1
|
Kaier A, Beck S, Ingold M, García JMC, Reinert S, Sonnewald U, Sonnewald S. Identification of heat stress-related genomic regions by genome-wide association study in Solanum tuberosum. Genomics 2024; 116:110954. [PMID: 39477032 DOI: 10.1016/j.ygeno.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
The climate crisis impairs yield and quality of crucial crops like potatoes. We investigated the effects of heat stress on five morpho-physiological parameters in a diverse panel of 178 potato cultivars under glasshouse conditions. Overall, heat stress increased shoot elongation and green fresh weight, but reduced tuber yield, starch content and harvest index. Genomic information was obtained from 258 tetraploid and three diploid cultivars by a genotyping-by-sequencing approach using methylation-sensitive restriction enzymes. This resulted in an enrichment of sequences in gene-rich regions. Population structure analyses using genetic distances and hierarchical clustering revealed strong kinship but weak overall population structure cultivars. A genome-wide association study (GWAS) was conducted with a subset of 20 K stringently filtered SNPs to identify quantitative trait loci (QTL) linked to heat tolerance. We identified 67 QTL and established haploblock boundaries to narrow down the number of candidate genes. Additionally, GO-enrichment analyses provided insights into gene functions. Heritability and genomic prediction were conducted to assess the usability of the collected data for selecting breeding material. The detected QTL might be exploited in marker-assisted selection to develop heat-resilient potato cultivars.
Collapse
Affiliation(s)
- Alexander Kaier
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Selina Beck
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Markus Ingold
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - José María Corral García
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Stephan Reinert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Uwe Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany
| | - Sophia Sonnewald
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Sharma SK, McLean K, Hedley PE, Dale F, Daniels S, Bryan GJ. Genotyping-by-sequencing targets genic regions and improves resolution of genome-wide association studies in autotetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:180. [PMID: 38980417 PMCID: PMC11233353 DOI: 10.1007/s00122-024-04651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 07/10/2024]
Abstract
KEY MESSAGE De novo genotyping in potato using methylation-sensitive GBS discovers SNPs largely confined to genic or gene-associated regions and displays enhanced effectiveness in estimating LD decay rates, population structure and detecting GWAS associations over 'fixed' SNP genotyping platform. Study also reports the genetic architectures including robust sequence-tagged marker-trait associations for sixteen important potato traits potentially carrying higher transferability across a wider range of germplasm. This study deploys recent advancements in polyploid analytical approaches to perform complex trait analyses in cultivated tetraploid potato. The study employs a 'fixed' SNP Infinium array platform and a 'flexible and open' genome complexity reduction-based sequencing method (GBS, genotyping-by-sequencing) to perform genome-wide association studies (GWAS) for several key potato traits including the assessment of population structure and linkage disequilibrium (LD) in the studied population. GBS SNPs discovered here were largely confined (~ 90%) to genic or gene-associated regions of the genome demonstrating the utility of using a methylation-sensitive restriction enzyme (PstI) for library construction. As compared to Infinium array SNPs, GBS SNPs displayed enhanced effectiveness in estimating LD decay rates and discriminating population subgroups. GWAS using a combined set of 30,363 SNPs identified 189 unique QTL marker-trait associations (QTL-MTAs) covering all studied traits. The majority of the QTL-MTAs were from GBS SNPs potentially illustrating the effectiveness of marker-dense de novo genotyping platforms in overcoming ascertainment bias and providing a more accurate correction for different levels of relatedness in GWAS models. GWAS also detected QTL 'hotspots' for several traits at previously known as well as newly identified genomic locations. Due to the current study exploiting genome-wide genotyping and de novo SNP discovery simultaneously on a large tetraploid panel representing a greater diversity of the cultivated potato gene pool, the reported sequence-tagged MTAs are likely to have higher transferability across a wider range of potato germplasm and increased utility for expediting genomics-assisted breeding for the several complex traits studied.
Collapse
Affiliation(s)
- Sanjeev Kumar Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Karen McLean
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Finlay Dale
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
3
|
Baguma JK, Mukasa SB, Nuwamanya E, Alicai T, Omongo CA, Ochwo-Ssemakula M, Ozimati A, Esuma W, Kanaabi M, Wembabazi E, Baguma Y, Kawuki RS. Identification of Genomic Regions for Traits Associated with Flowering in Cassava ( Manihot esculenta Crantz). PLANTS (BASEL, SWITZERLAND) 2024; 13:796. [PMID: 38592820 PMCID: PMC10974989 DOI: 10.3390/plants13060796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 04/11/2024]
Abstract
Flowering in cassava (Manihot esculenta Crantz) is crucial for the generation of botanical seed for breeding. However, genotypes preferred by most farmers are erect and poor at flowering or never flower. To elucidate the genetic basis of flowering, 293 diverse cassava accessions were evaluated for flowering-associated traits at two locations and seasons in Uganda. Genotyping using the Diversity Array Technology Pty Ltd. (DArTseq) platform identified 24,040 single-nucleotide polymorphisms (SNPs) distributed on the 18 cassava chromosomes. Population structure analysis using principal components (PCs) and kinships showed three clusters; the first five PCs accounted for 49.2% of the observed genetic variation. Linkage disequilibrium (LD) estimation averaged 0.32 at a distance of ~2850 kb (kilo base pairs). Polymorphism information content (PIC) and minor allele frequency (MAF) were 0.25 and 0.23, respectively. A genome-wide association study (GWAS) analysis uncovered 53 significant marker-trait associations (MTAs) with flowering-associated traits involving 27 loci. Two loci, SNPs S5_29309724 and S15_11747301, were associated with all the traits. Using five of the 27 SNPs with a Phenotype_Variance_Explained (PVE) ≥ 5%, 44 candidate genes were identified in the peak SNP sites located within 50 kb upstream or downstream, with most associated with branching traits. Eight of the genes, orthologous to Arabidopsis and other plant species, had known functional annotations related to flowering, e.g., eukaryotic translation initiation factor and myb family transcription factor. This study identified genomic regions associated with flowering-associated traits in cassava, and the identified SNPs can be useful in marker-assisted selection to overcome hybridization challenges, like unsynchronized flowering, and candidate gene validation.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Titus Alicai
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Christopher Abu Omongo
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (E.N.); (M.O.-S.)
| | - Alfred Ozimati
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- School of Biological Sciences, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Michael Kanaabi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
| | - Yona Baguma
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| | - Robert S. Kawuki
- National Crops Resources Research Institute, Namulonge (NaCRRI), Kampala P.O. Box 7084, Uganda; (T.A.); (C.A.O.); (A.O.); (W.E.); (M.K.); (E.W.); (R.S.K.)
- National Agricultural Research Organisation (NARO), Entebbe P.O. Box 295, Uganda;
| |
Collapse
|
4
|
Kaur R, Vasistha NK, Ravat VK, Mishra VK, Sharma S, Joshi AK, Dhariwal R. Genome-Wide Association Study Reveals Novel Powdery Mildew Resistance Loci in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:3864. [PMID: 38005757 PMCID: PMC10675159 DOI: 10.3390/plants12223864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Powdery mildew (PM), caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), significantly threatens global bread wheat production. Although the use of resistant cultivars is an effective strategy for managing PM, currently available wheat cultivars lack sufficient levels of resistance. To tackle this challenge, we conducted a comprehensive genome-wide association study (GWAS) using a diverse panel of 286 bread wheat genotypes. Over three consecutive years (2020-2021, 2021-2022, and 2022-2023), these genotypes were extensively evaluated for PM severity under field conditions following inoculation with virulent Bgt isolates. The panel was previously genotyped using the Illumina 90K Infinium iSelect assay to obtain genome-wide single-nucleotide polymorphism (SNP) marker coverage. By applying FarmCPU, a multilocus mixed model, we identified a total of 113 marker-trait associations (MTAs) located on chromosomes 1A, 1B, 2B, 3A, 3B, 4A, 4B, 5A, 5B, 6B, 7A, and 7B at a significance level of p ≤ 0.001. Notably, four novel MTAs on chromosome 6B were consistently detected in 2020-2021 and 2021-2022. Furthermore, within the confidence intervals of the identified SNPs, we identified 96 candidate genes belonging to different proteins including 12 disease resistance/host-pathogen interaction-related protein families. Among these, protein kinases, leucine-rich repeats, and zinc finger proteins were of particular interest due to their potential roles in PM resistance. These identified loci can serve as targets for breeding programs aimed at developing disease-resistant wheat cultivars.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Sigh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Sigh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
- Department of Genetics and Plant Breeding, Rajiv Gandhi University, Rono Hills, Itanagar 791112, India
| | - Vikas Kumar Ravat
- Department of Plant Pathology, Rajiv Gandhi University, Rono Hills, Itanagar 791112, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), NASC Complex, DPS Marg, New Delhi 110012, India
- International Maize and Wheat Improvement Center (CIMMYT) Regional Office, NASC Complex, DPS Marg, New Delhi 110012, India
| | - Raman Dhariwal
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
5
|
Vos PG, Paulo MJ, Bourke PM, Maliepaard CA, van Eeuwijk FA, Visser RGF, van Eck HJ. GWAS in tetraploid potato: identification and validation of SNP markers associated with glycoalkaloid content. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:76. [PMID: 37313326 PMCID: PMC10248624 DOI: 10.1007/s11032-022-01344-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 06/15/2023]
Abstract
Genome-wide association studies (GWAS) are a useful tool to unravel the genetic architecture of complex traits, but the results can be difficult to interpret. Population structure, genetic heterogeneity, and rare alleles easily result in false positive or false negative associations. This paper describes the analysis of a GWAS panel combined with three bi-parental mapping populations to validate GWAS results, using phenotypic data for steroidal glycoalkaloid (SGA) accumulation and the ratio (SGR) between the two major glycoalkaloids α-solanine and α-chaconine in potato tubers. SGAs are secondary metabolites in the Solanaceae family, functional as a defence against various pests and pathogens and in high quantities toxic for humans. With GWAS, we identified five quantitative trait loci (QTL) of which Sga1.1, Sgr8.1, and Sga11.1 were validated, but not Sga3.1 and Sgr7.1. In the bi-parental populations, Sga5.1 and Sga7.1 were mapped, but these were not identified with GWAS. The QTLs Sga1.1, Sga7.1, Sgr7.1, and Sgr8.1 co-localize with genes GAME9, GAME 6/GAME 11, SGT1, and SGT2, respectively. For other genes involved in SGA synthesis, no QTLs were identified. The results of this study illustrate a number of pitfalls in GWAS of which population structure seems the most important. We also show that introgression breeding for disease resistance has introduced new haplotypes to the gene pool involved in higher SGA levels in certain pedigrees. Finally, we show that high SGA levels remain unpredictable in potato but that α-solanine/α-chaconine ratio has a predictable outcome with specific SGT1 and SGT2 haplotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01344-2.
