1
|
Diaz LM, Arredondo V, Ariza-Suarez D, Aparicio J, Buendia HF, Cajiao C, Mosquera G, Beebe SE, Mukankusi CM, Raatz B. Genetic Analyses and Genomic Predictions of Root Rot Resistance in Common Bean Across Trials and Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:629221. [PMID: 33777068 PMCID: PMC7994901 DOI: 10.3389/fpls.2021.629221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
Root rot in common bean is a disease that causes serious damage to grain production, particularly in the upland areas of Eastern and Central Africa where significant losses occur in susceptible bean varieties. Pythium spp. and Fusarium spp. are among the soil pathogens causing the disease. In this study, a panel of 228 lines, named RR for root rot disease, was developed and evaluated in the greenhouse for Pythium myriotylum and in a root rot naturally infected field trial for plant vigor, number of plants germinated, and seed weight. The results showed positive and significant correlations between greenhouse and field evaluations, as well as high heritability (0.71-0.94) of evaluated traits. In GWAS analysis no consistent significant marker trait associations for root rot disease traits were observed, indicating the absence of major resistance genes. However, genomic prediction accuracy was found to be high for Pythium, plant vigor and related traits. In addition, good predictions of field phenotypes were obtained using the greenhouse derived data as a training population and vice versa. Genomic predictions were evaluated across and within further published data sets on root rots in other panels. Pythium and Fusarium evaluations carried out in Uganda on the Andean Diversity Panel showed good predictive ability for the root rot response in the RR panel. Genomic prediction is shown to be a promising method to estimate tolerance to Pythium, Fusarium and root rot related traits, indicating a quantitative resistance mechanism. Quantitative analyses could be applied to other disease-related traits to capture more genetic diversity with genetic models.
Collapse
Affiliation(s)
- Lucy Milena Diaz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Victoria Arredondo
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Daniel Ariza-Suarez
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Johan Aparicio
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Hector Fabio Buendia
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Cesar Cajiao
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Gloria Mosquera
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Stephen E. Beebe
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Clare Mugisha Mukankusi
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Kampala, Uganda
| | - Bodo Raatz
- Bean Program, Agrobiodiversity Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
2
|
Gad M, Chao H, Li H, Zhao W, Lu G, Li M. QTL Mapping for Seed Germination Response to Drought Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 11:629970. [PMID: 33633753 PMCID: PMC7900748 DOI: 10.3389/fpls.2020.629970] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 05/25/2023]
Abstract
Drought stress is one of the most environmental abiotic stresses affecting seed germination and crop growth. In the present study, the genetic characteristics of seed germination under drought stress in a Brassica napus double haploid population were analyzed. Five germination-related indexes, including germination percentage (GP), root length (RL), shoot length (SL), fresh weight (FW), and root-to-shoot length ratio (R/S) under control and drought stress, were calculated, and the drought stress index (DSI), including DSI-GP, DSI-RL, DSI-SL, DSI-FW, and DSI-R/S, was determined using the quantitative trait loci (QTLs) analysis based on high-density genetic linkage map. The phenotypic analysis indicated that the R/S is an effective morphological trait in the determination of drought tolerance in the seedling stage. Thirty-nine identified QTLs were observed for these traits and then integrated into 36 consensus QTLs, in which 18 QTLs were found to affect the DSI of four traits (GP, RL, SL, and R/S). Based on the co-linearity between genetic and physical maps of B. napus, 256 candidate genes were detected, and 128 genes have single-nucleotidepolymorphisms/insertion-deletion (SNP/InDel) variations between two parents, some of which were associated with the drought stress tolerance (for example, BnaC03g32780D, BnaC03g37030D, and BnaC09g27300D). The present results laid insights into drought tolerance and its genetic bases in B. napus.
