1
|
Warzecha T, Bocianowski J, Warchoł M, Bathelt R, Sutkowska A, Skrzypek E. Effect of Soil Drought Stress on Selected Biochemical Parameters and Yield of Oat × Maize Addition (OMA) Lines. Int J Mol Sci 2023; 24:13905. [PMID: 37762208 PMCID: PMC10531036 DOI: 10.3390/ijms241813905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Plant growth and the process of yield formation in crops are moderated by surrounding conditions, as well as the interaction of the genetic background of plants and the environment. In the last two decades, significant climatic changes have been observed, generating unfavorable and harmful impacts on plant development. Drought stress can be considered one of the most dangerous environmental factors affecting the life cycle of plants, reducing biomass production and, finally, the yield. Plants can respond to water deficit in a wide range, which depends on the species, genetic variability within the species, the plant's ontogenesis stage, the intensity of the stress, and other potential stress factors. In plants, it is possible to observe hybrids between different taxa that certain traits adopted to tolerate stress conditions better than the parent plants. Oat × maize addition (OMA) plants are good examples of hybrids generated via wide crossing. They can exhibit morphological, physiological, and biochemical variations implemented by the occurrence of extra chromosomes of maize, as well as the interaction of maize and oat chromatin. The initial goal of the study was to identify OMA lines among plants produced by wide crossing with maize. The main goal was to investigate differences in OMA lines according to the Excised Leaf Water Loss (ELWL) test and to identify specific biochemical changes and agronomic traits under optimal water conditions and soil drought. Additionally, detection of any potential alterations that are stable in F2 and F3 generations. The aforementioned outcomes were the basis for the selection of OMA lines that tolerate growth in an environment with limited water availability. The molecular analysis indicated 12.5% OMA lines among all tested descendants of wide oat-maize crossing. The OMA lines significantly differ according to ELWL test results, which implies some anatomical and physiological adaptation to water loss from tissues. On the first day of drought, plants possessed 34% more soluble sugars compared to control plants. On the fourteen day of drought, the amount of soluble sugars was reduced by 41.2%. A significant increase of phenolic compounds was observed in the fourteen day of drought, an average of 6%, even up to 57% in line 9. Soil drought substantially reduced stem biomass, grains number, and mass per plant. Lower water loss revealed by results of the ELWL test correlated with the high yield of OMA lines. Phenolic compound content might be used as a biochemical indicator of plant drought tolerance since there was a significant correlation with the high yield of plants subjected to soil drought.
Collapse
Affiliation(s)
- Tomasz Warzecha
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140 Kraków, Poland; (T.W.); (R.B.); (A.S.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Marzena Warchoł
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.W.); (E.S.)
| | - Roman Bathelt
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140 Kraków, Poland; (T.W.); (R.B.); (A.S.)
| | - Agnieszka Sutkowska
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140 Kraków, Poland; (T.W.); (R.B.); (A.S.)
| | - Edyta Skrzypek
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.W.); (E.S.)
| |
Collapse
|
2
|
A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Res 2022; 30:29-41. [PMID: 34988746 DOI: 10.1007/s10577-021-09680-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023]
Abstract
Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.
Collapse
|
3
|
Juzoń K, Idziak-Helmcke D, Rojek-Jelonek M, Warzecha T, Warchoł M, Czyczyło-Mysza I, Dziurka K, Skrzypek E. Functioning of the Photosynthetic Apparatus in Response to Drought Stress in Oat × Maize Addition Lines. Int J Mol Sci 2020; 21:ijms21186958. [PMID: 32971899 PMCID: PMC7555142 DOI: 10.3390/ijms21186958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/16/2022] Open
Abstract
The oat × maize chromosome addition (OMA) lines, as hybrids between C3 and C4 plants, can potentially help us understand the process of C4 photosynthesis. However, photosynthesis is often affected by adverse environmental conditions, including drought stress. Therefore, to assess the functioning of the photosynthetic apparatus in OMA lines under drought stress, the chlorophyll content and chlorophyll a fluorescence (CF) parameters were investigated. With optimal hydration, most of the tested OMA lines, compared to oat cv. Bingo, showed higher pigment content, and some of them were characterized by increased values of selected CF parameters. Although 14 days of drought caused a decrease of chlorophylls and carotenoids, only slight changes in CF parameters were observed, which can indicate proper photosynthetic efficiency in most of examined OMA lines compared to oat cv. Bingo. The obtained data revealed that expected changes in hybrid functioning depend more on the specific maize chromosome and its interaction with the oat genome rather than the number of retained chromosomes. OMA lines not only constitute a powerful tool for maize genomics but also are a source of valuable variation in plant breeding, and can help us to understand plant susceptibility to drought. Our research confirms more efficient functioning of hybrid photosynthetic apparatus than oat cv. Bingo, therefore contributes to raising new questions in the fields of plant physiology and biochemistry. Due to the fact that the oat genome is not fully sequenced yet, the mechanism of enhanced photosynthetic efficiency in OMA lines requires further research.