Collapse
Affiliation(s)
- Peter G. Vos
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present Address: Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
- Current Address: HZPC, Edisonweg 5, 8501 XG Joure, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - M. João Paulo
- Present Address: Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Chris A. Maliepaard
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Richard G. F. Visser
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present Address: Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Herman J. van Eck
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
- Present Address: Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
6
|
Ro N, Haile M, Kim B, Cho GT, Lee J, Lee YJ, Hyun DY. Genome-Wide Association Study for Agro-Morphological Traits in Eggplant Core Collection. PLANTS (BASEL, SWITZERLAND) 2022; 11:2627. [PMID: 36235493 PMCID: PMC9571982 DOI: 10.3390/plants11192627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Eggplant is one of the most economically and nutritionally important vegetables worldwide. The study of the association of phenotypic traits with genetic factors is vital for the rapid and efficient identification and selection of eggplant genetic resources for breeding purposes with desired traits. The eggplant resources (587) collected from different countries, including Korea, were used for establishing the core collection. A total of 288 accessions were selected from 587 Solanum accessions based on 52 single nucleotide polymorphisms (SNPs) markers together with 17 morphological traits. This core collection was further used to analyze the genetic associations of eggplant morphological variations. A large variation was found among the evaluated eggplant accessions for some agro-morphological traits. Stem prickles and leaf prickles showed a significant positive correlation (r = 0.83***), followed by days to flowering and days to maturity (r = 0.64***). A total of 114,981 SNPs were filtered and used for phylogenetic tree analysis, population structure analysis, and genome-wide association study (GWAS). Among the agro-morphological traits, significantly associated SNPs were found for six traits. A total of 377 significantly associated SNPs with six agro-morphological traits were identified. These six traits and the number of SNPs were: days to maturity (51), flower size (121), fruit width (20), harvest fruit color (42), leaf prickles (38), and stem prickles (105). The largest fraction of significant SNPs (11.94%) was obtained on chromosome Ch01, followed by Ch07 and Ch06 with 11.67% and 10.08%, respectively. This study will help to develop markers linked to the most important agro-morphological traits of eggplant genetic resources and support the selection of desirable traits for eggplant breeding programs.
Collapse
Affiliation(s)
- Nayoung Ro
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Mesfin Haile
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Bichsaem Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Gyu-Taek Cho
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Jungro Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Yoon-Jung Lee
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea; (M.H.); (B.K.); (G.-T.C.); (J.L.); (Y.-J.L.)
| | - Do Yoon Hyun
- Department of Crops and Forestry, Korea National University of Agriculture and Fisheries, Jeonju 54874, Korea;
| |
Collapse
|
7
|
Selga C, Chrominski P, Carlson-Nilsson U, Andersson M, Chawade A, Ortiz R. Diversity and population structure of Nordic potato cultivars and breeding clones. BMC PLANT BIOLOGY 2022; 22:350. [PMID: 35850617 PMCID: PMC9290215 DOI: 10.1186/s12870-022-03726-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND The genetic diversity and population structure of breeding germplasm is central knowledge for crop improvement. To gain insight into the genetic potential of the germplasm used for potato breeding in a Nordic breeding program as well as all available accessions from the Nordic genebank (NordGen), 133 potato genotypes were genotyped using the Infinium Illumina 20 K SNP array. After SNP filtering, 11 610 polymorphic SNPs were included in the analysis. In addition, data from three important breeding traits - percent dry matter and uniformity of tuber shape and eye - were scored to measure the variation potato cultivars and breeding clones. RESULTS The genetic diversity among the genotypes was estimated using principal coordinate analysis based on the genetic distance between individuals, as well as by using the software STRUCTURE. Both methods suggest that the collected breeding material and the germplasm from the gene-bank are closely related, with a low degree of population structure between the groups. The phenotypic distribution among the genotypes revealed significant differences, especially between farmer's cultivars and released cultivars and breeding clones. The percent heterozygosity was similar between the groups, with a mean average of 58-60%. Overall, the breeding germplasm and the accessions from the Nordic genebank seems to be closely related with similar genetic background. CONCLUSION The genetic potential of available Nordic potato breeding germplasm is low, and for genetic hybridization purposes, genotypes from outside the Nordic region should be employed.
Collapse
Affiliation(s)
- Catja Selga
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | | | | | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden.
| |
Collapse
|
8
|
Genetic Diversity Trends in the Cultivated Potato: A Spatiotemporal Overview. BIOLOGY 2022; 11:biology11040604. [PMID: 35453803 PMCID: PMC9026384 DOI: 10.3390/biology11040604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022]
Abstract
Simple Summary Monitoring the change in genetic diversity over time and space in crop species is essential to facilitating further improvement. As the world’s most important tuber crop for human consumption, and an ideal candidate to help address global food security, the cultivated potato deserves in-depth study in this regard. In this overview, some aspects of spatiotemporal diversity assessment in the cultivated potato are examined with the aim of promoting appropriate strategies for breeding programs in line with challenges relating to sustainable crop production. Abstract We investigated the changes in genetic diversity over time and space of the cultivated potato (Solanum tuberosum L.) for the period pre-1800 to 2021. A substantial panel of 1219 potato varieties, belonging to different spatiotemporal groups, was examined using a set of 35 microsatellite markers (SSR). Genotypic data covering a total of 407 alleles was analyzed using both self-organizing map (SOM) and discriminant analysis of principal components (DAPC) de novo and a priori clustering methods, respectively. Data analysis based on different models of genetic structuring provided evidence of (1) at least two early lineages that have been maintained since their initial introduction from the Andes into Europe in the 16th century, followed by later ones coming from reintroduction events from the US in the mid-1800s; (2) a level of diversity that has gradually evolved throughout the studied time periods and areas, with the most modern variety groups encompassing most of the diversity found in earlier decades; (3) the emergence of new genetic groups within the current population due to increases in the use of germplasm enhancement practices using exotic germplasms. In addition, analysis revealed significant genetic differentiation both among and within the spatiotemporal groups of germplasm studied. Our results therefore highlight that no major genetic narrowing events have occurred within the cultivated potato over the past three centuries. On the contrary, the genetic base shows promising signs of improvement, thanks to extensive breeding work that is gaining momentum. This overview could be drawn on not only to understand better how past decisions have impacted the current genetic cultivated potato resources, but also to develop appropriate new strategies for breeding programs consistent with the socio-economic and sustainability challenges faced by agrifood systems.