Collapse
Affiliation(s)
- Mahmoud Gad
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Chao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huaixin Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Zhao
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guangyuan Lu
- Faculty of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, China
| | - Maoteng Li
- Department of Biotechnology, Collage of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Rasheed A, Takumi S, Hassan MA, Imtiaz M, Ali M, Morgunov AI, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1503-1520. [PMID: 31897516 DOI: 10.1007/s00122-019-03523-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries. Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Muhammad Adeel Hassan
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan office, c/o National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Mohsin Ali
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Alex I Morgunov
- International Maize and Wheat Improvement Center (CIMMYT), Yenimahalle, Ankara, 06170, Turkey
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
4
|
QuLinePlus: extending plant breeding strategy and genetic model simulation to cross-pollinated populations-case studies in forage breeding. Heredity (Edinb) 2018; 122:684-695. [PMID: 30368530 PMCID: PMC6461948 DOI: 10.1038/s41437-018-0156-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 01/11/2023] Open
Abstract
Plant breeders are supported by a range of tools that assist them to make decisions about the conduct or design of plant breeding programs. Simulations are a strategic tool that enables the breeder to integrate the multiple components of a breeding program into a number of proposed scenarios that are compared by a range of statistics measuring the efficiency of the proposed systems. A simulation study for the trait growth score compared two major strategies for breeding forage species, among half-sib family selection and among and within half-sib family selection. These scenarios highlighted new features of the QuLine program, now called QuLinePlus, incorporated to enable the software platform to be used to simulate breeding programs for cross-pollinated species. Each strategy was compared across three levels of half-sib family mean heritability (0.1, 0.5, and 0.9), across three sizes of the initial parental population (10, 50, and 100), and across three genetic effects models (fully additive model, a mixture of additive, partial and over dominance model, and a mixture of partial dominance and over dominance model). Among and within half-sib selection performed better than among half-sib selection for all scenarios. The new tools introduced into QuLinePlus should serve to accurately compare among methods and provide direction on how to achieve specific goals in the improvement of plant breeding programs for cross breeding species.
Collapse
|
5
|
Cai C, Wu S, Niu E, Cheng C, Guo W. Identification of genes related to salt stress tolerance using intron-length polymorphic markers, association mapping and virus-induced gene silencing in cotton. Sci Rep 2017; 7:528. [PMID: 28373664 PMCID: PMC5428780 DOI: 10.1038/s41598-017-00617-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/06/2017] [Indexed: 12/20/2022] Open
Abstract
Intron length polymorphisms (ILPs), a type of gene-based functional marker, could themselves be related to the particular traits. Here, we developed a genome-wide cotton ILPs based on orthologs annotation from two sequenced diploid species, A-genome Gossypium arboreum and D-genome G. raimondii. We identified 10,180 putative ILP markers from 5,021 orthologous genes. Among these, 535 ILP markers from 9 gene families related to stress were selected for experimental verification. Polymorphic rates were 72.71% between G. arboreum and G. raimondii and 36.45% between G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124. Furthermore, 14 polymorphic ILP markers were detected in 264 G. hirsutum accessions. Coupled with previous simple sequence repeats (SSRs) evaluations and salt tolerance assays from the same individuals, we found a total of 25 marker-trait associations involved in nine ILPs. The nine genes, temporally named as C1 to C9, showed the various expressions in different organs and tissues, and five genes (C3, C4, C5, C7 and C9) were significantly upregulated after salt treatment. We verified that the five genes play important roles in salt tolerance. Particularly, silencing of C4 (encodes WRKY DNA-binding protein) and C9 (encodes Mitogen-activated protein kinase) can significantly enhance cotton susceptibility to salt stress.
Collapse
Affiliation(s)
- Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Erli Niu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R&D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Du L, Cai C, Wu S, Zhang F, Hou S, Guo W. Evaluation and Exploration of Favorable QTL Alleles for Salt Stress Related Traits in Cotton Cultivars (G. hirsutum L.). PLoS One 2016; 11:e0151076. [PMID: 26943816 PMCID: PMC4778925 DOI: 10.1371/journal.pone.0151076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/23/2016] [Indexed: 01/24/2023] Open
Abstract
Soil salinization is one of the major problems in global agricultural production. Cotton is a pioneer crop with regard to salt stress tolerance, and can be used for saline-alkali land improvement. The large-scale detection of salt tolerance traits in cotton accessions, and the identification of elite quantitative trait loci (QTLs)/genes for salt-tolerance have been very important in salt tolerance breeding. Here, 43 advanced salt-tolerant and 31 highly salt-sensitive cultivars were detected by analyzing ten salt tolerance related traits in 304 upland cotton cultivars. Among them, 11 advanced salt-tolerance and eight highly salt-sensitive cultivars were consistent with previously reported results. Association analysis of ten salt-tolerance related traits and 145 SSRs was performed, and a total of 95 significant associations were detected; 17, 41, and 37 of which were associated with germinative index, seedling stage physiological index, and four seedling stage biochemical indexes, respectively. Of these associations, 20 SSR loci were simultaneously associated with two or more traits. Furthermore, we detected 117 elite alleles associated with salt-tolerance traits, 4 of which were reported previously. Among these loci, 44 (37.60%) were rare alleles with a frequency of less than 5%, 6 only existed in advanced salt-tolerant cultivars, and 2 only in highly salt-sensitive cultivars. As a result, 13 advanced salt-tolerant cultivars were selected to assemble the optimal cross combinations by computer simulation for the development of salt-tolerant accessions. This study lays solid foundations for further improvements in cotton salt-tolerance by referencing elite germplasms, alleles associated with salt-tolerance traits, and optimal crosses.