Collapse
Affiliation(s)
- Katarzyna Juzoń
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (M.W.); (I.C.-M.); (K.D.); (E.S.)
- Correspondence:
| | - Dominika Idziak-Helmcke
- Institute of Biology, Biotechnology, and Environmental Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.I.-H.); (M.R.-J.)
| | - Magdalena Rojek-Jelonek
- Institute of Biology, Biotechnology, and Environmental Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland; (D.I.-H.); (M.R.-J.)
| | - Tomasz Warzecha
- Department of Plant Breeding, Physiology, and Seed Science, University of Agriculture in Krakow, Podlużna 3, 30-239 Krakow, Poland;
| | - Marzena Warchoł
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (M.W.); (I.C.-M.); (K.D.); (E.S.)
| | - Ilona Czyczyło-Mysza
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (M.W.); (I.C.-M.); (K.D.); (E.S.)
| | - Kinga Dziurka
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (M.W.); (I.C.-M.); (K.D.); (E.S.)
| | - Edyta Skrzypek
- Department of Biotechnology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland; (M.W.); (I.C.-M.); (K.D.); (E.S.)
| |
Collapse
|
4
|
Li M, Zhao Q, Liu Y, Qin X, Hu W, Davoudi M, Chen J, Lou Q. Development of alien addition lines from Cucumis hystrix in Cucumis sativus: cytological and molecular marker analyses. Genome 2020; 63:629-641. [PMID: 32877612 DOI: 10.1139/gen-2020-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transferring desired genes from wild species to cultivars through alien addition lines (AALs) has been shown to be an effective method for genetic improvement. Cucumis hystrix Chakr. (HH, 2n = 24) is a wild species of Cucumis that possesses many resistant genes. A synthetic allotetraploid species, C. hytivus (HHCC, 2n = 38), was obtained from the cross between cultivated cucumber, C. sativus (CC, 2n = 14), and C. hystrix followed by chromosome doubling. Cucumis sativus - C. hystrix AALs were developed by continuous backcrossing to the cultivated cucumbers. In this study, 10 different types of AALs (CC-H01, CC-H06, CC-H08, CC-H10, CC-H12, CC-H06+H09, CC-H06+H10, CC-H06+H12, CC-H08+H10, CC-H01+H06+H10) were identified based on the analysis of fluorescence in situ hybridization (FISH) and molecular markers specific to C. hystrix chromosomes. And the behavior of the alien chromosomes in three AALs (CC-H01, CC-H06+H10, CC-H01+H06+H10) at meiosis was investigated. The results showed that alien chromosomes paired with C. sativus chromosome in few pollen mother cells (PMCs). Further, disomic alien addition lines (DAALs) carrying a pair of C. hystrix chromosome H10 were screened from the selfed progenies of CC-H10. Chromosome pairing between genomes provides cytological evidence for the possible introgression of alien chromosome segments. The development of AALs could serve as a key step for exploiting and utilizing valuable genes from C. hystrix.
Collapse
Affiliation(s)
- Mengxue Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
3-D Nucleus Architecture in Oat × Maize Addition Lines. Int J Mol Sci 2020; 21:ijms21124280. [PMID: 32560105 PMCID: PMC7352526 DOI: 10.3390/ijms21124280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
The nucleus architecture of hybrid crop plants is not a well-researched topic, yet it can have important implications for their genetic stability and usefulness in the successful expression of agronomically desired traits. In this work we studied the spatial distribution of introgressed maize chromatin in oat × maize addition lines with the number of added maize chromosomes varying from one to four. The number of chromosome additions was confirmed by genomic in situ hybridization (GISH). Maize chromosome-specific simple sequence repeat (SSR) markers were used to identify the added chromosomes. GISH on 3-D root and leaf nuclei was performed to assess the number, volume, and position of the maize-chromatin occupied regions. We revealed that the maize chromosome territory (CT) associations of varying degree prevailed in the double disomic lines, while CT separation was the most common distribution pattern in the double monosomic line. In all analyzed lines, the regions occupied by maize CTs were located preferentially at the nuclear periphery. A comparison between the tissues showed that the maize CTs in the leaf nuclei are positioned closer to the center of the nucleus than in the root nuclei. These findings shed more light on the processes that shape the nucleus architecture in hybrids.