Collapse
|
9
|
Uitdewilligen JGAML, Wolters AMA, van Eck HJ, Visser RGF. Allelic variation for alpha-Glucan Water Dikinase is associated with starch phosphate content in tetraploid potato. PLANT MOLECULAR BIOLOGY 2022; 108:469-480. [PMID: 34994920 PMCID: PMC8894227 DOI: 10.1007/s11103-021-01236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content which was verified in diploid and tetraploid potato mapping populations. Potatoes are grown for various purposes like French fries, table potatoes, crisps and for their starch. One of the most important aspects of potato starch is that it contains a high amount of phosphate ester groups which are considered to be important for providing improved functionalization after derivatization processes. Little is known about the variation in phosphate content as such in different potato varieties and thus we studied the genetic diversity for this trait. From other studies it was clear that the phosphate content is controlled by a quantitative trait locus (QTL) underlying the candidate gene α-Glucan Water Dikinase (StGWD) on chromosome 5. We performed direct amplicon sequencing of this gene by Sanger sequencing. Sequences of two StGWD amplicons from a global collection of 398 commercial cultivars and progenitor lines were used to identify 16 different haplotypes. By assigning tag SNPs to these haplotypes, each of the four alleles present in a cultivar could be deduced and linked to a phosphate content. A high value for intra-individual heterozygosity was observed (Ho = 0.765). The average number of different haplotypes per individual (Ai) was 3.1. Pedigree analysis confirmed that the haplotypes are identical-by-descent (IBD) and offered insight in the breeding history of elite potato germplasm. Haplotypes originating from introgression of wild potato accessions carrying resistance genes could be traced. Furthermore, association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content varying from 12 nmol PO4/mg starch to 38 nmol PO4/mg starch. These allele effects were verified in diploid and tetraploid mapping populations and offer possibilities to breed and select for this trait.
Collapse
Affiliation(s)
- J. G. A. M. L. Uitdewilligen
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
- Present Address: Limgroup BV, Born, The Netherlands
| | - A. M. A. Wolters
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - H. J. van Eck
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - R. G. F. Visser
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| |
Collapse
|
10
|
Construction of a core collection of native Perilla germplasm collected from South Korea based on SSR markers and morphological characteristics. Sci Rep 2021; 11:23891. [PMID: 34903814 PMCID: PMC8668929 DOI: 10.1038/s41598-021-03362-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The leaves and seed oil of Perilla crop (Perilla frutescens L.) have attracted interest as health foods in East Asia. This crop has been traditionally cultivated and used for a long time as a folk plant, especially in Korea. In our study, the 22 SSR markers and eight morphological traits were used to assess the genetic diversity and population structure, to select a core collection of 400 Perilla accessions conserved in the RDA-Genebank of South Korea. A total of 173 alleles were detected and the number of alleles per locus ranged from 4 to 15 (average = 7.9). Gene diversity and polymorphic information content ranged from 0.138 to 0.868 (average = 0.567) and 0.134 to 0.853 (average = 0.522), respectively. The 400 accessions were not clearly distinguished geographically by STRUCTURE and UPGMA analyses. A core collection (44 accessions) was selected from the entire collection by using PowerCore. The core collection accounted for 11.0% of the entire Perilla collection, including 100% of the number of alleles maintained in the whole collection and with similar or greater Shannon-Weaver and Nei diversity indices than the whole collection. The core collection selected by SSR markers was evenly distributed in three clusters on a scatter plot by eight morphological traits. The first core collection of Perilla accessions was constructed, and it maintained allelic richness. Further modification of the core collection is expected with the continuous addition of new accessions of the two cultivated types of Perilla crop and their weedy types.
Collapse
|
11
|
Ospina Nieto CA, Lammerts van Bueren ET, Allefs S, Vos PG, van der Linden G, Maliepaard CA, Struik PC. Association Mapping of Physiological and Morphological Traits Related to Crop Development under Contrasting Nitrogen Inputs in a Diverse Set of Potato Cultivars. PLANTS 2021; 10:plants10081727. [PMID: 34451774 PMCID: PMC8398069 DOI: 10.3390/plants10081727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Ample nitrogen (N) is required for potato production, but its use efficiency is low. N supply strongly interacts with maturity type of the cultivar grown. We assessed whether variation among 189 cultivars grown with 75 or 185 kg available N/ha in 2 years would allow detecting quantitative trait loci (QTLs) for relevant traits. Using phenotypic data, we estimated various traits and carried out a genome-wide association study (GWAS) with kinship correction. Twenty-four traits and 10,747 markers based on single-nucleotide polymorphisms from a 20K Infinium array for 169 cultivars were combined in the analysis. N level affected most traits and their interrelations and influenced the detection of marker–trait associations; some were N-dependent, others were detected at both N levels. Ninety percent of the latter accumulated on a hotspot on Chromosome 5. Chromosomes 2 and 4 also contained regions with multiple associations. After correcting for maturity, the number of QTLs detected was much lower, especially of those common to both N levels; however, interestingly, the region on Chromosome 2 accumulated several QTLs. There is scope for marker-assisted selection for maturity, with the main purpose of improving characteristics within a narrow range of maturity types, in order to break the strong links between maturity type and traits like N use efficiency.
Collapse
Affiliation(s)
- Cesar A. Ospina Nieto
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands;
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Edith T. Lammerts van Bueren
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Sjefke Allefs
- Agrico Research, Burchtweg 17, 8314 PP Bant, The Netherlands;
| | - Peter G. Vos
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Gerard van der Linden
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Chris A. Maliepaard
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Paul C. Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands;
- Correspondence: ; Tel.: +31-(0)317-484246
| |
Collapse
|
12
|
Lindqvist-Kreuze H, De Boeck B, Unger P, Gemenet D, Li X, Pan Z, Sui Q, Qin J, Woldegjorgis G, Negash K, Seid I, Hirut B, Gastelo M, De Vega J, Bonierbale M. Global multi-environment resistance QTL for foliar late blight resistance in tetraploid potato with tropical adaptation. G3-GENES GENOMES GENETICS 2021; 11:6342414. [PMID: 34549785 PMCID: PMC8527470 DOI: 10.1093/g3journal/jkab251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
The identification of environmentally stable and globally predictable resistance to potato late blight is challenged by the clonal and polyploid nature of the crop and the rapid evolution of the pathogen. A diversity panel of tetraploid potato germplasm bred for multiple resistance and quality traits was genotyped by genotyping by sequencing (GBS) and evaluated for late blight resistance in three countries where the International Potato Center (CIP) has established breeding work. Health-indexed, in vitro plants of 380 clones and varieties were distributed from CIP headquarters and tuber seed was produced centrally in Peru, China, and Ethiopia. Phenotypes were recorded following field exposure to local isolates of Phytophthora infestans. QTL explaining resistance in four experiments conducted across the three countries were identified in chromosome IX, and environment-specific QTL were found in chromosomes III, V, and X. Different genetic models were evaluated for prediction ability to identify best performing germplasm in each and all environments. The best prediction ability (0.868) was identified with the genomic best linear unbiased predictors (GBLUPs) when using the diploid marker data and QTL-linked markers as fixed effects. Genotypes with high levels of resistance in all environments were identified from the B3, LBHT, and B3-LTVR populations. The results show that many of the advanced clones bred in Peru for high levels of late blight resistance maintain their resistance in Ethiopia and China, suggesting that the centralized selection strategy has been largely successful.
Collapse
Affiliation(s)
| | | | - Paula Unger
- International Potato Center, CIP, Lima 15024, Peru
| | | | - Xianping Li
- ndustrial Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), 2238 Beijing Road, Kunming, Yunnan 650205, P.R. China
| | - Zhechao Pan
- ndustrial Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), 2238 Beijing Road, Kunming, Yunnan 650205, P.R. China
| | - Qinjun Sui
- ndustrial Crops Research Institute, Yunnan Academy of Agricultural Sciences (YAAS), 2238 Beijing Road, Kunming, Yunnan 650205, P.R. China
| | | | - Gebremedhin Woldegjorgis
- Ethiopian Institute of Agricultural Research, (EIAR), Holetta Agricultural research Center. P.O. Box 31, West Showa Zone, Oromia Region, Ethiopia
| | - Kassaye Negash
- Ethiopian Institute of Agricultural Research, (EIAR), Holetta Agricultural research Center. P.O. Box 31, West Showa Zone, Oromia Region, Ethiopia
| | - Ibrahim Seid
- Ethiopian Institute of Agricultural Research, (EIAR), Holetta Agricultural research Center. P.O. Box 31, West Showa Zone, Oromia Region, Ethiopia
| | - Betaw Hirut
- CIP Ethiopia, c/o ILRI Ethiopia P.O. Box 5689, Addis Ababa, Ethiopia
| | | | - Jose De Vega
- Earlham Institute (EI), Norwich Research Park, Norwich NR4 7UZ, UK
| | | |
Collapse
|
13
|
Yousaf MF, Demirel U, Naeem M, Çalışkan ME. Association mapping reveals novel genomic regions controlling some root and stolon traits in tetraploid potato ( Solanum tuberosum L.). 3 Biotech 2021; 11:174. [PMID: 33927965 PMCID: PMC7973339 DOI: 10.1007/s13205-021-02727-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022] Open
Abstract
Tuber crops have measurable biological variation in root and stolon phenotyping and thus may be utilized to identify genomic regions associated with these variations. This is the first comprehensive association mapping study related to potato root and stolon traits. A diverse panel of 192 tetraploid potato (Solanum tuberosum L.) genotypes were grown in aeroponics to reveal a biologically significant variation and detection of genomic regions associated with the root and stolon traits. Phenotyping of root traits was performed by image analysis software "WinRHIZO" (a root scanning method), and stolon traits was measured manually, while SolCAP 25K potato array was used for genotyping. Significant variation was observed between the potato genotypes for root and stolon traits along with high heritabilities (0.80 in TNS to 0.95 in SL). For marker-trait associations, Q + K linear mixed model was implemented and 50 novel genomic regions were detected. Significantly associated SNPs with stolon traits were located on chr 4, chr 6, chr 7, chr 9, chr 11 and chr 12, while those linked to root traits on chr 1, chr 2, chr 3, chr 9, chr 11, and chr 12. Structure and PCA analysis grouped genotypes into four sub-populations disclosing population genetic diversity. LD decay was observed at 2.316 Mbps (r 2 = 0.29) in the population. The identified SNPs were associated with genes performing vital functions such as root signaling and signal transduction in stress environments (GT-2 factors, protein kinases SAPK2-like and protein phosphatases "StPP1"), transcriptional and post-transcriptional gene regulation (RNA-binding proteins), sucrose synthesis and transporter families (UGPase, Sus3, SuSy, and StSUT1) and PVY resistance (Ry sto). The findings of our study can be employed in future breeding programs for improvement in potato production. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02727-6.