Collapse
Affiliation(s)
- Lei Du
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Sen Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
- * E-mail:
| |
Collapse
|
7
|
Qie L, Jia G, Zhang W, Schnable J, Shang Z, Li W, Liu B, Li M, Chai Y, Zhi H, Diao X. Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis. PLoS One 2014; 9:e101868. [PMID: 25033201 PMCID: PMC4102488 DOI: 10.1371/journal.pone.0101868] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/12/2014] [Indexed: 12/25/2022] Open
Abstract
Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.
Collapse
Affiliation(s)
- Lufeng Qie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenying Zhang
- Institute of Dry Land Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - James Schnable
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonglin Shang
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Wei Li
- Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Binhui Liu
- Institute of Dry Land Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Mingzhe Li
- Institute of Dry Land Agriculture, Hebei Academy of Agricultural and Forestry Sciences, Hengshui, China
| | - Yang Chai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (XD); (HZ)
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Millet Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- * E-mail: (XD); (HZ)
| |
Collapse
|
8
|
Hathorn A, Chapman S, Dieters M. Simulated breeding with QU-GENE graphical user interface. Methods Mol Biol 2014; 1145:131-142. [PMID: 24816665 DOI: 10.1007/978-1-4939-0446-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Comparing the efficiencies of breeding methods with field experiments is a costly, long-term process. QU-GENE is a highly flexible genetic and breeding simulation platform capable of simulating the performance of a range of different breeding strategies and for a continuum of genetic models ranging from simple to complex. In this chapter we describe some of the basic mechanics behind the QU-GENE user interface and give a simplified example of how it works.
Collapse
Affiliation(s)
- Adrian Hathorn
- CSIRO Plant Industry, 306 Carmody Rd, St. Lucia, QLD, Australia
| | | | | |
Collapse
|
9
|
Mohan A, Schillinger WF, Gill KS. Wheat seedling emergence from deep planting depths and its relationship with coleoptile length. PLoS One 2013; 8:e73314. [PMID: 24019916 PMCID: PMC3760894 DOI: 10.1371/journal.pone.0073314] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Successful stand establishment is prerequisite for optimum crop yields. In some low-precipitation zones, wheat (Triticum aestivum L.) is planted as deep as 200 mm below the soil surface to reach adequate soil moisture for germination. To better understand the relationship of coleoptile length and other seed characteristics with emergence from deep planting (EDP), we evaluated 662 wheat cultivars grown around the world since the beginning of the 20(th) century. Coleoptile length of collection entries ranged from 34 to 114 mm. A specialized field EDP test showed dramatic emergence differences among cultivars ranging from 0-66% by 21 days after planting (DAP). Less than 1% of entries had any seedlings emerged by 7 DAP and 43% on day 8. A wide range of EDP within each coleoptile length class suggests the involvement of genes other than those controlling coleoptile length. Emergence was correlated with coleoptile length, but some lines with short coleoptiles ranked among the top emergers. Coleoptiles longer than 90 mm showed no advantage for EDP and may even have a negative effect. Overall, coleoptile length accounted for only 28% of the variability in emergence among entries; much lower than the 60% or greater reported in previous studies. Seed weight had little correlation with EDP. Results show that EDP is largely controlled by yet poorly understood mechanisms other than coleoptile length.
Collapse
Affiliation(s)
- Amita Mohan
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - William F. Schillinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| | - Kulvinder S. Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
10
|
Zhang X, Pfeiffer WH, Palacios-Rojas N, Babu R, Bouis H, Wang J. Probability of success of breeding strategies for improving pro-vitamin A content in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:235-46. [PMID: 22450859 DOI: 10.1007/s00122-012-1828-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/11/2012] [Indexed: 05/23/2023]
Abstract
Biofortification for pro-vitamin A content (pVAC) of modern maize inbreds and hybrids is a feasible way to deal with vitamin A deficiency in rural areas in developing countries. The objective of this study was to evaluate the probability of success of breeding strategies when transferring the high pVAC present in donors to elite modern-adapted lines. For this purpose, a genetic model was built based on previous genetic studies, and different selection schemes including phenotypic selection (PS) and marker-assisted selection (MAS) were simulated and compared. MAS for simultaneously selecting all pVAC genes and a combined scheme for selecting two major pVAC genes by MAS followed by ultra performance liquid chromatography screening for the remaining genetic variation on pVAC were identified as being most effective and cost-efficient. The two schemes have 83.7 and 84.8% probabilities of achieving a predefined breeding target on pVAC and adaptation in one breeding cycle under the current breeding scale. When the breeding scale is increased by making 50% more crosses, the probability values could reach 94.8 and 95.1% for the two schemes. Under fixed resources, larger early generation populations with fewer crosses had similar breeding efficiency to smaller early generation populations with more crosses. Breeding on a larger scale was more efficient both genetically and economically. The approach presented in this study could be used as a general way in quantifying probability of success and comparing different breeding schemes in other breeding programs.