Collapse
|
6
|
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 2020. [PMID: 31995554 DOI: 10.1371/journal.pbio.3000582.g006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Liu Y, Su H, Zhang J, Liu Y, Feng C, Han F. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol 2020; 18:e3000582. [PMID: 31995554 PMCID: PMC7010299 DOI: 10.1371/journal.pbio.3000582] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/10/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In most plants, centromeric DNA contains highly repetitive sequences, including tandem repeats and retrotransposons; however, the roles of these sequences in the structure and function of the centromere are unclear. Here, we found that multiple RNA sequences from centromeric retrotransposons (CRMs) were enriched in maize (Zea mays) centromeres, and back-spliced RNAs were generated from CRM1. We identified 3 types of CRM1-derived circular RNAs with the same back-splicing site based on the back-spliced sequences. These circular RNAs bound to the centromere through R-loops. Two R-loop sites inside a single circular RNA promoted the formation of chromatin loops in CRM1 regions. When RNA interference (RNAi) was used to target the back-splicing site of the circular CRM1 RNAs, the levels of R-loops and chromatin loops formed by these circular RNAs decreased, while the levels of R-loops produced by linear RNAs with similar binding sites increased. Linear RNAs with only one R-loop site could not promote chromatin loop formation. Higher levels of R-loops and lower levels of chromatin loops in the CRM1 regions of RNAi plants led to a reduced localization of the centromeric H3 variant (CENH3). Our work reveals centromeric chromatin organization by circular CRM1 RNAs via R-loops and chromatin loops, which suggested that CRM1 elements might help build a suitable chromatin environment during centromere evolution. These results highlight that R-loops are integral components of centromeric chromatin and proper centromere structure is essential for CENH3 localization.
Collapse
Affiliation(s)
- Yalin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Handong Su
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Feng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Dong Z, Yu J, Li H, Huang W, Xu L, Zhao Y, Zhang T, Xu W, Jiang J, Su Z, Jin W. Transcriptional and epigenetic adaptation of maize chromosomes in Oat-Maize addition lines. Nucleic Acids Res 2019; 46:5012-5028. [PMID: 29579310 PMCID: PMC6007749 DOI: 10.1093/nar/gky209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 01/16/2023] Open
Abstract
By putting heterologous genomic regulatory systems into contact, chromosome addition lines derived from interspecific or intergeneric crosses allow the investigation of transcriptional regulation in new genomic environments. Here, we report the transcriptional and epigenetic adaptation of stably inherited alien maize chromosomes in two oat–maize addition (OMA) lines. We found that the majority of maize genes displayed maize-specific transcription in the oat genomic environment. Nevertheless, a quarter of the expressed genes encoded by the two maize chromosomes were differentially expressed genes (DEGs). Notably, highly conserved orthologs were more severely differentially expressed in OMAs than less conserved orthologs. Additionally, syntenic genes and highly abundant genes were over-represented among DEGs. Gene suppression was more common than activation among the DEGs; however, the genes in the former maize pericentromere, which expanded to become the new centromere in OMAs, were activated. Histone modifications (H3K4me3, H3K9ac and H3K27me3) were consistent with these transcriptome results. We expect that cis regulation is responsible for unchanged expression in OMA versus maize; and trans regulation is the predominant mechanism behind DEGs. The genome interaction identified here reveals the important consequences of interspecific/intergeneric crosses and potential mechanisms of plant evolution when genomic environments interact.