Collapse
Affiliation(s)
- Muhammad Farhan Yousaf
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Ufuk Demirel
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Muhammad Naeem
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| | - Mehmet Emin Çalışkan
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|
14
|
Gerard D. Pairwise linkage disequilibrium estimation for polyploids. Mol Ecol Resour 2021; 21:1230-1242. [PMID: 33559321 DOI: 10.1111/1755-0998.13349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
Many tasks in statistical genetics involve pairwise estimation of linkage disequilibrium (LD). The study of LD in diploids is mature. However, in polyploids, the field lacks a comprehensive characterization of LD. Polyploids also exhibit greater levels of genotype uncertainty than diploids, yet no methods currently exist to estimate LD in polyploids in the presence of such genotype uncertainty. Furthermore, most LD estimation methods do not quantify the level of uncertainty in their LD estimates. Our study contains three major contributions. (i) We characterize haplotypic and composite measures of LD in polyploids. These composite measures of LD turn out to be functions of common statistical measures of association. (ii) We derive procedures to estimate haplotypic and composite LD in polyploids in the presence of genotype uncertainty. We do this by estimating LD directly from genotype likelihoods, which may be obtained from many genotyping platforms. (iii) We derive standard errors of all LD estimators that we discuss. We validate our methods on both real and simulated data. Our methods are implemented in the R package ldsep, available on the Comprehensive R Archive Network https://cran.r-project.org/package=ldsep.
Collapse
Affiliation(s)
- David Gerard
- Department of Mathematics and Statistics, American University, Washington, DC, USA
| |
Collapse
|
15
|
Selga C, Koc A, Chawade A, Ortiz R. A Bioinformatics Pipeline to Identify a Subset of SNPs for Genomics-Assisted Potato Breeding. PLANTS (BASEL, SWITZERLAND) 2020; 10:plants10010030. [PMID: 33374406 PMCID: PMC7824009 DOI: 10.3390/plants10010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 05/20/2023]
Abstract
Modern potato breeding methods following a genomic-led approach provide means for shortening breeding cycles and increasing breeding efficiency across selection cycles. Acquiring genetic data for large breeding populations remains expensive. We present a pipeline to reduce the number of single nucleotide polymorphisms (SNPs) to lower the cost of genotyping. First, we reduced the number of individuals to be genotyped with a high-throughput method according to the multi-trait variation as defined by principal component analysis of phenotypic characteristics. Next, we reduced the number of SNPs by pruning for linkage disequilibrium. By adjusting the square of the correlation coefficient between two adjacent loci, we obtained reduced subsets of SNPs. We subsequently tested these SNP subsets by two methods; (1) a genome-wide association study (GWAS) for marker identification, and (2) genomic selection (GS) to predict genomic estimated breeding values. The results indicate that both GWAS and GS can be done without loss of information after SNP reduction. The pipeline allows for creating custom SNP subsets to cover all variation found in any particular breeding population. Low-throughput genotyping will reduce the genotyping cost associated with large populations, thereby making genomic breeding methods applicable to large potato breeding populations by reducing genotyping costs.
Collapse
|
16
|
Assessment of genetic diversity and population structure among a collection of Korean Perilla germplasms based on SSR markers. Genes Genomics 2020; 42:1419-1430. [PMID: 33113112 DOI: 10.1007/s13258-020-01013-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Information on the genetic variation of genetic resource collections is very important for both the conservation and utilization of crop germplasms in genebanks. Var. frutescens of Perilla crop is extensively cultivated in South Korea as both an oil crop and a vegetable crop. OBJECTIVES We used SSR markers to evaluate the genetic diversity, genetic relationships, and population structure of 155 accessions of var. frutescens that have been selected as genetic resources for the development of leaf vegetable cultivars and preserved in the RDA-Genebank collection from South Korea. METHODS A total of 155 accessions of var. frutescens of Perilla crop collected in South Korea were obtained from the RDA-Genebank of the Republic of Korea. We selected 20 SSR markers representing the polymorphism of and adequately amplifying all the Perilla accessions. RESULTS The average GD and PIC values were 0.642 and 0.592, respectively, with ranges of 0.244-0.935 and 0.232- 0.931. The genetic variability in the southern region of South Korea was higher than that in the central region. The clustering patterns were not clearly distinguished between the accessions of var. frutescens from the central and southern regions of South Korea. CONCLUSION These results regarding the genetic diversity and population structure of the 155 accessions of var. frutescens of South Korea provide useful information for understanding the genetic variability of this crop and selecting and managing core germplasm sets in the RDA-Genebank of the Republic of Korea.
Collapse
|
17
|
Zia MAB, Demirel U, Nadeem MA, Çaliskan ME. Genome-wide association study identifies various loci underlying agronomic and morphological traits in diversified potato panel. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1003-1020. [PMID: 32377049 PMCID: PMC7196606 DOI: 10.1007/s12298-020-00785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/01/2020] [Accepted: 02/21/2020] [Indexed: 05/22/2023]
Abstract
Potato is one of the most important food crops all over the world. Breeding activities for this crop are mainly aimed to improve the quality and yield of tuber. However, genetic architecture of various traits contributing to the quality and yield of potato are not yet completely understood. Genome wide association studies provides a broader way to identify the genomic regions associated with various traits. Panels of 237 tetraploid potato genotypes from different countries were grown for two consecutive years 2016 and 2017 at experimental research area of Potato research center Niğde, Turkey. A genome wide association study using SolCAP 12K array was performed for various morpho-agronomic traits. Structure algorithm and neighborhood joining analysis clearly divided all genotypes into 4 clusters on the basis of their origin. For the marker trait association, Mixed Linear Model in TASSEL was performed and 36 genomic regions were found for the traits under study. The mean r2 value was found to be 0.92 and mean significant LD was 47.5% in the populations. LD patterns reflected the breeding history of potato. The findings of present study provide a framework which could be useful for future potato breeding programs to enhance the production and to reduce the challenges in the coming years to feed world's population.
Collapse
Affiliation(s)
- Muhammad Abu Bakar Zia
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
- College of Agriculture, Bolu Abant Izzet Baysal University, Bahadur Sub Campus Layyah, Pakistan
| | - Ufuk Demirel
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - Muhammad Azhar Nadeem
- Department of Field Crops, Faculty of Agricultural and Natural Science, Bahauddin Zakariya University, 14000 Bolu, Turkey
| | - Mehmet Emin Çaliskan
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| |
Collapse
|
18
|
Caruana BM, Pembleton LW, Constable F, Rodoni B, Slater AT, Cogan NOI. Validation of Genotyping by Sequencing Using Transcriptomics for Diversity and Application of Genomic Selection in Tetraploid Potato. FRONTIERS IN PLANT SCIENCE 2019; 10:670. [PMID: 31191581 PMCID: PMC6548859 DOI: 10.3389/fpls.2019.00670] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 05/03/2019] [Indexed: 05/10/2023]
Abstract
Potato is an important food crop due to its increasing consumption, and as a result, there is demand for varieties with improved production. However, the current status of breeding for improved varieties is a long process which relies heavily on phenotypic evaluation and dated molecular techniques and has little emphasis on modern genotyping approaches. Evaluation and selection before a cultivar is commercialized typically takes 10-15 years. Molecular markers have been developed for disease and pest resistance, resulting in initial marker-assisted selection in breeding. This study has evaluated and implemented a high-throughput transcriptome sequencing method for dense marker discovery in potato for the application of genomic selection. An Australian relevant collection of commercial cultivars was selected, and identification and distribution of high quality SNPs were examined using standard bioinformatic pipelines and a custom approach for the prediction of allelic dosage. As a result, a large number of SNP markers were identified and filtered to generate a high-quality subset that was then combined with historic phenotypic data to assess the approach for genomic selection. Genomic selection potential was predicted for highly heritable traits and the approach demonstrated advantages over the previously used technologies in terms of markers identified as well as costs incurred. The high-quality SNP list also provided acceptable genome coverage which demonstrates its applicability for much larger future studies. This SNP list was also annotated to provide an indication of function and will serve as a resource for the community in future studies. Genome wide marker tools will provide significant benefits for potato breeding efforts and the application of genomic selection will greatly enhance genetic progress.
