the plant Poaceae family contains some of the most important cereal crop plants for nutrition of humans and livestock such as wheat and barley. Despite the agronomical relevance of plant immunity, knowledge on mechanisms of disease or resistance in Triticeae is limited. It is hardly understood what actually stops a microbial invader when restricted by the plant and in how far a susceptible host plant contributes to pathogenesis. Transcriptional reprogramming of the host plant may be involved in both immunity and disease. This paper gives an overview about recent analyses of global pathogenesis-related transcriptional patterns in response of Triticeae to biotrophic or non-biotrophic fungal pathogens and their toxins. It highlights enriched biological functions in association with successful plant defence or disease as well as experiments that successfully translated gene expression data into analysis of gene functions.
Collapse
Affiliation(s)
- Melanie Bischof
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
16
|
Nirmala J, Drader T, Chen X, Steffenson B, Kleinhofs A. Stem rust spores elicit rapid RPG1 phosphorylation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1635-42. [PMID: 20653415 DOI: 10.1094/mpmi-06-10-0136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stem rust threatens cereal production worldwide. Understanding the mechanism by which durable resistance genes, such as Rpg1, function is critical. We show that the RPG1 protein is phosphorylated within 5 min by exposure to spores from avirulent but not virulent races of stem rust. Transgenic mutants encoding an RPG1 protein with an in vitro inactive kinase domain fail to phosphorylate RPG1 in vivo and are susceptible to stem rust, demonstrating that phosphorylation is a prerequisite for disease resistance. Protein kinase inhibitors prevent RPG1 phosphorylation and result in susceptibility to stem rust, providing further evidence for the importance of phosphorylation in disease resistance. We conclude that phosphorylation of the RPG1 protein by the kinase activity of the pK2 domain induced by the interaction with an unknown pathogen spore product is required for resistance to the avirulent stem rust races. The pseudokinase pK1 domain is required for disease resistance but not phosphorylation. The very rapid phosphorylation of RPG1 suggests that an effector is already present in or on the stem rust urediniospores when they are placed on the leaf surface. However, spores must be alive, as determined by their ability to germinate, in order to elicit RPG1 phosphorylation.
Collapse
|
17
|
Abstract
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for more efficient cloning of QTLs (quantitative trait loci). In barley (Hordeum vulgare), with the development of high-throughput genome analysis tools, efficient genome-wide identification of genetic loci harbouring mutant alleles has recently become possible. Genotypic data from NILs (near-isogenic lines) that carry induced or natural variants of genes that control aspects of plant development can be compared with the location of QTLs to potentially identify candidate genes for development-related traits such as grain yield. As yield itself can be divided into a number of allometric component traits such as tillers per plant, kernels per spike and kernel size, mutant alleles that both affect these traits and are located within the confidence intervals for major yield QTLs may represent extreme variants of the underlying genes. In addition, the development of detailed comparative genomic models based on the alignment of a high-density barley gene map with the rice and sorghum physical maps, has enabled an informed prioritization of ‘known function’ genes as candidates for both QTLs and induced mutant genes.
Collapse
|
18
|
Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I, Morris J, Ramsay L, Marshall D, Cardle L, Waugh R. An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS One 2010; 5:e8598. [PMID: 20066049 PMCID: PMC2798965 DOI: 10.1371/journal.pone.0008598] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 11/10/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Genetic resistance to barley leaf rust caused by Puccinia hordei involves both R genes and quantitative trait loci. The R genes provide higher but less durable resistance than the quantitative trait loci. Consequently, exploring quantitative or partial resistance has become a favorable alternative for controlling disease. Four quantitative trait loci for partial resistance to leaf rust have been identified in the doubled haploid Steptoe (St)/Morex (Mx) mapping population. Further investigations are required to study the molecular mechanisms underpinning partial resistance and ultimately identify the causal genes. METHODOLOGY/PRINCIPAL FINDINGS We explored partial resistance to barley leaf rust using a genetical genomics approach. We recorded RNA transcript abundance corresponding to each probe on a 15K Agilent custom barley microarray in seedlings from St and Mx and 144 doubled haploid lines of the St/Mx population. A total of 1154 and 1037 genes were, respectively, identified as being P. hordei-responsive among the St and Mx and differentially expressed between P. hordei-infected St and Mx. Normalized ratios from 72 distant-pair hybridisations were used to map the genetic determinants of variation in transcript abundance by expression quantitative trait locus (eQTL) mapping generating 15685 eQTL from 9557 genes. Correlation analysis identified 128 genes that were correlated with resistance, of which 89 had eQTL co-locating with the phenotypic quantitative trait loci (pQTL). Transcript abundance in the parents and conservation of synteny with rice allowed us to prioritise six genes as candidates for Rphq11, the pQTL of largest effect, and highlight one, a phospholipid hydroperoxide glutathione peroxidase (HvPHGPx) for detailed analysis. CONCLUSIONS/SIGNIFICANCE The eQTL approach yielded information that led to the identification of strong candidate genes underlying pQTL for resistance to leaf rust in barley and on the general pathogen response pathway. The dataset will facilitate a systems appraisal of this host-pathogen interaction and, potentially, for other traits measured in this population.