Collapse
Affiliation(s)
- Zhaobin Dong
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China.,Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, CA 94710, USA
| | - Juan Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 10093, P. R. China
| | - Hui Li
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| | - Wei Huang
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| | - Ling Xu
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China.,Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Plant and Microbial Biology Department, University of California at Berkeley, CA 94710, USA
| | - Yue Zhao
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| | - Tao Zhang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 10093, P. R. China
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 10093, P. R. China
| | - Weiwei Jin
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, P. R. China
| |
Collapse
|
9
|
Skrzypek E, Warzecha T, Noga A, Warchoł M, Czyczyło-Mysza I, Dziurka K, Marcińska I, Kapłoniak K, Sutkowska A, Nita Z, Werwińska K, Idziak-Helmcke D, Rojek M, Hosiawa-Barańska M. Complex characterization of oat ( Avena sativa L.) lines obtained by wide crossing with maize ( Zea mays L.). PeerJ 2018; 6:e5107. [PMID: 29967749 PMCID: PMC6022724 DOI: 10.7717/peerj.5107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/06/2018] [Indexed: 01/13/2023] Open
Abstract
Background The oat × maize addition (OMA) lines are used for mapping of the maize genome, the studies of centromere-specific histone (CENH3), gene expression, meiotic chromosome behavior and also for introducing maize C4 photosynthetic system to oat. The aim of our study was the identification and molecular-cytogenetic characterization of oat × maize hybrids. Methods Oat DH lines and oat × maize hybrids were obtained using the wide crossing of Avena sativa L. with Zea mays L. The plants identified as having a Grande-1 retrotransposon fragment, which produced seeds, were used for genomic in situ hybridization (GISH). Results A total of 138 oat lines obtained by crossing of 2,314 oat plants from 80 genotypes with maize cv. Waza were tested for the presence of maize chromosomes. The presence of maize chromatin was indicated in 66 lines by amplification of the PCR product (500 bp) generated using primers specific for the maize retrotransposon Grande-1. Genomic in situ hybridization (GISH) detected whole maize chromosomes in eight lines (40%). All of the analyzed plants possessed full complement of oat chromosomes. The number of maize chromosomes differed between the OMA lines. Four OMA lines possessed two maize chromosomes similar in size, three OMA—one maize chromosome, and one OMA—four maize chromosomes. In most of the lines, the detected chromosomes were labeled uniformly. The presence of six 45S rDNA loci was detected in oat chromosomes, but none of the added maize chromosomes in any of the lines carried 45S rDNA locus. Twenty of the analyzed lines did not possess whole maize chromosomes, but the introgression of maize chromatin in the oat chromosomes. Five of 66 hybrids were shorter in height, grassy type without panicles. Twenty-seven OMA lines were fertile and produced seeds ranging in number from 1–102 (in total 613). Sixty-three fertile DH lines, out of 72 which did not have an addition of maize chromosomes or chromatin, produced seeds in the range of 1–343 (in total 3,758). Obtained DH and OMA lines were fertile and produced seeds. Discussion In wide hybridization of oat with maize, the complete or incomplete chromosomes elimination of maize occur. Hybrids of oat and maize had a complete set of oat chromosomes without maize chromosomes, and a complete set of oat chromosomes with one to four retained maize chromosomes.
Collapse
Affiliation(s)
- Edyta Skrzypek
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Tomasz Warzecha
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Angelika Noga
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Marzena Warchoł
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Ilona Czyczyło-Mysza
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kinga Dziurka
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Izabela Marcińska
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Kamila Kapłoniak
- Department of Biotechnology, Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Poland
| | - Agnieszka Sutkowska
- Department of Plant Breeding and Seed Science, University of Agriculture, Kraków, Polska
| | - Zygmunt Nita
- Plant Breeding Strzelce Ltd., PBAI Group, Strzelce, Polska
| | | | - Dominika Idziak-Helmcke
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| | - Marta Hosiawa-Barańska
- Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Katowice, Polska
| |
Collapse
|
10
|
The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions. Genetics 2017. [PMID: 28637710 DOI: 10.1534/genetics.116.198275] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members (RTE2-RTE6) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE, mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions.
Collapse
|
11
|
Yu W, Yau YY, Birchler JA. Plant artificial chromosome technology and its potential application in genetic engineering. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1175-82. [PMID: 26369910 PMCID: PMC11389009 DOI: 10.1111/pbi.12466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/16/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
Genetic engineering with just a few genes has changed agriculture in the last 20 years. The most frequently used transgenes are the herbicide resistance genes for efficient weed control and the Bt toxin genes for insect resistance. The adoption of the first-generation genetically engineered crops has been very successful in improving farming practices, reducing the application of pesticides that are harmful to both human health and the environment, and producing more profit for farmers. However, there is more potential for genetic engineering to be realized by technical advances. The recent development of plant artificial chromosome technology provides a super vector platform, which allows the management of a large number of genes for the next generation of genetic engineering. With the development of other tools such as gene assembly, genome editing, gene targeting and chromosome delivery systems, it should become possible to engineer crops with multiple genes to produce more agricultural products with less input of natural resources to meet future demands.