Collapse
Affiliation(s)
- B. M. Caruana
- Agriculture Victoria Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - L. W. Pembleton
- Agriculture Victoria Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - F. Constable
- Agriculture Victoria Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - B. Rodoni
- Agriculture Victoria Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - A. T. Slater
- Agriculture Victoria Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - N. O. I. Cogan
- Agriculture Victoria Research, Agriculture Victoria, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- *Correspondence: N. O. I. Cogan,
| |
Collapse
|
19
|
Pavan S, Curci PL, Zuluaga DL, Blanco E, Sonnante G. Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS One 2018; 13:e0205988. [PMID: 30352087 PMCID: PMC6198968 DOI: 10.1371/journal.pone.0205988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
Exploiting the biodiversity of crops and their wild relatives is fundamental for maintaining and increasing food security. The species Cynara cardunculus includes three taxa: the globe artichoke, one of the most important Mediterranean vegetables, the leafy cardoon, and the wild cardoon. In this study, genotyping by sequencing (GBS) was successfully applied to reveal thousands of polymorphisms in a C. cardunculus germplasm collection, including 65 globe artichoke, 9 leafy cardoon, and 21 wild cardoon samples. The collection showed a strong population structure at K = 2, separating the globe artichoke from the leafy and wild cardoon. At higher K values, further substructures were observed, in which the wild cardoon was separated from the leafy cardoon, and the latter included the Spanish wild cardoons, while the wild sample from Portugal was admixed. Moreover, subpopulations within the globe artichoke set were highlighted. Structure analysis restricted to the globe artichoke dataset pointed out genetic differentiation between the ˝Catanesi˝ typology and all the other samples (K = 2). At higher values of K, the separation of the ˝Catanesi˝ group still held true, and green headed landraces from Apulia region, Italy (˝Green Apulian˝) formed a distinct subpopulation. ˝Romaneschi˝ artichoke types fell in a variable group with admixed samples, indicating that they should not be considered as a genetically uniform typology. The results of principal component analysis and Neighbor-Joining hierarchical clustering were consistent with structure results, and in addition provided a measure of genetic relationships among individual genotypes. Both analyses attributed the wild material from Spain and Portugal to the cultivated cardoon group, supporting the idea that this might be indeed a feral form of the leafy cardoon. Different reproductive habit and possibly selective pressure led to a slower LD decay in artichoke compared to cardoon. Genotyping by sequencing has proven a reliable methodology to obtain valuable SNPs and assess population genetics in C. cardunculus.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari ˝Aldo Moro˝, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | | | | | | | | |
Collapse
|
20
|
Sharma SK, MacKenzie K, McLean K, Dale F, Daniels S, Bryan GJ. Linkage Disequilibrium and Evaluation of Genome-Wide Association Mapping Models in Tetraploid Potato. G3 (BETHESDA, MD.) 2018; 8:3185-3202. [PMID: 30082329 PMCID: PMC6169395 DOI: 10.1534/g3.118.200377] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/30/2018] [Indexed: 11/18/2022]
Abstract
Genome-wide association studies (GWAS) have become a powerful tool for analyzing complex traits in crop plants. The current study evaluates the efficacy of various GWAS models and methods for elucidating population structure in potato. The presence of significant population structure can lead to detection of spurious marker-trait associations, as well as mask true ones. While appropriate statistical models are needed to detect true marker-trait associations, in most published potato GWAS, a 'one model fits all traits' approach has been adopted. We have examined various GWAS models on a large association panel comprising diverse tetraploid potato cultivars and breeding lines, genotyped with single nucleotide polymorphism (SNP) markers. Phenotypic data were generated for 20 quantitative traits assessed in different environments. Best Linear Unbiased Estimates (BLUEs) for these traits were obtained for use in assessing GWAS models. Goodness of fit of GWAS models, derived using different combinations of kinship and population structure for all traits, was evaluated using Quantile-Quantile (Q-Q) plots and genomic control inflation factors (λGC). Kinship was found to play a major role in correcting population confounding effects and results advocate a 'trait-specific' fit of different GWAS models. A survey of genome-wide linkage disequilibrium (LD), one of the critical factors affecting GWAS, is also presented and our findings are compared to other recent studies in potato. The genetic material used here, and the outputs of this study represent a novel resource for genetic analysis in potato.
Collapse
Affiliation(s)
| | - Katrin MacKenzie
- Biomathematics and Statistics Scotland (BioSS), Dundee DD2 5DA, UK
| | | | - Finlay Dale
- The James Hutton Institute, Dundee DD2 5DA, UK
| | | | | |
Collapse
|
21
|
Li X, Xu J, Duan S, Bian C, Hu J, Shen H, Li G, Jin L. Pedigree-Based Deciphering of Genome-Wide Conserved Patterns in an Elite Potato Parental Line. FRONTIERS IN PLANT SCIENCE 2018; 9:690. [PMID: 29875792 PMCID: PMC5974212 DOI: 10.3389/fpls.2018.00690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
Elite parental lines are more likely to breed fine varieties, but knowledge about elite parents and their genetic backgrounds is limited. In this paper, we investigated the pedigree relationships of potato varieties bred worldwide and in China. Several elite parents were identified, and these parents were more frequently used as parents in breeding programs across different time periods and countries. We next used 2b-RAD, a reduced-representation sequencing method, to genotype the elite parent Mira and 24 of its offspring. These cultivars span 5 generations, making this lineage the longest continuous pedigree among Chinese bred potatoes. A total of 47,314 tetraploid single nucleotide polymorphisms (SNPs) identified by FreeBayes were used to trace the conserved segments of the Mira genome. The conserved segments had identical or similar allele-specific SNPs across the analyzed genotypes. In Mira, 3,788 segments comprising over 10,000 bp, or 20.8% of the genome, were defined as conserved segments. These segments contain genes involved in crucial biological processes that are of special interest to breeders. These regions, which have been conserved across generations of highly selective breeding, may be helpful for further breeding and performing genome-wide breeding by design.
Collapse
Affiliation(s)
- Xiaochuan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
- College of Horticulture, China Agricultural University, Beijing, China
- Bijie Institute of Agricultural Sciences, Bijie, China
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Chunsong Bian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Jun Hu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Huolin Shen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
22
|
Stich B, Van Inghelandt D. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato. FRONTIERS IN PLANT SCIENCE 2018; 9:159. [PMID: 29563919 PMCID: PMC5845909 DOI: 10.3389/fpls.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 05/20/2023]
Abstract
Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs.
Collapse
Affiliation(s)
- Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, From Complex Traits towards Synthetic Modules, Düsseldorf, Germany
| | - Delphine Van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
23
|
Bali S, Robinson BR, Sathuvalli V, Bamberg J, Goyer A. Single Nucleotide Polymorphism (SNP) markers associated with high folate content in wild potato species. PLoS One 2018; 13:e0193415. [PMID: 29474475 PMCID: PMC5825101 DOI: 10.1371/journal.pone.0193415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/09/2018] [Indexed: 11/23/2022] Open
Abstract
Micronutrient deficiency, also known as the hidden hunger, affects over two billion people worldwide. Potato is the third most consumed food crops in the world, and is therefore a fundamental element of food security for millions of people. Increasing the amount of micronutrients in food crop could help alleviate worldwide micronutrient malnutrition. In the present study, we report on the identification of single nucleotide polymorphism (SNP) markers associated with folate, an essential micronutrient in the human diet. A high folate diploid clone Fol 1.6 from the wild potato relative Solanum boliviense (PI 597736) was crossed with a low/medium folate diploid S. tuberosum clone USW4self#3. The resulting F1 progeny was intermated to generate an F2 population, and tubers from 94 F2 individuals were harvested for folate analysis and SNP genotyping using a SolCap 12K Potato SNP array. Folate content in the progeny ranged from 304 to 2,952 ng g-1 dry weight. 6,759 high quality SNPs containing 4,174 (62%) polymorphic and 2,585 (38%) monomorphic SNPs were used to investigate marker-trait association. Association analysis was performed using two different approaches: survey SNP-trait association (SSTA) and SNP-trait association (STA). A total of 497 significant SNPs were identified, 489 by SSTA analysis and 43 by STA analysis. Markers identified by SSTA were located on all twelve chromosomes while those identified by STA were confined to chromosomes 2, 4, and 6. Eighteen of the significant SNPs were located within or in close proximity to folate metabolism-related genes. Forty two SNPs were identical between SSTA and STA analyses. These SNPs have potential to be used in marker-assisted selection for breeding high folate potato varieties.