Collapse
Affiliation(s)
- Xinwei Chen
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
- * E-mail: (XC); (RW)
| | - Christine A. Hackett
- Biomathematics and Statistics Scotland (BioSS), Scottish Crop Research Institute, Dundee, United Kingdom
| | - Rients E. Niks
- Laboratory of Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Peter E. Hedley
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Clare Booth
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Arnis Druka
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Thierry C. Marcel
- Laboratory of Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anton Vels
- Laboratory of Plant Breeding, Graduate School for Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Micha Bayer
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Iain Milne
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Jenny Morris
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Luke Ramsay
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - David Marshall
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Linda Cardle
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Genetics Programme, Scottish Crop Research Institute, Dundee, United Kingdom
- * E-mail: (XC); (RW)
| |
Collapse
|
19
|
Fetch T, Johnston PA, Pickering R. Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (H. vulgare). PHYTOPATHOLOGY 2009; 99:339-43. [PMID: 19271974 DOI: 10.1094/phyto-99-4-0339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici, is an important disease on barley (Hordeum vulgare). Host resistance has effectively controlled stem rust, primarily through use of gene Rpg1. However, virulence to Rpg1 is present in North America, and a new race (TTKSK, or Ug99) from eastern Africa threatens barley production. A search for novel resistance was previously conducted, and an interspecific barley breeding line (212Y1) with introgressed chromatin from H. bulbosum was identified as carrying resistance to races MCCF and QCCJ. This study evaluated the inheritance of resistance in 212Y1 using populations from crosses to Morex (Rpg1 donor) and Q21861 (rpg4 donor) and the pathogen races MCCF (avirulent on Rpg1 and rpg4) and QCCJ (virulent on Rpg1 and avirulent on rpg4), and determined the chromosomal position of the introgression using genomic in situ hybridization (GISH) and chromosome-specific polymerase chain reaction (PCR)-based markers. Progeny from the 212Y1/Q21861 F(2) population segregated for resistant and susceptible plants, indicating different gene loci. Genetic analyses of Morex/212Y1 F(3) families fit a 7 homozygous resistant (HR):8 segregating:1 homozygous susceptible (HS) family segregation ratio to race MCCF, indicating that two genes controlled resistance. Plants in segregating families were in 3R:1S (Rpg1), 13R:3S (Rpg1+212Y1), and 1R:3S (212Y1) ratios. Genetic analyses of the same F(3) families fit a 1HR:2 segregating:1HS family segregation ratio to race QCCJ, indicating monogenic inheritance. Plants in segregating families were in a 1R: 3S ratio, indicating recessive inheritance in 212Y1. The introgression from H. bulbosum into H. vulgare was positioned on chromosome 6HS based on GISH and the PCR-based markers. No known stem rust resistance gene has previously been mapped to that region. Thus, it is proposed to name this novel gene from H. bulbosum as rpg6.
