1
|
Du W, Lu Y, Li Q, Luo S, Shen S, Li N, Chen X. TIR1/AFB proteins: Active players in abiotic and biotic stress signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:1083409. [PMID: 36523629 PMCID: PMC9745157 DOI: 10.3389/fpls.2022.1083409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
The TIR1/AFB family of proteins is a group of functionally diverse auxin receptors that are only found in plants. TIR1/AFB family members are characterized by a conserved N-terminal F-box domain followed by 18 leucine-rich repeats. In the past few decades, extensive research has been conducted on the role of these proteins in regulating plant development, metabolism, and responses to abiotic and biotic stress. In this review, we focus on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic and biotic stress. We highlight studies that have shed light on the mechanisms by which TIR1/AFB proteins are regulated at the transcriptional and post-transcriptional as well as the downstream in abiotic or biotic stress pathways regulated by the TIR1/AFB family.
Collapse
Affiliation(s)
- Wenchao Du
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yang Lu
- Hebei University Characteristic sericulture Application Technology Research and Development Center, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Qiang Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuangxia Luo
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- Key Laboratory for Vegetable Germplasm Enhancement and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
2
|
Cantila AY, Thomas WJW, Bayer PE, Edwards D, Batley J. Predicting Cloned Disease Resistance Gene Homologs (CDRHs) in Radish, Underutilised Oilseeds, and Wild Brassicaceae Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:3010. [PMID: 36432742 PMCID: PMC9693284 DOI: 10.3390/plants11223010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Brassicaceae crops, including Brassica, Camelina and Raphanus species, are among the most economically important crops globally; however, their production is affected by several diseases. To predict cloned disease resistance (R) gene homologs (CDRHs), we used the protein sequences of 49 cloned R genes against fungal and bacterial diseases in Brassicaceae species. In this study, using 20 Brassicaceae genomes (17 wild and 3 domesticated species), 3172 resistance gene analogs (RGAs) (2062 nucleotide binding-site leucine-rich repeats (NLRs), 497 receptor-like protein kinases (RLKs) and 613 receptor-like proteins (RLPs)) were identified. CDRH clusters were also observed in Arabis alpina, Camelina sativa and Cardamine hirsuta with assigned chromosomes, consisting of 62 homogeneous (38 NLR, 17 RLK and 7 RLP clusters) and 10 heterogeneous RGA clusters. This study highlights the prevalence of CDRHs in the wild relatives of the Brassicaceae family, which may lay the foundation for rapid identification of functional genes and genomics-assisted breeding to develop improved disease-resistant Brassicaceae crop cultivars.
Collapse
|
3
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
4
|
Hajihassani A, Marquez J, Woldemeskel M, Hamidi N. Identification of Four Populations of Meloidogyne incognita in Georgia, United States, Capable of Parasitizing Tomato-Bearing Mi-1.2 Gene. PLANT DISEASE 2022; 106:137-143. [PMID: 34410860 DOI: 10.1094/pdis-05-21-0902-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Meloidogyne incognita, the southern root-knot nematode (RKN), is the most predominant plant-parasitic nematode species of tomato and causes significant yield loss. The Mi-1.2 gene confers resistance in tomatoes to M. incognita; however, virulent RKN populations capable of parasitizing resistant tomato cultivars have been reported from different regions in the world. Four naturally occurring virulent populations of M. incognita were found in vegetable fields from four counties in Georgia with no history of tomato cultivation of the Mi gene. Two consecutive greenhouse trials showed that all four virulent RKN populations reproduced on tomato cultivars, including Amelia, Skyway, and Myrtle, with the Mi-1 gene, while an avirulent population of M. incognita race 3 was unable to overcome host resistance. Virulent RKN populations varied in reproduction among resistant cultivars, with Ma6 population having the greatest reproduction potential. No difference in penetration potential of the virulent (Ma6) and avirulent populations was found on susceptible and resistant tomato cultivars. However, virulent Ma6 population females were successful at egg-laying, whereas avirulent female development was arrested in the resistant cultivars. The virulent Ma6 population also induced feeding sites in the roots of resistant cultivars, whereas the avirulent population did not. To our knowledge, this is the first report of resistance-breaking populations of M. incognita in Georgia and the second state in the United States after California.