Collapse
Affiliation(s)
- Sapinder Bali
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States of America
| | - Bruce R. Robinson
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States of America
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States of America
| | - Vidyasagar Sathuvalli
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States of America
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States of America
| | - John Bamberg
- USDA/Agricultural Research Service, US Potato Genebank, Sturgeon Bay, WI, United States of America
| | - Aymeric Goyer
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, United States of America
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
24
|
Tagliotti ME, Deperi SI, Bedogni MC, Zhang R, Manrique Carpintero NC, Coombs J, Douches D, Huarte MA. Use of easy measurable phenotypic traits as a complementary approach to evaluate the population structure and diversity in a high heterozygous panel of tetraploid clones and cultivars. BMC Genet 2018; 19:8. [PMID: 29338687 PMCID: PMC5771038 DOI: 10.1186/s12863-017-0556-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/03/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Diversity in crops is fundamental for plant breeding efforts. An accurate assessment of genetic diversity, using molecular markers, such as single nucleotide polymorphism (SNP), must be able to reveal the structure of the population under study. A characterization of population structure using easy measurable phenotypic traits could be a preliminary and low-cost approach to elucidate the genetic structure of a population. A potato population of 183 genotypes was evaluated using 4859 high-quality SNPs and 19 phenotypic traits commonly recorded in potato breeding programs. A Bayesian approach, Minimum Spanning Tree (MST) and diversity estimator, as well as multivariate analysis based on phenotypic traits, were adopted to assess the population structure. RESULTS Analysis based on molecular markers showed groups linked to the phylogenetic relationship among the germplasm as well as the link with the breeding program that provided the material. Diversity estimators consistently structured the population according to a priori group estimation. The phenotypic traits only discriminated main groups with contrasting characteristics, as different subspecies, ploidy level or membership in a breeding program, but were not able to discriminate within groups. A joint molecular and phenotypic characterization analysis discriminated groups based on phenotypic classification, taxonomic category, provenance source of genotypes and genetic background. CONCLUSIONS This paper shows the significant level of diversity existing in a parental population of potato as well as the putative phylogenetic relationships among the genotypes. The use of easily measurable phenotypic traits among highly contrasting genotypes could be a reasonable approach to estimate population structure in the initial phases of a potato breeding program.
Collapse
Affiliation(s)
- Martin E Tagliotti
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Saavedra 15, C1083ACA, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sofia I Deperi
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Saavedra 15, C1083ACA, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria C Bedogni
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina
| | - Ruofang Zhang
- Potato Engineering and Technology Research Centre, Inner Mongolia University, 235 West College Road, Hohhot, China
| | - Norma C Manrique Carpintero
- Department of Plant, Molecular Plant Sciences Bldg., Michigan State University, 612 Wilson Road #S148, East Lansing, Michigan, MI 48824, USA
| | - Joseph Coombs
- Department of Plant, Molecular Plant Sciences Bldg., Michigan State University, 612 Wilson Road #S148, East Lansing, Michigan, MI 48824, USA
| | - David Douches
- Department of Plant, Molecular Plant Sciences Bldg., Michigan State University, 612 Wilson Road #S148, East Lansing, Michigan, MI 48824, USA
| | - Marcelo A Huarte
- Potato Research Group, Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta 226 km 73.5, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
25
|
Romano A, Masi P, Aversano R, Carucci F, Palomba S, Carputo D. Microstructure and tuber properties of potato varieties with different genetic profiles. Food Chem 2018; 239:789-796. [DOI: 10.1016/j.foodchem.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 11/28/2022]
|
26
|
Abdullaev AA, Salakhutdinov IB, Egamberdiev SS, Khurshut EE, Rizaeva SM, Ulloa M, Abdurakhmonov IY. Genetic diversity, linkage disequilibrium, and association mapping analyses of Gossypium barbadense L. germplasm. PLoS One 2017; 12:e0188125. [PMID: 29136656 PMCID: PMC5685624 DOI: 10.1371/journal.pone.0188125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/01/2017] [Indexed: 02/05/2023] Open
Abstract
Limited polymorphism and narrow genetic base, due to genetic bottleneck through historic domestication, highlight a need for comprehensive characterization and utilization of existing genetic diversity in cotton germplasm collections. In this study, 288 worldwide Gossypium barbadense L. cotton germplasm accessions were evaluated in two diverse environments (Uzbekistan and USA). These accessions were assessed for genetic diversity, population structure, linkage disequilibrium (LD), and LD-based association mapping (AM) of fiber quality traits using 108 genome-wide simple sequence repeat (SSR) markers. Analyses revealed structured population characteristics and a high level of intra-variability (67.2%) and moderate interpopulation differentiation (32.8%). Eight percent and 4.3% of markers revealed LD in the genome of the G. barbadense at critical values of r2 ≥ 0.1 and r2 ≥ 0.2, respectively. The LD decay was on average 24.8 cM at the threshold of r2 ≥ 0.05. LD retained on average distance of 3.36 cM at the threshold of r2 ≥ 0.1. Based on the phenotypic evaluations in the two diverse environments, 100 marker loci revealed a strong association with major fiber quality traits using mixed linear model (MLM) based association mapping approach. Fourteen marker loci were found to be consistent with previously identified quantitative trait loci (QTLs), and 86 were found to be new unreported marker loci. Our results provide insights into the breeding history and genetic relationship of G. barbadense germplasm and should be helpful for the improvement of cotton cultivars using molecular breeding and omics-based technologies.
Collapse
Affiliation(s)
- Alisher A. Abdullaev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ilkhom B. Salakhutdinov
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Sharof S. Egamberdiev
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ernest E. Khurshut
- Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Sofiya M. Rizaeva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Mauricio Ulloa
- Cropping Systems Research Laboratory, United States Department of Agriculture - Agricultural Research Services, Lubbock, Texas, United States of America
| | | |
Collapse
|
27
|
Berdugo-Cely J, Valbuena RI, Sánchez-Betancourt E, Barrero LS, Yockteng R. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers. PLoS One 2017; 12:e0173039. [PMID: 28257509 PMCID: PMC5336250 DOI: 10.1371/journal.pone.0173039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 02/14/2017] [Indexed: 01/03/2023] Open
Abstract
The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs.
Collapse
Affiliation(s)
- Jhon Berdugo-Cely
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
| | - Raúl Iván Valbuena
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
| | | | - Luz Stella Barrero
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Colombian Agricultural Research Corporation (CORPOICA)-Mosquera, Cundinamarca, Colombia
- Muséum National d’Histoire Naturelle, UMR-CNRS 7205, Paris, France
| |
Collapse
|
28
|
Vos PG, Paulo MJ, Voorrips RE, Visser RGF, van Eck HJ, van Eeuwijk FA. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:123-135. [PMID: 27699464 PMCID: PMC5214954 DOI: 10.1007/s00122-016-2798-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/26/2016] [Indexed: 05/20/2023]
Abstract
The number of SNPs required for QTL discovery is justified by the distance at which linkage disequilibrium has decayed. Simulations and real potato SNP data showed how to estimate and interpret LD decay. The magnitude of linkage disequilibrium (LD) and its decay with genetic distance determine the resolution of association mapping, and are useful for assessing the desired numbers of SNPs on arrays. To study LD and LD decay in tetraploid potato, we simulated autotetraploid genotypes and used it to explore the dependence on: (1) the number of haplotypes in the population (the amount of genetic variation) and (2) the percentage of haplotype specific SNPs (hs-SNPs). Several estimators for short-range LD were explored, such as the average r 2, median r 2, and other percentiles of r 2 (80, 90, and 95 %). For LD decay, we looked at LD½,90, the distance at which the short-range LD is halved when using the 90 % percentile of r 2 at short range, as estimator for LD. Simulations showed that the performance of various estimators for LD decay strongly depended on the number of haplotypes, although the real value of LD decay was not influenced very much by this number. The estimator LD½,90 was chosen to evaluate LD decay in 537 tetraploid varieties. LD½,90 values were 1.5 Mb for varieties released before 1945 and 0.6 Mb in varieties released after 2005. LD½,90 values within three different subpopulations ranged from 0.7 to 0.9 Mb. LD½,90 was 2.5 Mb for introgressed regions, indicating large haplotype blocks. In pericentromeric heterochromatin, LD decay was negligible. This study demonstrates that several related factors influencing LD decay could be disentangled, that no universal approach can be suggested, and that the estimation of LD decay has to be performed with great care and knowledge of the sampled material.