Collapse
Affiliation(s)
- T Fetch
- Agricultered Agri- Food Canada, Cereal Research Centre, Winnipeg, MB, R3T 2M9, Canada.
| | | | | |
Collapse
|
20
|
Zhang L, Lavery L, Gill U, Gill K, Steffenson B, Yan G, Chen X, Kleinhofs A. A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:385-97. [PMID: 18956175 DOI: 10.1007/s00122-008-0910-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 10/02/2008] [Indexed: 05/08/2023]
Abstract
We characterized three lesion mimic necS1 (necrotic Steptoe) mutants, induced by fast neutron (FN) treatment of barley cultivar Steptoe. The three mutants are recessive and allelic. When infected with Puccinia graminis f. sp. tritici pathotypes MCC and QCC and P. graminis f. sp. secalis isolate 92-MN-90, all three mutants exhibited enhanced resistance compared to parent cultivar Steptoe. These results suggested that the lesion mimic mutants carry broad-spectrum resistance to stem rust. In order to identify the mutated gene responsible for the phenotype, transcript-based cloning was used. Two genes, represented by three Barley1 probesets (Contig4211_at and Contig4212_s_at, representing the same gene, and Contig10850_s_at), were deleted in all three mutants. Genetic analysis suggested that the lesion mimic phenotype was due to a mutation in one or both of these genes, named NecS1. Consistent with the increased disease resistance, all three mutants constitutively accumulated elevated transcript levels of pathogenesis-related (PR) genes. Barley stripe mosaic virus (BSMV) has been developed as a virus-induced gene-silencing (VIGS) vector for monocots. We utilized BSMV-VIGS to demonstrate that silencing of the gene represented by Contig4211_at, but not Contig10850_s_at caused the necrotic lesion mimic phenotype on barley seedling leaves. Therefore, Contig4211_at is a strong candidate for the NecS1 gene, which encodes a cation/proton exchanging protein (HvCAX1).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, Marshall DF, Steffenson BJ, Close TJ, Wise RP, Kleinhofs A, Williams RW, Kearsey MJ, Waugh R. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:261-72. [PMID: 18542913 DOI: 10.1007/s00122-008-0771-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 04/08/2008] [Indexed: 05/13/2023]
Abstract
We previously mapped mRNA transcript abundance traits (expression-QTL or eQTL) using the Barley1 Affymetrix array and 'whole plant' tissue from 139 progeny of the Steptoe x Morex (St/Mx) reference barley mapping population. Of the 22,840 probesets (genes) on the array, 15,987 reported transcript abundance signals that were suitable for eQTL analysis, and this revealed a genome-wide distribution of 23,738 significant eQTLs. Here we have explored the potential of using these mRNA abundance eQTL traits as surrogates for the identification of candidate genes underlying the interaction between barley and the wheat stem rust fungus Puccinia graminis f. sp. tritici. We re-analysed quantitative 'resistance phenotype' data collected on this population in 1990/1991 and identified six loci associated with barley's reaction to stem rust. One of these coincided with the major stem rust resistance locus Rpg1, that we had previously positionally cloned using this population. Correlation analysis between phenotype values for rust infection and mRNA abundance values reported by the 22,840 GeneChip probe sets placed Rpg1, which is on the Barley1 GeneChip, in the top five candidate genes for the major QTL on chromosome 7H corresponding to the location of Rpg1. A second co-located with the rpg4/Rpg5 stem rust resistance locus that has been mapped in a different population and the remaining four were novel. Correlation analyses identified candidate genes for the rpg4/Rpg5 locus on chromosome 5H. By combining our data with additional published mRNA profiling data sets, we identify a putative sensory transduction histidine kinase as a strong candidate for a novel resistance locus on chromosome 2H and compile candidate gene lists for the other three loci.
Collapse
Affiliation(s)
- Arnis Druka
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Parallel expression profiling of barley-stem rust interactions. Funct Integr Genomics 2008; 8:187-98. [PMID: 18196301 DOI: 10.1007/s10142-007-0069-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
The dominant barley stem rust resistance gene Rpg1 confers resistance to many but not all pathotypes of the stem rust fungus Puccinia graminis f. sp. tritici (Pgt). Transformation of Rpg1 into susceptible cultivar Golden Promise rendered the transgenic plants resistant to Pgt pathotype MCC but not to Pgt pathotype QCC. Our objective was to identify genes that are induced/repressed during the early stages of pathogen infection to elucidate the molecular mechanisms and role of Rpg1 in defense. A messenger ribonucleic acid expression analysis using the 22K Barley1 GeneChip was conducted in all pair-wise combinations of two isolines (cv. Golden Promise and Rpg1 transgenic line G02-448F-3R) and two Pgt pathotypes (MCC and QCC) across six time points. Analysis showed that a total of 34 probe sets exhibited expression pattern differences between Golden Promise (susceptible) and G02-448F-3R (resistant) infected with Pgt-MCC. A total of 14 probe sets exhibited expression pattern differences between Pgt-MCC (avirulent) and Pgt-QCC (virulent) inoculated onto G02-448F-3R. These differentially expressed genes were activated during the early infection process, before the hypersensitive response or fungal growth inhibition occurred. Our analysis provides a list of candidate signaling components, which can be analyzed for function in Rpg1-mediated disease resistance.