Collapse
Affiliation(s)
| | - Josiah Marquez
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | | - Negin Hamidi
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| |
Collapse
|
5
|
Sahoo DK, Das A, Huang X, Cianzio S, Bhattacharyya MK. Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean. Sci Rep 2021; 11:16907. [PMID: 34413429 PMCID: PMC8377050 DOI: 10.1038/s41598-021-96425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Phytophtora root and stem rot is a serious disease in soybean. It is caused by the oomycete pathogen Phytophthora sojae. Growing Phytophthora resistant cultivars is the major method of controlling this disease. Resistance is race- or gene-specific; a single gene confers immunity against only a subset of the P. sojae isolates. Unfortunately, rapid evolution of new Phytophthora sojae virulent pathotypes limits the effectiveness of an Rps ("resistance to Phytophthora sojae") gene to 8-15 years. The current study was designed to investigate the effectiveness of Rps12 against a set of P. sojae isolates using recombinant inbred lines (RILs) that contain recombination break points in the Rps12 region. Our study revealed a unique Rps gene linked to the Rps12 locus. We named this novel gene as Rps13 that confers resistance against P. sojae isolate V13, which is virulent to recombinants that contains Rps12 but lack Rps13. The genetic distance between the two Rps genes is 4 cM. Our study revealed that two tightly linked functional Rps genes with distinct race-specificity provide broad-spectrum resistance in soybean. We report here the molecular markers for incorporating the broad-spectrum Phytophthora resistance conferred by the two Rps genes in commercial soybean cultivars.
Collapse
Affiliation(s)
- Dipak K Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Anindya Das
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Silvia Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
6
|
Chovelon V, Feriche-Linares R, Barreau G, Chadoeuf J, Callot C, Gautier V, Le Paslier MC, Berad A, Faivre-Rampant P, Lagnel J, Boissot N. Building a cluster of NLR genes conferring resistance to pests and pathogens: the story of the Vat gene cluster in cucurbits. HORTICULTURE RESEARCH 2021; 8:72. [PMID: 33790238 PMCID: PMC8012345 DOI: 10.1038/s41438-021-00507-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 02/06/2021] [Indexed: 05/03/2023]
Abstract
Most molecularly characterized plant resistance genes (R genes) belong to the nucleotide-binding-site-leucine-rich-repeat (NLR) receptor family and are prone to duplication and transposition with high sequence diversity. In this family, the Vat gene in melon is one of the few R genes known for conferring resistance to insect, i.e., Aphis gossypii, but it has been misassembled and/or mispredicted in the whole genomes of Cucurbits. We examined 14 genomic regions (about 400 kb) derived from long-read assemblies spanning Vat-related genes in Cucumis melo, Cucumis sativus, Citrullus lanatus, Benincasa hispida, Cucurbita argyrosperma, and Momordica charantia. We built the phylogeny of those genes. Investigating the paleohistory of the Vat gene cluster, we revealed a step by step process beginning from a common ancestry in cucurbits older than 50 my. We highlighted Vat exclusively in the Cucumis genera, which diverged about 20 my ago. We then focused on melon, evaluating a minimum duplication rate of Vat in 80 wild and cultivated melon lines using generalist primers; our results suggested that duplication started before melon domestication. The phylogeny of 44 Vat-CDS obtained from 21 melon lines revealed gain and loss of leucine-rich-repeat domains along diversification. Altogether, we revealed the high putative recognition scale offered in melon based on a combination of SNPs, number of leucine-rich-repeat domains within each homolog and number of homologs within each cluster that might jointly confer resistance to a large pest and pathogen spectrum. Based on our findings, we propose possible avenues for breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aurélie Berad
- Université Paris-Saclay, INRAE, EPGV, 91000, Evry-Courcouronnes, France
| | | | | | | |
Collapse
|
7
|
Barilli E, Carrillo-Perdomo E, Cobos MJ, Kilian A, Carling J, Rubiales D. Identification of potential candidate genes controlling pea aphid tolerance in a Pisum fulvum high-density integrated DArTseq SNP-based genetic map. PEST MANAGEMENT SCIENCE 2020; 76:1731-1742. [PMID: 31758624 DOI: 10.1002/ps.5696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pea (Pisum sativum) is one of the most important temperate grain legumes in the world, and its production is severely constrained by the pea aphid (Acyrthosiphon pisum). Wild relatives, such as P. fulvum, are valuable sources of allelic diversity to improve the genetic resistance of cultivated pea species against A. pisum attack. To unravel the genetic control underlying resistance to the pea aphid attack, a quantitative trait loci (QTL) analysis was performed using the previously developed high density integrated genetic linkage map originated from an intraspecific recombinant inbred line (RIL) population (P. fulvum: IFPI3260 × IFPI3251). RESULTS We accurately evaluated specific resistance responses to pea aphid that allowed the identification, for the first time, of genomic regions that control plant damage and aphid reproduction. Eight QTLs associated with tolerance to pea aphid were identified in LGs I, II, III, IV and V, which individually explained from 17.0% to 51.2% of the phenotypic variation depending on the trait scored, and as a whole from 17.0% to 88.6%. The high density integrated genetic linkage map also allowed the identification of potential candidate genes co-located with the QTLs identified. CONCLUSIONS Our work shows how the survival of P. fulvum after the pea aphid attack depends on the triggering of a multi-component protection strategy that implies a quantitative tolerance. The genomic regions associated with the tolerance responses of P. fulvum during A. pisum infestation have provided six potential candidate genes that could be useful in marker-assisted selection (MAS) and genomic assisted breeding (GAB) after functional validation in the future. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Estefanía Carrillo-Perdomo
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
- Current address: Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, Australia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|
8
|
Kaloshian I, Teixeira M. Advances in Plant-Nematode Interactions with Emphasis on the Notorious Nematode Genus Meloidogyne. PHYTOPATHOLOGY 2019; 109:1988-1996. [PMID: 31613704 DOI: 10.1094/phyto-05-19-0163-ia] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant infections by plant-parasitic nematodes (PPNs) continue to be one of the major limitations in agricultural systems. Root-knot nematodes (RKNs), belonging to the genus Meloidogyne, are one of the most important groups of PPNs worldwide. Their wide host range combined with ubiquitous presence, continues to provide challenges for their control and breeding for resistance. Although resistance to RKNs has been identified, incorporation of these resistances into crops and durability of the resistance remains challenging. In addition, progress in cloning of RKN resistance genes has been dismal. Recent identification of pattern-triggered immunity in roots against nematodes, an ascaroside as a nematode-associated molecular pattern (NAMP) and the discovery of a NAMP plant receptor, provide tools and opportunities to develop durable host resistance against nematodes including RKNs.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA 92521
| |
Collapse
|
9
|
Afifah EN, Murti RH, Nuringtyas TR. Metabolomics Approach for the Analysis of Resistance of Four Tomato Genotypes ( Solanum Lycopersicum L.) to Root-Knot Nematodes ( Meloidogyne Incognita). Open Life Sci 2019; 14:141-149. [PMID: 33817146 PMCID: PMC7874786 DOI: 10.1515/biol-2019-0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/31/2018] [Indexed: 12/04/2022] Open
Abstract
Metabolomics allows the identification of biochemical markers that have important roles in plant resistance to pests and diseases by which breeders can select plants based on differences in these compounds. This study examines the range of compounds associated with plant defense against nematodes. Resistant tomato genotypes, GM2 and F1 (GM2 × Hawai 7996), and susceptible genotypes, Gondol Putih and Gondol Hijau, were used in this study. Peroxidase activity was measured colorimetrically using a spectrophotometer. 1H-NMR (nuclear magnetic resonance) spectroscopy combined with orthogonal projections to latent structures discriminant analysis was used to analyze the metabolites involved in the tomato-nematode interactions. Identified signals were semi-quantitatively calculated by scaling the intensity of the 1H-NMR to the signals of an internal standard (trimethyl silyl-3-propionic acid) at 0.00 ppm. Resistant plants showed a higher peroxidase activity than susceptible plants. Chemical compounds that differentiated between susceptible and resistant plants were glucose and caffeic acid. Resistant tomatoes were observed to have seven times higher level of glucose than susceptible plants. Glucose is the primary metabolite that acts in the signaling pathways in plant defense mechanisms. Caffeic acid is one of the phenolic compounds alleged to have a negative effect on the nematode.
Collapse
Affiliation(s)
| | - Rudi Hari Murti
- Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta Indonesia
| | | |
Collapse
|
10
|
Segura DM, Masuelli RW, Sanchez-Puerta MV. Dissimilar evolutionary histories of two resistance gene families in the genus Solanum. Genome 2016; 60:17-25. [PMID: 27936922 DOI: 10.1139/gen-2016-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genomic analyses have shown that most genes in eukaryotic lineages belong to families. Gene families vary in terms of number of members, nucleotide similarity, gene integrity, expression, and function. Often, the members of gene families are arranged in clusters, which contribute to maintaining similarity among gene copies and also to generate duplicates through replication errors. Gene families offer us an opportunity to examine the forces involved in the evolution of the genomes and to study recombination events and genomic rearrangements. In this work, we focused on the evolution of two plant resistance gene families, Sw5 and Mi-1, and analyzed the completely sequenced nuclear genomes of potato and tomato. We first noticed that the potato genome carries larger resistance gene families than tomato, but all gene copies are pseudogenes. Second, phylogenetic analyses indicated that Sw5 and Mi-1 gene families had dissimilar evolutionary histories. In contrast to Sw5, Mi-1 homologues suffered repeated gene conversion events among the gene copies, particularly in the tomato genome.