Collapse
Affiliation(s)
- Peter G Vos
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - M João Paulo
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
29
|
Sprenger H, Kurowsky C, Horn R, Erban A, Seddig S, Rudack K, Fischer A, Walther D, Zuther E, Köhl K, Hincha DK, Kopka J. The drought response of potato reference cultivars with contrasting tolerance. PLANT, CELL & ENVIRONMENT 2016; 39:2370-2389. [PMID: 27341794 DOI: 10.1111/pce.12780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 05/21/2023]
Abstract
Systems responses to drought stress of four potato reference cultivars with differential drought tolerance (Solanum tuberosum L.) were investigated by metabolome profiling and RNA sequencing. Systems analysis was based on independent field and greenhouse trials. Robust differential drought responses across all cultivars under both conditions comprised changes of proline, raffinose, galactinol, arabitol, arabinonic acid, chlorogenic acid and 102 transcript levels. The encoded genes contained a high proportion of heat shock proteins and proteins with signalling or regulatory functions, for example, a homolog of abscisic acid receptor PYL4. Constitutive differences of the tolerant compared with the sensitive cultivars included arbutin, octopamine, ribitol and 248 transcripts. The gene products of many of these transcripts were pathogen response related, such as receptor kinases, or regulatory proteins, for example, a homolog of the Arabidopsis FOUR LIPS MYB-regulator of stomatal cell proliferation. Functional enrichment analyses imply heat stress as a major acclimation component of potato leaves to long-term drought stress. Enhanced heat stress during drought can be caused by loss of transpiration cooling. This effect and CO2 limitation are the main consequences of drought-induced or abscisic acid-induced stomatal closure. Constitutive differences in metabolite and transcript levels between tolerant and sensitive cultivars indicate interactions of drought tolerance and pathogen resistance in potato.
Collapse
Affiliation(s)
- Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Christina Kurowsky
- Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Renate Horn
- Institut für Biowissenschaften und Pflanzengenetik, University of Rostock, Albert-Einstein-Straße 3, D-18059, Rostock, Germany
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Sylvia Seddig
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, D-18190, Sanitz, Germany
| | - Katharina Rudack
- Institute for Resistance Research and Stress Tolerance, Julius-Kühn Institut, Federal Research Centre for Cultivated Plants, Rudolf-Schick-Platz 3, D-18190, Sanitz, Germany
| | - Axel Fischer
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Dirk K Hincha
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Golm, Potsdam, Germany.
| |
Collapse
|
30
|
Jansky S, Fajardo D. Amylose content decreases during tuber development in potato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4560-4564. [PMID: 26931799 DOI: 10.1002/jsfa.7673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Potato starch is composed primarily of amylopectin and amylose in an approximately 3:1 ratio. Amylose is considered to be nutritionally desirable in North American and European markets, so there is interest in finding strategies to increase the amylose content of potato starch. There is also interest in marketing 'baby' potatoes, which are harvested when they are physiologically immature. This study was carried out to determine weekly changes in amylose content in potato tubers of 11 North American cultivars during the growing season. The trial was repeated across 3 years. RESULTS We determined that amylose content is highest early and it decreases in a linear fashion as the growing season progresses. Mean amylose content across cultivars and years declined from 30.0% in late June to 26.8% in late August. The rate of decrease varied across years, with slopes of linear regression plots ranging from -0.17 in 2012 to -0.74 in 2011. Amylose content in tuber starch varied among cultivars, with the highest levels observed in Ranger Russet (30.7%) and White Pearl (31.6%); it was lowest in Kennebec (25.7%) and Langlade (25.6%). CONCLUSIONS This study adds to a growing body of literature on the nutritional value of immature potato tubers. In addition to having higher levels of some phytonutrients, as reported in other studies, immature tubers have a higher proportion of amylose in the starch. This is nutritionally desirable in affluent regions where high fiber content is more important than calories from carbohydrates. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Shelley Jansky
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI 53706, USA
- Department of Horticulture, USDA-ARS, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Diego Fajardo
- Vegetable Crops Research Unit, USDA-ARS, 1575 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
31
|
Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Walkemeier B, Gebhardt C. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS One 2016; 11:e0156254. [PMID: 27281327 PMCID: PMC4900573 DOI: 10.1371/journal.pone.0156254] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Collapse
Affiliation(s)
- Teresa Mosquera
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Fernanda Alvarez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute Jean-Pierre Bourgin, INRA, AgroParis Tech, CNRS, Université Paris-Saclay, Versailles, France
| | - Meki Shehabu Muktar
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sebastian Steinemann
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jinquan Li
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Astrid Draffehn
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Hofmann
- Department of Genomics, Life & Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Lübeck
- SaKa-Pflanzenzucht GmbH & Co. KG, 24340, Windeby, Germany
| | | | | | | | - Birgit Walkemeier
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
32
|
Zhang Y, Yan H, Jiang X, Wang X, Huang L, Xu B, Zhang X, Zhang L. Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers. Hereditas 2016; 153:4. [PMID: 28096766 PMCID: PMC5226102 DOI: 10.1186/s41065-016-0007-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
Background To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass (Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. Results In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei’s gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 (P < 0.01). Conclusions The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.
Collapse
Affiliation(s)
- Yu Zhang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China.,IRTA. Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB), Campus UAB - Edifici CRAG, Bellaterra - Cerdanyola del Vallès, Barcelona, 08193 Spain
| | - Haidong Yan
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaomei Jiang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaoli Wang
- Guizhou Institute of Prataculture, Guiyang, 550006 PR China
| | - Linkai Huang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Bin Xu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinquan Zhang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lexin Zhang
- Grassland Science Department, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
33
|
Schönhals EM, Ortega F, Barandalla L, Aragones A, Ruiz de Galarreta JI, Liao JC, Sanetomo R, Walkemeier B, Tacke E, Ritter E, Gebhardt C. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:767-785. [PMID: 26825382 PMCID: PMC4799268 DOI: 10.1007/s00122-016-2665-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/09/2016] [Indexed: 05/23/2023]
Abstract
SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.
Collapse
Affiliation(s)
- E M Schönhals
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | | | | | - J-C Liao
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - R Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - B Walkemeier
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | | - C Gebhardt
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
34
|
Piedra-malagón EM, Albarrán-lara AL, Rull J, Piñero D, Sosa V. Using multiple sources of characters to delimit species in the genusCrataegus(Rosaceae): the case of theCrataegus roseicomplex. SYST BIODIVERS 2016. [DOI: 10.1080/14772000.2015.1117027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Schulz DF, Schott RT, Voorrips RE, Smulders MJM, Linde M, Debener T. Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals. FRONTIERS IN PLANT SCIENCE 2016; 7:1798. [PMID: 27999579 PMCID: PMC5138216 DOI: 10.3389/fpls.2016.01798] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related Fragaria and Prunus genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.
Collapse
Affiliation(s)
- Dietmar F. Schulz
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Rena T. Schott
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Roeland E. Voorrips
- Wageningen University and Research Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Marinus J. M. Smulders
- Wageningen University and Research Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Marcus Linde
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Thomas Debener
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
- *Correspondence: Thomas Debener
| |
Collapse
|
36
|
Carpenter MA, Joyce NI, Genet RA, Cooper RD, Murray SR, Noble AD, Butler RC, Timmerman-Vaughan GM. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III. FRONTIERS IN PLANT SCIENCE 2015; 6:143. [PMID: 25806042 PMCID: PMC4354307 DOI: 10.3389/fpls.2015.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/23/2015] [Indexed: 05/23/2023]
Abstract
Starch phosphorylation is an important aspect of plant metabolism due to its role in starch degradation. Moreover, the degree of phosphorylation of starch determines its physicochemical properties and is therefore relevant for industrial uses of starch. Currently, starch is chemically phosphorylated to increase viscosity and paste stability. Potato cultivars with elevated starch phosphorylation would make this process unnecessary, thereby bestowing economic and environmental benefits. Starch phosphorylation is a complex trait which has been previously shown by antisense gene repression to be influenced by a number of genes including those involved in starch synthesis and degradation. We have used an association mapping approach to discover genetic markers associated with the degree of starch phosphorylation. A diverse collection of 193 potato lines was grown in replicated field trials, and the levels of starch phosphorylation at the C6 and C3 positions of the glucosyl residues were determined by mass spectrometry of hydrolyzed starch from tubers. In addition, the potato lines were genotyped by amplicon sequencing and microsatellite analysis, focusing on candidate genes known to be involved in starch synthesis. As potato is an autotetraploid, genotyping included determination of allele dosage. Significant associations (p < 0.001) were found with SNPs in the glucan water dikinase (GWD), starch branching enzyme I (SBEI) and the starch synthase III (SSIII) genes, and with a SSR allele in the SBEII gene. SNPs in the GWD gene were associated with C6 phosphorylation, whereas polymorphisms in the SBEI and SBEII genes were associated with both C6 and C3 phosphorylation and the SNP in the SSIII gene was associated with C3 phosphorylation. These allelic variants have potential as genetic markers for starch phosphorylation in potato.