Collapse
|
23
|
Bhadauria V, Popescu L, Zhao WS, Peng YL. Fungal transcriptomics. Microbiol Res 2007; 162:285-98. [PMID: 17707620 DOI: 10.1016/j.micres.2007.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
We have now entered in the post-genomic era, where we have knowledge of plethora of fungal genomes and cutting edge technology is available to study global mRNA, protein and metabolite profiles. These so-called 'omic' technologies (transcriptomics, proteomics and metabolomics) provide the possibility to characterize plant-pathogen interactions and pathogenesis at molecular level. This article provides an overview of transcriptomics and its applications in fungal plant pathology.
Collapse
Affiliation(s)
- Vijai Bhadauria
- The MOA Key Laboratory of Molecular Plant Pathology, Department of Plant Pathology, China Agricultural University, Beijing 100094, China
| | | | | | | |
Collapse
|
24
|
Nirmala J, Dahl S, Steffenson BJ, Kannangara CG, von Wettstein D, Chen X, Kleinhofs A. Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance. Proc Natl Acad Sci U S A 2007; 104:10276-81. [PMID: 17548826 PMCID: PMC1891204 DOI: 10.1073/pnas.0703758104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In plants, disease resistance mediated by the gene-for-gene mechanism involves the recognition of specific effector molecules produced by the pathogen either directly or indirectly by the resistance-gene products. This recognition triggers a series of signals, thereby serving as a molecular switch in regulating defense mechanisms by the plants. To understand the mechanism of action of the barley stem rust resistance gene Rpg1, we investigated the fate of the RPG1 protein in response to infection with the stem rust fungus, Puccinia graminis f. sp. tritici. The investigations revealed that RPG1 disappears to undetectable limits only in the infected tissues in response to avirulent, but not virulent pathotypes. The RPG1 protein disappearance is rapid and appears to be due to specific protein degradation via the proteasome-mediated pathway as indicated by inhibition with the proteasomal inhibitor MG132, but not by other protease inhibitors.
Collapse
Affiliation(s)
| | - Stephanie Dahl
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | | | | | - Diter von Wettstein
- Departments of *Crop and Soil Sciences and
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164; and
- To whom correspondence should be addressed. E-mail:
| | - Xianming Chen
- Plant Pathology, U.S. Department of Agriculture–Agricultural Research Service and
| | - Andris Kleinhofs
- Departments of *Crop and Soil Sciences and
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164; and
| |
Collapse
|
25
|
Wise RP, Moscou MJ, Bogdanove AJ, Whitham SA. Transcript profiling in host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:329-69. [PMID: 17480183 DOI: 10.1146/annurev.phyto.45.011107.143944] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Using genomic technologies, it is now possible to address research hypotheses in the context of entire developmental or biochemical pathways, gene networks, and chromosomal location of relevant genes and their inferred evolutionary history. Through a range of platforms, researchers can survey an entire transcriptome under a variety of experimental and field conditions. Interpretation of such data has led to new insights and revealed previously undescribed phenomena. In the area of plant-pathogen interactions, transcript profiling has provided unparalleled perception into the mechanisms underlying gene-for-gene resistance and basal defense, host vs nonhost resistance, biotrophy vs necrotrophy, and pathogenicity of vascular vs nonvascular pathogens, among many others. In this way, genomic technologies have facilitated a system-wide approach to unifying themes and unique features in the interactions of hosts and pathogens.
Collapse
Affiliation(s)
- Roger P Wise
- Corn Insects and Crop Genetics Research, USDA-ARS, Iowa State University, Ames, Iowa 50011-1020, USA.
| | | | | | | |
Collapse
|