Collapse
Affiliation(s)
- Weichang Yu
- Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China
| | - Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Abstract
Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox.
Collapse
|
13
|
Abstract
We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators.
Collapse
Affiliation(s)
- Nelson Garcia
- Waksman Institute of Microbiology, Rutgers University
| | - Wei Zhang
- Waksman Institute of Microbiology, Rutgers University
| | - Yongrui Wu
- Waksman Institute of Microbiology, Rutgers University Present address: National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
14
|
Wang K, Wu Y, Zhang W, Dawe RK, Jiang J. Maize centromeres expand and adopt a uniform size in the genetic background of oat. Genome Res 2013; 24:107-16. [PMID: 24100079 PMCID: PMC3875851 DOI: 10.1101/gr.160887.113] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Most existing centromeres may have originated as neocentromeres that activated de novo from noncentromeric regions. However, the evolutionary path from a neocentromere to a mature centromere has been elusive. Here we analyzed the centromeres of nine chromosomes that were transferred from maize into oat as the result of an inter-species cross. Centromere size and location were assayed by chromatin immunoprecipitation for the histone variant CENH3, which is a defining feature of functional centromeres. Two isolates of maize chromosome 3 proved to contain neocentromeres in the sense that they had moved from the original site, whereas the remaining seven centromeres (1, 2, 5, 6, 8, 9, and 10) were retained in the same area in both species. In all cases, the CENH3-binding domains were dramatically expanded to encompass a larger area in the oat background (∼3.6 Mb) than the average centromere size in maize (∼1.8 Mb). The expansion of maize centromeres appeared to be restricted by the transcription of genes located in regions flanking the original centromeres. These results provide evidence that (1) centromere size is regulated; (2) centromere sizes tend to be uniform within a species regardless of chromosome size or origin of the centromere; and (3) neocentromeres emerge and expand preferentially in gene-poor regions. Our results suggest that centromere size expansion may be a key factor in the survival of neocentric chromosomes in natural populations.
Collapse
Affiliation(s)
- Kai Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
15
|
Heneen WK, Geleta M, Brismar K, Xiong Z, Pires JC, Hasterok R, Stoute AI, Scott RJ, King GJ, Kurup S. Seed colour loci, homoeology and linkage groups of the C genome chromosomes revealed in Brassica rapa-B. oleracea monosomic alien addition lines. ANNALS OF BOTANY 2012; 109:1227-42. [PMID: 22628364 PMCID: PMC3359914 DOI: 10.1093/aob/mcs052] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Brassica rapa and B. oleracea are the progenitors of oilseed rape B. napus. The addition of each chromosome of B. oleracea to the chromosome complement of B. rapa results in a series of monosomic alien addition lines (MAALs). Analysis of MAALs determines which B. oleracea chromosomes carry genes controlling specific phenotypic traits, such as seed colour. Yellow-seeded oilseed rape is a desirable breeding goal both for food and livestock feed end-uses that relate to oil, protein and fibre contents. The aims of this study included developing a missing MAAL to complement an available series, for studies on seed colour control, chromosome homoeology and assignment of linkage groups to B. oleracea chromosomes. METHODS A new batch of B. rapa-B. oleracea aneuploids was produced to generate the missing MAAL. Seed colour and other plant morphological features relevant to differentiation of MAALs were recorded. For chromosome characterization, Snow's carmine, fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) were used. KEY RESULTS The final MAAL was developed. Morphological traits that differentiated the MAALs comprised cotyledon number, leaf morphology, flower colour and seed colour. Seed colour was controlled by major genes on two B. oleracea chromosomes and minor genes on five other chromosomes of this species. Homoeologous pairing was largely between chromosomes with similar centromeric positions. FISH, GISH and a parallel microsatellite marker analysis defined the chromosomes in terms of their linkage groups. Conclusions A complete set of MAALs is now available for genetic, genomic, evolutionary and breeding perspectives. Defining chromosomes that carry specific genes, physical localization of DNA markers and access to established genetic linkage maps contribute to the integration of these approaches, manifested in the confirmed correspondence of linkage groups with specific chromosomes. Applications include marker-assisted selection and breeding for yellow seeds.