Collapse
Affiliation(s)
- Diana María Segura
- a IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| | - Ricardo Williams Masuelli
- a IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| | - M Virginia Sanchez-Puerta
- a IBAM, Facultad de Ciencias Agrarias, CONICET, Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina.,b Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina
| |
Collapse
|
11
|
Wolters AMA, Caro M, Dong S, Finkers R, Gao J, Visser RGF, Wang X, Du Y, Bai Y. Detection of an inversion in the Ty-2 region between S. lycopersicum and S. habrochaites by a combination of de novo genome assembly and BAC cloning. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1987-97. [PMID: 26152571 PMCID: PMC4572051 DOI: 10.1007/s00122-015-2561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/13/2015] [Indexed: 05/07/2023]
Abstract
A chromosomal inversion associated with the tomato Ty - 2 gene for TYLCV resistance is the cause of severe suppression of recombination in a tomato Ty - 2 introgression line. Among tomato and its wild relatives inversions are often observed, which result in suppression of recombination. Such inversions hamper the transfer of important traits from a related species to the crop by introgression breeding. Suppression of recombination was reported for the TYLCV resistance gene, Ty-2, which has been introgressed in cultivated tomato (Solanum lycopersicum) from the wild relative S. habrochaites accession B6013. Ty-2 was mapped to a 300-kb region on the long arm of chromosome 11. The suppression of recombination in the Ty-2 region could be caused by chromosomal rearrangements in S. habrochaites compared with S. lycopersicum. With the aim of visualizing the genome structure of the Ty-2 region, we compared the draft de novo assembly of S. habrochaites accession LYC4 with the sequence of cultivated tomato ('Heinz'). Furthermore, using populations derived from intraspecific crosses of S. habrochaites accessions, the order of markers in the Ty-2 region was studied. Results showed the presence of an inversion of approximately 200 kb in the Ty-2 region when comparing S. lycopersicum and S. habrochaites. By sequencing a BAC clone from the Ty-2 introgression line, one inversion breakpoint was identified. Finally, the obtained results are discussed with respect to introgression breeding and the importance of a priori de novo sequencing of the species involved.
Collapse
Affiliation(s)
- Anne-Marie A Wolters
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Myluska Caro
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Shufang Dong
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, Beijing, 100081, People's Republic of China
| | - Richard Finkers
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Jianchang Gao
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, Beijing, 100081, People's Republic of China
| | - Richard G F Visser
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Xiaoxuan Wang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, Beijing, 100081, People's Republic of China
| | - Yongchen Du
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancunnandajie 12, Beijing, 100081, People's Republic of China
| | - Yuling Bai
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Schnell J, Steele M, Bean J, Neuspiel M, Girard C, Dormann N, Pearson C, Savoie A, Bourbonnière L, Macdonald P. A comparative analysis of insertional effects in genetically engineered plants: considerations for pre-market assessments. Transgenic Res 2014; 24:1-17. [PMID: 25344849 PMCID: PMC4274372 DOI: 10.1007/s11248-014-9843-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
During genetic engineering, DNA is inserted into a plant’s genome, and such insertions are often accompanied by the insertion of additional DNA, deletions and/or rearrangements. These genetic changes are collectively known as insertional effects, and they have the potential to give rise to unintended traits in plants. In addition, there are many other genetic changes that occur in plants both spontaneously and as a result of conventional breeding practices. Genetic changes similar to insertional effects occur in plants, namely as a result of the movement of transposable elements, the repair of double-strand breaks by non-homologous end-joining, and the intracellular transfer of organelle DNA. Based on this similarity, insertional effects should present a similar level of risk as these other genetic changes in plants, and it is within the context of these genetic changes that insertional effects must be considered. Increased familiarity with genetic engineering techniques and advances in molecular analysis techniques have provided us with a greater understanding of the nature and impact of genetic changes in plants, and this can be used to refine pre-market assessments of genetically engineered plants and food and feeds derived from genetically engineered plants.
Collapse
Affiliation(s)
- Jaimie Schnell
- Plant and Biotechnology Risk Assessment Unit, Canadian Food Inspection Agency, 1400 Merivale Road, Ottawa, ON, K1A 0Y9, Canada,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Iberkleid I, Ozalvo R, Feldman L, Elbaz M, Patricia B, Horowitz SB. Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. PHYTOPATHOLOGY 2014; 104:484-496. [PMID: 24724816 DOI: 10.1094/phyto-07-13-0181-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The behavior of naturally virulent Meloidogyne isolates toward the tomato resistance gene Mi in major tomato-growing areas in Israel was studied for the first time. Virulence of seven selected isolates was confirmed over three successive generations on resistant (Mi-carrying) and susceptible (non-Mi-carrying) tomato cultivars. Diagnostic markers verified the predominance of Meloidogyne javanica among virulent isolates selected on resistant tomato cultivars or rootstocks. To better understand the determinants of nematode selection on Mi-carrying plants, reproduction of Mi-avirulent and virulent isolates Mjav1 and Mjv2, respectively, measured as eggs per gram of root, on non-Mi-carrying, heterozygous (Mi/mi) and homozygous (Mi/Mi) genotypes was evaluated. Although no reproduction of Mjav1 was observed on Mi/Mi genotypes, some reproduction was consistently observed on Mi/mi plants; reproduction of Mjv2 on the homozygous and heterozygous genotypes was similar to that on susceptible cultivars, suggesting a limited quantitative effect of the Mi gene. Histological examination of giant cells induced by Mi-virulent versus avirulent isolates confirmed the high virulence of Mjv2 on Mi/mi and Mi/Mi genotypes, allowing the formation of well-developed giant-cell systems despite the Mi gene. Analysis of the plant defense response in tomato Mi/Mi, Mi/mi, and mi/mi genotypes to both avirulent and virulent isolates was investigated by quantitative real-time polymerase chain reaction. Although the jasmonate (JA)-signaling pathway was clearly upregulated by avirulent and virulent isolates on the susceptible (not carrying Mi) and heterozygous (Mi/mi) plants, no change in signaling was observed in the homozygous (Mi/Mi) resistant line following incompatible interaction with the avirulent isolate. Thus, similar to infection promoted by the avirulent isolate on the susceptible genotype, the Mi-virulent isolate induced the JA-dependent pathway, which might promote tomato susceptibility during the compatible interaction with the homozygous (Mi/Mi) resistant line. These results have important consequences for the management of Mi resistance genes for ensuring sustainable tomato farming.