Collapse
Affiliation(s)
- Xuecai Zhang
- Institute of Crop Science, The National Key Facility for Crop Gene Resources and Genetic Improvement, and CIMMYT China Office, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China
| | | | | | | | | | | |
Collapse
|
11
|
Parry MAJ, Hawkesford MJ. An integrated approach to crop genetic improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:250-9. [PMID: 22348899 DOI: 10.1111/j.1744-7909.2012.01109.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The balance between the supply and demand of the major food crops is fragile, fueling concerns for long-term global food security. The rising population, increasing wealth and a proliferation of non-food uses (e.g. bioenergy) has led to growing demands on agriculture, while increased production is limited by greater urbanization, and the degradation of land. Furthermore, global climate change with increasing temperatures and lower, more erratic rainfall is projected to decrease agricultural yields. There is a predicted need to increase food production by at least 70% by 2050 and therefore an urgent need to develop novel and integrated approaches, incorporating high-throughput phenotyping that will both increase production per unit area and simultaneously improve the resource use efficiency of crops. Yield potential, yield stability, nutrient and water use are all complex multigenic traits and while there is genetic variability, their complexity makes such traits difficult to breed for directly. Nevertheless molecular plant breeding has the potential to deliver substantial improvements, once the component traits and the genes underlying these traits have been identified. In addition, interactions between the individual traits must also be taken into account, a demand that is difficult to fulfill with traditional screening approaches. Identified traits will be incorporated into new cultivars using conventional or biotechnological tools. In order to better understand the relationship between genotype, component traits, and environment over time, a multidisciplinary approach must be adopted to both understand the underlying processes and identify candidate genes, QTLs and traits that can be used to develop improved crops.
Collapse
Affiliation(s)
- Martin A J Parry
- Rothamsted Research, Plant Science Department, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | |
Collapse
|
12
|
Li J, Zhang W, Wu H, Guo T, Liu X, Wan X, Jin J, Hanh TTT, Thoa NTN, Chen M, Liu S, Chen L, Liu X, Wang J, Zhai H, Wan J. Fine mapping of stable QTLs related to eating quality in rice (Oryza sativa L.) by CSSLs harboring small target chromosomal segments. BREEDING SCIENCE 2011; 61:338-46. [PMID: 23136470 PMCID: PMC3406775 DOI: 10.1270/jsbbs.61.338] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/05/2011] [Indexed: 05/26/2023]
Abstract
Amylose content (AC) and viscosity profile are primary indices for evaluating eating and cooking qualities of rice grain. Using chromosome segment substitution lines (CSSLs), previous studies identified a QTL cluster of genes for rice eating and cooking quality in the interval R727-G1149 on chromosome 8. In this study we report two QTLs for viscosity parameters, respectively controlling setback viscosity (SBV) and consistency viscosity (CSV), located in the same interval using rapid viscosity analyzer (RVA) profile as an indicator of eating quality. Previously reported QTL for AC was dissected into two components with opposite genetic effects. Of four QTLs, qCSV-8 and qAC-8-2 had stable genetic effects across three and four environments, respectively. qSBV-8, qCSV-8 and qAC-8-1 partly overlapped, but were separated from qAC-8-2. Based on data from an Affymetrix rice GeneChip, two genes related to starch biosynthesis at the qAC-8-2 locus were chosen for further quantitative expression analysis. Both genes showed enhanced expression in sub-CSSLs carrying the target qAC-8-2 allele, but not in sub-CSSLs without the target qAC-8-2 allele, indicating their possible role in rice quality determination. Molecular markers closely linked to the two stable QTL provide the opportunity for marker-assisted selection (MAS) in breeding high quality rice.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Wenwei Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Hongkai Wu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Tao Guo
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xiaolu Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiangyuan Wan
- National Engineering Research Center for Crop Molecular Design, Beijing 100085, China
| | - Jiansheng Jin
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Than Thi Thu Hanh
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Nguyen Thi Nhu Thoa
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Mingjiang Chen
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Shijia Liu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Liangming Chen
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Xi Liu
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jiankang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huqu Zhai
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
13
|
|
14
|
Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:439-52. [PMID: 20952629 DOI: 10.1093/jxb/erq311] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Theoretical considerations suggest that wheat yield potential could be increased by up to 50% through the genetic improvement of radiation use efficiency (RUE). However, to achieve agronomic impacts, structural and reproductive aspects of the crop must be improved in parallel. A Wheat Yield Consortium (WYC) has been convened that fosters linkage between ongoing research platforms in order to develop a cohesive portfolio of activities that will maximize the probability of impact in farmers' fields. Attempts to increase RUE will focus on improving the performance and regulation of Rubisco, introduction of C(4)-like traits such as CO(2)-concentrating mechanisms, improvement of light interception, and improvement of photosynthesis at the spike and whole canopy levels. For extra photo-assimilates to translate into increased grain yield, reproductive aspects of growth must be tailored to a range of agro-ecosystems to ensure that stable expression of a high harvest index (HI) is achieved. Adequate partitioning among plant organs will be critical to achieve favourable expression of HI, and to ensure that plants with heavier grain have strong enough stems and roots to avoid lodging. Trait-based hybridization strategies will aim to achieve their simultaneous expression in elite agronomic backgrounds, and wide crossing will be employed to augment genetic diversity where needed; for example, to introduce traits for improving RUE from wild species or C(4) crops. Genomic selection approaches will be employed, especially for difficult-to-phenotype traits. Genome-wide selection will be evaluated and is likely to complement crossing of complex but complementary traits by identifying favourable allele combinations among progeny. Products will be delivered to national wheat programmes worldwide via well-established international nursery systems and are expected to make a significant contribution to global food security.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Food production and security will be a major issue for supplying an increasing world population. The problem will almost certainly be exacerbated by climate change. There is a projected need to double food production by 2050. In recent times, the trend has been for incremental modest yield increases for most crops. There is an urgent need to develop integrated and sustainable approaches that will significantly increase both production per unit land area and the resource use efficiency of crops. This review considers some key processes involved in plant growth and development with some examples of ways in which molecular technology, plant breeding and genetics may increase the yield and resource use efficiency of wheat. The successful application of biotechnology to breeding is essential to provide the major increases in production required. However, each crop and each specific agricultural situation presents specific requirements and targets for optimisation. Some increases in production will come about as new varieties are developed which are able to produce satisfactory crops on marginal land presently not considered appropriate for arable crops. Other new varieties will be developed to increase both yield and resource use efficiency on the best land.
Collapse
|
16
|
Affiliation(s)
- John S Boyer
- College of Earth, Ocean and Environment (formerly College of Marine Studies), University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA.
| |
Collapse
|
17
|
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ. Raising yield potential in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1899-918. [PMID: 19363203 DOI: 10.1093/jxb/erp016] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent advances in crop research have the potential to accelerate genetic gains in wheat, especially if co-ordinated with a breeding perspective. For example, improving photosynthesis by exploiting natural variation in Rubisco's catalytic rate or adopting C(4) metabolism could raise the baseline for yield potential by 50% or more. However, spike fertility must also be improved to permit full utilization of photosynthetic capacity throughout the crop life cycle and this has several components. While larger radiation use efficiency will increase the total assimilates available for spike growth, thereby increasing the potential for grain number, an optimized phenological pattern will permit the maximum partitioning of the available assimilates to the spikes. Evidence for underutilized photosynthetic capacity during grain filling in elite material suggests unnecessary floret abortion. Therefore, a better understanding of its physiological and genetic basis, including possible signalling in response to photoperiod or growth-limiting resources, may permit floret abortion to be minimized for a more optimal source:sink balance. However, trade-offs in terms of the partitioning of assimilates to competing sinks during spike growth, to improve root anchorage and stem strength, may be necessary to prevent yield losses as a result of lodging. Breeding technologies that can be used to complement conventional approaches include wide crossing with members of the Triticeae tribe to broaden the wheat genepool, and physiological and molecular breeding strategically to combine complementary traits and to identify elite progeny more efficiently.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Centre (CIMMYT) Int. Apdo. Postal 6-641, 06600 México, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|