Collapse
Affiliation(s)
- Waheeb K Heneen
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Figueroa DM, Bass HW. Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation. Chromosome Res 2012; 20:363-80. [PMID: 22588802 PMCID: PMC3391363 DOI: 10.1007/s10577-012-9281-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 12/18/2022]
Abstract
Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.
Collapse
Affiliation(s)
- Debbie M Figueroa
- Department of Biological Science, Florida State University, Tallahassee, 32306-4295, USA.
| | | |
Collapse
|
17
|
Kynast RG, Davis DW, Phillips RL, Rines HW. Gamete formation via meiotic nuclear restitution generates fertile amphiploid F1 (oat × maize) plants. ACTA ACUST UNITED AC 2012; 25:111-22. [DOI: 10.1007/s00497-012-0182-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 02/06/2012] [Indexed: 11/30/2022]
|
18
|
The selection and use of sorghum (Sorghum propinquum) bacterial artificial chromosomes as cytogenetic FISH probes for maize (Zea mays L.). J Biomed Biotechnol 2011; 2011:386862. [PMID: 21234422 PMCID: PMC3014715 DOI: 10.1155/2011/386862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/02/2010] [Indexed: 02/03/2023] Open
Abstract
The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH) maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP) probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented along with an example of transgenomic BAC FISH mapping. This strategy has been used to facilitate the integration of RFLP and FISH maps in other large-genome species.
Collapse
|
19
|
Kynast RG, Riera-Lizarazu O. Development and use of oat-maize chromosome additions and radiation hybrids. Methods Mol Biol 2011; 701:259-284. [PMID: 21181536 DOI: 10.1007/978-1-61737-957-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hybridization experiments of oat with maize require fastidious coordination of plant cultivation and flowering timing, meticulous crossing techniques, stimulation with plant growth substances, and in vitro rescue and culture of the hybrid embryos. The majority of hybrid offspring gradually lose all maize chromosomes consequently resulting in haploid oat plants. However, a minority of the offspring retain one or more maize chromosome(s) in addition to their haploid oat complements (partial hybrids). Oat haploids and partial hybrids with 1-3 maize chromosomes are partially fertile. Controlled self-fertilization of partial hybrids allows for the production of doubled haploid oat plants with an added single maize chromosome (monosomic addition) or an added pair of homologous maize chromosomes (disomic addition) among the inbred offspring. γ-Irradiation of monosomic oat-maize addition lines can be used to further dissect the maize chromosome in a given line. The lines with identified maize chromosome fragments (radiation hybrids) are the basis for establishing chromosome-specific panels. Although still in the experimental phase, the use of radiation hybrids has been useful and has widened the repertoire of maize genetics and genomics methodology.
Collapse
Affiliation(s)
- Ralf G Kynast
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond Surrey, UK
| | | |
Collapse
|
20
|
Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:439-52. [PMID: 20952629 DOI: 10.1093/jxb/erq311] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Theoretical considerations suggest that wheat yield potential could be increased by up to 50% through the genetic improvement of radiation use efficiency (RUE). However, to achieve agronomic impacts, structural and reproductive aspects of the crop must be improved in parallel. A Wheat Yield Consortium (WYC) has been convened that fosters linkage between ongoing research platforms in order to develop a cohesive portfolio of activities that will maximize the probability of impact in farmers' fields. Attempts to increase RUE will focus on improving the performance and regulation of Rubisco, introduction of C(4)-like traits such as CO(2)-concentrating mechanisms, improvement of light interception, and improvement of photosynthesis at the spike and whole canopy levels. For extra photo-assimilates to translate into increased grain yield, reproductive aspects of growth must be tailored to a range of agro-ecosystems to ensure that stable expression of a high harvest index (HI) is achieved. Adequate partitioning among plant organs will be critical to achieve favourable expression of HI, and to ensure that plants with heavier grain have strong enough stems and roots to avoid lodging. Trait-based hybridization strategies will aim to achieve their simultaneous expression in elite agronomic backgrounds, and wide crossing will be employed to augment genetic diversity where needed; for example, to introduce traits for improving RUE from wild species or C(4) crops. Genomic selection approaches will be employed, especially for difficult-to-phenotype traits. Genome-wide selection will be evaluated and is likely to complement crossing of complex but complementary traits by identifying favourable allele combinations among progeny. Products will be delivered to national wheat programmes worldwide via well-established international nursery systems and are expected to make a significant contribution to global food security.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, DF, Mexico.
| | | | | | | | | | | | | |
Collapse
|