Collapse
|
14
|
Terefe-Ayana D, Kaufmann H, Linde M, Debener T. Evolution of the Rdr1 TNL-cluster in roses and other Rosaceous species. BMC Genomics 2012; 13:409. [PMID: 22905676 PMCID: PMC3503547 DOI: 10.1186/1471-2164-13-409] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/06/2012] [Indexed: 12/03/2022] Open
Abstract
Background The resistance of plants to pathogens relies on two lines of defense: a basal defense response and a pathogen-specific system, in which resistance (R) genes induce defense reactions after detection of pathogen-associated molecular patterns (PAMPS). In the specific system, a so-called arms race has developed in which the emergence of new races of a pathogen leads to the diversification of plant resistance genes to counteract the pathogens’ effect. The mechanism of resistance gene diversification has been elucidated well for short-lived annual species, but data are mostly lacking for long-lived perennial and clonally propagated plants, such as roses. We analyzed the rose black spot resistance gene, Rdr1, in five members of the Rosaceae: Rosa multiflora, Rosa rugosa, Fragaria vesca (strawberry), Malus x domestica (apple) and Prunus persica (peach), and we present the deduced possible mechanism of R-gene diversification. Results We sequenced a 340.4-kb region from R. rugosa orthologous to the Rdr1 locus in R. multiflora. Apart from some deletions and rearrangements, the two loci display a high degree of synteny. Additionally, less pronounced synteny is found with an orthologous locus in strawberry but is absent in peach and apple, where genes from the Rdr1 locus are distributed on two different chromosomes. An analysis of 20 TIR-NBS-LRR (TNL) genes obtained from R. rugosa and R. multiflora revealed illegitimate recombination, gene conversion, unequal crossing over, indels, point mutations and transposable elements as mechanisms of diversification. A phylogenetic analysis of 53 complete TNL genes from the five Rosaceae species revealed that with the exception of some genes from apple and peach, most of the genes occur in species-specific clusters, indicating that recent TNL gene diversification began prior to the split of Rosa from Fragaria in the Rosoideae and peach from apple in the Spiraeoideae and continued after the split in individual species. Sequence similarity of up to 99% is obtained between two R. multiflora TNL paralogs, indicating a very recent duplication. Conclusions The mechanisms by which TNL genes from perennial Rosaceae diversify are mainly similar to those from annual plant species. However, most TNL genes appear to be of recent origin, likely due to recent duplications, supporting the hypothesis that TNL genes in woody perennials are generally younger than those from annuals. This recent origin might facilitate the development of new resistance specificities, compensating for longer generation times in woody perennials.
Collapse
Affiliation(s)
- Diro Terefe-Ayana
- Institute for Plant Genetics, Leibniz University Hannover, Herrenhaeuser Str, 2, Hannover, 30419, Germany
| | | | | | | |
Collapse
|
15
|
Ribas AF, Cenci A, Combes MC, Etienne H, Lashermes P. Organization and molecular evolution of a disease-resistance gene cluster in coffee trees. BMC Genomics 2011; 12:240. [PMID: 21575174 PMCID: PMC3113787 DOI: 10.1186/1471-2164-12-240] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/16/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most disease-resistance (R) genes in plants encode NBS-LRR proteins and belong to one of the largest and most variable gene families among plant genomes. However, the specific evolutionary routes of NBS-LRR encoding genes remain elusive. Recently in coffee tree (Coffea arabica), a region spanning the SH3 locus that confers resistance to coffee leaf rust, one of the most serious coffee diseases, was identified and characterized. Using comparative sequence analysis, the purpose of the present study was to gain insight into the genomic organization and evolution of the SH3 locus. RESULTS Sequence analysis of the SH3 region in three coffee genomes, Ea and Ca subgenomes from the allotetraploid C. arabica and Cc genome from the diploid C. canephora, revealed the presence of 5, 3 and 4 R genes in Ea, Ca, and Cc genomes, respectively. All these R-gene sequences appeared to be members of a CC-NBS-LRR (CNL) gene family that was only found at the SH3 locus in C. arabica. Furthermore, while homologs were found in several dicot species, comparative genomic analysis failed to find any CNL R-gene in the orthologous regions of other eudicot species. The orthology relationship among the SH3-CNL copies in the three analyzed genomes was determined and the duplication/deletion events that shaped the SH3 locus were traced back. Gene conversion events were detected between paralogs in all three genomes and also between the two sub-genomes of C. arabica. Significant positive selection was detected in the solvent-exposed residues of the SH3-CNL copies. CONCLUSION The ancestral SH3-CNL copy was inserted in the SH3 locus after the divergence between Solanales and Rubiales lineages. Moreover, the origin of most of the SH3-CNL copies predates the divergence between Coffea species. The SH3-CNL family appeared to evolve following the birth-and-death model, since duplications and deletions were inferred in the evolution of the SH3 locus. Gene conversion between paralog members, inter-subgenome sequence exchanges and positive selection appear to be the major forces acting on the evolution of SH3-CNL in coffee trees.
Collapse
Affiliation(s)
- Alessandra F Ribas
- IRD - Institut de Recherche pour le Développement, UMR RPB, Montpellier Cedex, France
| | | | | | | | | |
Collapse
|
16
|
Seifi A, Kaloshian I, Vossen J, Che D, Bhattarai KK, Fan J, Naher Z, Goverse A, Tjallingii WF, Lindhout P, Visser RGF, Bai Y. Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:441-50. [PMID: 21171892 DOI: 10.1094/mpmi-06-10-0145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes have evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot nematodes, aphids, and whiteflies. Previously, we mapped two genes, Ol-4 and Ol-6, for resistance to tomato powdery mildew in this cluster. The aim of this study was to investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. We show that near-isogenic lines (NIL) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. Genetically, the resistance to nematodes cosegregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from other nematode-resistant tomato lines, Motelle and VFNT, harboring the Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and tomato powdery mildew in these two NIL is governed by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster. Finally, we discuss how Solanum crops exploit Mi-1 homologues to defend themselves against distinct pathogens.
Collapse
Affiliation(s)
- Alireza Seifi
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Finkers-Tomczak A, Bakker E, de Boer J, van der Vossen E, Achenbach U, Golas T, Suryaningrat S, Smant G, Bakker J, Goverse A. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:595-608. [PMID: 21049265 PMCID: PMC3026667 DOI: 10.1007/s00122-010-1472-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/30/2010] [Indexed: 05/04/2023]
Abstract
The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146-152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene.
Collapse
|
18
|
Evolution of nematode-resistant Mi-1 gene homologs in three species of Solanum. Mol Genet Genomics 2011; 285:207-18. [DOI: 10.1007/s00438-010-0596-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
|
19
|
Wieckhorst S, Bachlava E, Dußle CM, Tang S, Gao W, Saski C, Knapp SJ, Schön CC, Hahn V, Bauer E. Fine mapping of the sunflower resistance locus Pl(ARG) introduced from the wild species Helianthus argophyllus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:1633-44. [PMID: 20700574 PMCID: PMC2963734 DOI: 10.1007/s00122-010-1416-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/08/2010] [Indexed: 05/04/2023]
Abstract
Downy mildew, caused by Plasmopara halstedii, is one of the most destructive diseases in cultivated sunflower (Helianthus annuus L.). The dominant resistance locus Pl(ARG) originates from silverleaf sunflower (H. argophyllus Torrey and Gray) and confers resistance to all known races of P. halstedii. We mapped Pl(ARG) on linkage group (LG) 1 of (cms)HA342 × ARG1575-2, a population consisting of 2,145 F(2) individuals. Further, we identified resistance gene candidates (RGCs) that cosegregated with Pl(ARG) as well as closely linked flanking markers. Markers from the target region were mapped with higher resolution in NDBLOS(sel) × KWS04, a population consisting of 2,780 F(2) individuals that does not segregate for Pl(ARG). A large-insert sunflower bacterial artificial chromosome (BAC) library was screened with overgo probes designed for markers RGC52 and RGC151, which cosegregated with Pl(ARG). Two RGC-containing BAC contigs were anchored to the Pl(ARG) region on LG 1.
Collapse
Affiliation(s)
- S. Wieckhorst
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - E. Bachlava
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - C. M. Dußle
- State Plant Breeding Institute, Universität Hohenheim, 70599 Stuttgart, Germany
| | - S. Tang
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - W. Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - C. Saski
- Clemson University Genomics Institute, Clemson, SC 29634 USA
| | - S. J. Knapp
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
- Present Address: Monsanto Vegetables, Inc., 37437 State Highway 16, Woodland, CA 95695 USA
| | - C.-C. Schön
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - V. Hahn
- State Plant Breeding Institute, Universität Hohenheim, 70599 Stuttgart, Germany
| | - E. Bauer
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
20
|
Dogimont C, Bendahmane A, Chovelon V, Boissot N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. C R Biol 2010; 333:566-73. [DOI: 10.1016/j.crvi.2010.04.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
21
|
Hernandez Mora JR, Rivals E, Mireau H, Budar F. Sequence analysis of two alleles reveals that intra-and intergenic recombination played a role in the evolution of the radish fertility restorer (Rfo). BMC PLANT BIOLOGY 2010; 10:35. [PMID: 20178653 PMCID: PMC2848758 DOI: 10.1186/1471-2229-10-35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 02/24/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Land plant genomes contain multiple members of a eukaryote-specific gene family encoding proteins with pentatricopeptide repeat (PPR) motifs. Some PPR proteins were shown to participate in post-transcriptional events involved in organellar gene expression, and this type of function is now thought to be their main biological role. Among PPR genes, restorers of fertility (Rf) of cytoplasmic male sterility systems constitute a peculiar subgroup that is thought to evolve in response to the presence of mitochondrial sterility-inducing genes. Rf genes encoding PPR proteins are associated with very close relatives on complex loci. RESULTS We sequenced a non-restoring allele (L7rfo) of the Rfo radish locus whose restoring allele (D81Rfo) was previously described, and compared the two alleles and their PPR genes. We identified a ca 13 kb long fragment, likely originating from another part of the radish genome, inserted into the L7rfo sequence. The L7rfo allele carries two genes (PPR-1 and PPR-2) closely related to the three previously described PPR genes of the restorer D81Rfo allele (PPR-A, PPR-B, and PPR-C). Our results indicate that alleles of the Rfo locus have experienced complex evolutionary events, including recombination and insertion of extra-locus sequences, since they diverged. Our analyses strongly suggest that present coding sequences of Rfo PPR genes result from intragenic recombination. We found that the 10 C-terminal PPR repeats in Rfo PPR gene encoded proteins result from the tandem duplication of a 5 PPR repeat block. CONCLUSIONS The Rfo locus appears to experience more complex evolution than its flanking sequences. The Rfo locus and PPR genes therein are likely to evolve as a result of intergenic and intragenic recombination. It is therefore not possible to determine which genes on the two alleles are direct orthologs. Our observations recall some previously reported data on pathogen resistance complex loci.
Collapse
Affiliation(s)
- José R Hernandez Mora
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 7, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles Cedex France
| | - Eric Rivals
- Laboratoire d'Informatique de Robotique et de Microélectronique, CNRS/Université Montpellier II, 161 rue Ada, 34392 Montpellier, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 7, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles Cedex France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 7, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles Cedex France
| |
Collapse
|
22
|
Jacobs MMJ, Vosman B, Vleeshouwers VGAA, Visser RGF, Henken B, van den Berg RG. A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:785-96. [PMID: 19902171 PMCID: PMC2812419 DOI: 10.1007/s00122-009-1199-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Accepted: 10/21/2009] [Indexed: 05/20/2023]
Abstract
Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS profiling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identified P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively.
Collapse
Affiliation(s)
- Mirjam M. J. Jacobs
- Biosystematics Group, Wageningen University and Research Centre, Generaal Foulkesweg 37, 6703 BL Wageningen, The Netherlands
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Vivianne G. A. A. Vleeshouwers
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Betty Henken
- Wageningen UR Plant Breeding, P.O. Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Ronald G. van den Berg
- Biosystematics Group, Wageningen University and Research Centre, Generaal Foulkesweg 37, 6703 BL Wageningen, The Netherlands
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
23
|
Collier SM, Moffett P. NB-LRRs work a "bait and switch" on pathogens. TRENDS IN PLANT SCIENCE 2009; 14:521-9. [PMID: 19720556 DOI: 10.1016/j.tplants.2009.08.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/27/2009] [Accepted: 08/03/2009] [Indexed: 05/21/2023]
Abstract
Plant genomes encode large numbers of highly variable nucleotide binding leucine-rich repeat (NB-LRR) disease resistance proteins. These proteins have been studied extensively to understand their evolution and the molecular basis of their function. Multiple studies indicate that the C-terminal LRR domain plays a pivotal role in defining pathogen recognition specificity. However, a growing body of evidence suggests that the N-termini of NB-LRR proteins also function in pathogen recognition. To formulate a framework that can explain the underlying principles governing NB-LRR function while accommodating findings from different experimental systems, we present a "bait and switch" model. This model proposes a two-step recognition process involving interactions with both cellular cofactors (bait) and the LRR domain, which in turn activates the molecular switch leading to disease resistance.
Collapse
Affiliation(s)
- Sarah M Collier
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | | |
Collapse
|
24
|
Isolation of a Ve homolog, mVe1, and its relationship to Verticillium wilt resistance in Mentha longifolia (L.) Huds. Mol Genet Genomics 2009; 282:173-84. [PMID: 19424725 DOI: 10.1007/s00438-009-0454-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/21/2009] [Indexed: 01/28/2023]
Abstract
As a step toward greater understanding of the genetics of verticillium wilt resistance in plants, we report the sequencing of a candidate wilt resistance gene, mVe1, from the mint diploid model species, Mentha longifolia (Lamiaceae). mVe1 is a putative homolog of tomato (Solanum lycopersicum L.) verticillium wilt (Ve) resistance genes. The mVe1 gene has a coding region of 3,051 bp. The predicted mVe1 protein contains a leucine-rich repeat domain, a common feature of plant disease resistance proteins. We compared 13 mVe1 alleles from three mint species. These alleles shared 96.2-99.6% nucleotide identity. We analyzed four M. longifolia populations segregating with respect to mVe1 alleles and wilt resistance versus susceptibility and found one association between mVe1 genotype and wilt phenotype. We conclude that mVe1 may play a role in mint verticillium wilt resistance, but variation for resistance in our segregating progenies is likely polygenic. Therefore, further investigations of mVe1 and identification of additional candidate genes are both warranted.
Collapse
|
25
|
Molecular analysis of a large subtelomeric nucleotide-binding-site-leucine-rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics 2008; 181:405-19. [PMID: 19087965 DOI: 10.1534/genetics.108.093583] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In common bean, the B4 disease resistance gene cluster is a complex cluster localized at the end of linkage group (LG) B4, containing at least three R specificities to the fungus Colletotrichum lindemuthianum. To investigate the evolution of this R cluster since the divergence of Andean and Mesoamerican gene pools, DNA sequences were characterized from two representative genotypes of the two major gene pools of common bean (BAT93: Mesoamerican; JaloEEP558: Andean). Sequences encoding 29 B4-CC nucleotide-binding-site-leucine-rich-repeat (B4-CNL) genes were determined-12 from JaloEEP558 and 17 from BAT93. Although sequence exchange events were identified, phylogenetic analyses revealed that they were not frequent enough to lead to homogenization of B4-CNL sequences within a haplotype. Genetic mapping based on pulsed-field gel electrophoresis separation confirmed that the B4-CNL family is a large family specific to one end of LG B4 and is present at two distinct blocks separated by 26 cM. Fluorescent in situ hybridization on meiotic pachytene chromosomes revealed that two B4-CNL blocks are located in the subtelomeric region of the short arm of chromosome 4 on both sides of a heterochromatic block (knob), suggesting that this peculiar genomic environment may favor the proliferation of a large R gene cluster.
Collapse
|
26
|
BAC end sequences corresponding to the B4 resistance gene cluster in common bean: a resource for markers and synteny analyses. Mol Genet Genomics 2008; 280:521-33. [PMID: 18813956 DOI: 10.1007/s00438-008-0384-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/06/2008] [Indexed: 10/21/2022]
Abstract
In common bean, a complex disease resistance (R) gene cluster, harboring many specific R genes against various pathogens, is located at the end of the linkage group B4. A BAC library of the Meso-american bean genotype BAT93 was screened with PRLJ1, a probe previously shown to be specific to the B4 R gene cluster, leading to the identification of 73 positive BAC clones. BAC-end sequencing (BES) of the 73 positive BACs generated 75 kb of sequence. These BACs were organized into 6 contigs, all mapped at the B4 R gene cluster. To evaluate the potential of BES for marker development, BES-derived specific primers were used to check for linkage with two allelic anthracnose R specificities Co-3 and Co-3 ( 2 ), through the analysis of pairs of Near Isogenic Lines (NILs). Out of 32 primer pairs tested, two revealed polymorphisms between the NILs, confirming the suspected location of Co-3 and Co-3 ( 2 ) at the B4 cluster. In order to identify the orthologous region of the B4 R gene cluster in the two model legume genomes, bean BESs were used as queries in TBLASTX searches of Medicago truncatula and Lotus japonicus BAC clones. Putative orthologous regions were identified on chromosome Mt6 and Lj2, in agreement with the colinearity observed between Mt and Lj for these regions.
Collapse
|
27
|
Friedman AR, Baker BJ. The evolution of resistance genes in multi-protein plant resistance systems. Curr Opin Genet Dev 2007; 17:493-9. [DOI: 10.1016/j.gde.2007.08.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/31/2007] [Indexed: 11/26/2022]
|