Collapse
Affiliation(s)
| | - Nigel I. Joyce
- The New Zealand Institute for Plant and Food Research Ltd.Lincoln, New Zealand
| | - Russell A. Genet
- The New Zealand Institute for Plant and Food Research Ltd.Lincoln, New Zealand
| | - Rebecca D. Cooper
- The New Zealand Institute for Plant and Food Research Ltd.Auckland, New Zealand
| | - Sarah R. Murray
- The New Zealand Institute for Plant and Food Research Ltd.Lincoln, New Zealand
| | | | - Ruth C. Butler
- The New Zealand Institute for Plant and Food Research Ltd.Lincoln, New Zealand
| | | |
Collapse
|
37
|
Zhang T, Yu LX, McCord P, Miller D, Bhamidimarri S, Johnson D, Monteros MJ, Ho J, Reisen P, Samac DA. Identification of molecular markers associated with Verticillium wilt resistance in alfalfa (Medicago sativa L.) using high-resolution melting. PLoS One 2014; 9:e115953. [PMID: 25536106 PMCID: PMC4275272 DOI: 10.1371/journal.pone.0115953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/28/2014] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt, caused by the soilborne fungus, Verticillium alfalfae, is one of the most serious diseases of alfalfa (Medicago sativa L.) worldwide. To identify loci associated with resistance to Verticillium wilt, a bulk segregant analysis was conducted in susceptible or resistant pools constructed from 13 synthetic alfalfa populations, followed by association mapping in two F1 populations consisted of 352 individuals. Simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers were used for genotyping. Phenotyping was done by manual inoculation of the pathogen to replicated cloned plants of each individual and disease severity was scored using a standard scale. Marker-trait association was analyzed by TASSEL. Seventeen SNP markers significantly associated with Verticillium wilt resistance were identified and they were located on chromosomes 1, 2, 4, 7 and 8. SNP markers identified on chromosomes 2, 4 and 7 co-locate with regions of Verticillium wilt resistance loci reported in M. truncatula. Additional markers identified on chromosomes 1 and 8 located the regions where no Verticillium resistance locus has been reported. This study highlights the value of SNP genotyping by high resolution melting to identify the disease resistance loci in tetraploid alfalfa. With further validation, the markers identified in this study could be used for improving resistance to Verticillium wilt in alfalfa breeding programs.
Collapse
Affiliation(s)
- Tiejun Zhang
- United States Department of Agriculture, Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, Washington, United States of America
| | - Long-Xi Yu
- United States Department of Agriculture, Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, Washington, United States of America
- * E-mail:
| | - Per McCord
- United States Department of Agriculture, Agricultural Research Service, Plant Germplasm Introduction and Testing Research, 24106 N Bunn Road, Prosser, Washington, United States of America
| | - David Miller
- DuPont Pioneer, W8131 State HWY 60, Arlington, Wisconsin, United States of America
| | - Suresh Bhamidimarri
- DuPont Pioneer, W8131 State HWY 60, Arlington, Wisconsin, United States of America
| | - David Johnson
- Alforex Seeds, N4505 CTH M, West Salem, Wisconsin, United States of America
| | - Maria J. Monteros
- Forage Improvement Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma, United States of America
| | - Julie Ho
- Forage Genetics International, Inc. 7661 Becker Road, Davis, California, United States of America
| | - Peter Reisen
- Forage Genetics International, Inc. 7661 Becker Road, Davis, California, United States of America
| | - Deborah A. Samac
- United States Department of Agriculture, Agricultural Research Service, 495 Borlaug Hall, 1991 Upper Buford Circle, Saint Paul, Minnesota, United States of America
| |
Collapse
|
38
|
Schreiber L, Nader-Nieto AC, Schönhals EM, Walkemeier B, Gebhardt C. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 (BETHESDA, MD.) 2014; 4:1797-811. [PMID: 25081979 PMCID: PMC4199688 DOI: 10.1534/g3.114.012377] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/17/2014] [Indexed: 01/17/2023]
Abstract
Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown.
Collapse
Affiliation(s)
- Lena Schreiber
- Max Planck Institute for Plant Breeding Research, Department of Plant Breeding and Genetics, 50829 Cologne, Germany
| | - Anna Camila Nader-Nieto
- Max Planck Institute for Plant Breeding Research, Department of Plant Breeding and Genetics, 50829 Cologne, Germany
| | - Elske Maria Schönhals
- Max Planck Institute for Plant Breeding Research, Department of Plant Breeding and Genetics, 50829 Cologne, Germany
| | - Birgit Walkemeier
- Max Planck Institute for Plant Breeding Research, Department of Plant Breeding and Genetics, 50829 Cologne, Germany
| | - Christiane Gebhardt
- Max Planck Institute for Plant Breeding Research, Department of Plant Breeding and Genetics, 50829 Cologne, Germany
| |
Collapse
|
39
|
Ashraf BH, Jensen J, Asp T, Janss LL. Association studies using family pools of outcrossing crops based on allele-frequency estimates from DNA sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1331-41. [PMID: 24668443 PMCID: PMC4035547 DOI: 10.1007/s00122-014-2300-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 02/12/2014] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE We propose a method in which GBS data can be conveniently analyzed without calling genotypes. F2 families are frequently used in breeding of outcrossing species, for instance to obtain trait measurements on plots. We propose to perform association studies by obtaining a matching "family genotype" from sequencing a pooled sample of the family, and to directly use allele frequencies computed from sequence read-counts for mapping. We show that, under additivity assumptions, there is a linear relationship between the family phenotype and family allele frequency, and that a regression of family phenotype on family allele frequency will estimate twice the allele substitution effect at a locus. However, medium-to-low sequencing depth causes underestimation of the true allele substitution effect. An expression for this underestimation is derived for the case that parents are diploid, such that F2 families have up to four dosages of every allele. Using simulation studies, estimation of the allele effect from F2-family pools was verified and it was shown that the underestimation of the allele effect is correctly described. The optimal design for an association study when sequencing budget would be fixed is obtained using large sample size and lower sequence depth, and using higher SNP density (resulting in higher LD with causative mutations) and lower sequencing depth. Therefore, association studies using genotyping by sequencing are optimal and use low sequencing depth per sample. The developed framework for association studies using allele frequencies from sequencing can be modified for other types of family pools and is also directly applicable for association studies in polyploids.
Collapse
Affiliation(s)
- Bilal H Ashraf
- Department of Molecular Biology and Genetics, Centre for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, Post Box 50, 8830, Tjele, Denmark,
| | | | | | | |
Collapse
|
40
|
Dadras AR, Sabouri H, Nejad GM, Sabouri A, Shoai-Deylami M. Association analysis, genetic diversity and structure analysis of tobacco based on AFLP markers. Mol Biol Rep 2014; 41:3317-29. [PMID: 24488320 DOI: 10.1007/s11033-014-3194-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
Abstract
Knowledge in the area of genetic diversity could aid in providing useful information in the selection of material for breeding such as hybridization programs and quantitative trait loci mapping. To this end, 50 Nicotiana tabacum genotypes were genotyped with 21 primer combination of amplified fragment length polymorphism (AFLP). A total of 480 unambiguous DNA fragments and 373 polymorphic bands were produced with an average of 17.76 per primer combination. Also, the results revealed high polymorphic rate varing from 52.63 to 92.59%, demonstrating that AFLP technique utilized in this research can be a powerful and valuable tool in the breeding program of N. tabacum. Cluster analysis based on complete linkage method using Jaccard's genetic distance, grouped the 50 tobacco genotypes into eight clusters including three relatively big clusters, one cluster including Golden gift, Burly 7022 and Burly Kreuzung, one cluster consisting of two individuals (Pereg234, R9) and three single-member clusters (Pennbel69, Coker176 and Budisher Burley E), Recent genotypes showed high genetic distance from other genotypes belonging to cluster I and II. Association analysis between seven important traits and AFLP markers were performed using four statistical models. The results revealed the model containing both the factors, population structure (Q) and general similarity in genetic background arising from shared kinship (K), reduces false positive associations between markers and phenotype. According to the results nine markers were determined that could be considered to be the most interesting candidates for further studies.
Collapse
Affiliation(s)
- Ahmad Reza Dadras
- Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, P.O. Box 41635-1314, Rasht, Iran,
| | | | | | | | | |
Collapse
|
41
|
Linkage disequilibrium and population-structure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 2014; 289:513-21. [PMID: 24585251 DOI: 10.1007/s00438-014-0827-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 12/11/2022]
Abstract
Knowledge of population structure and linkage disequilibrium among the worldwide collections of peppers currently classified as hot, mild, sweet and ornamental types is indispensable for applying association mapping and genomic selection to improve pepper. The current study aimed to resolve the genetic diversity and relatedness of Capsicum annuum germplasm by use of simple sequence repeat (SSR) loci across all chromosomes in samples collected in 2011 and 2012. The physical distance covered by the entire set of SSRs used was 2,265.9 Mb from the 3.48-Gb hot-pepper genome size. The model-based program STRUCTURE was used to infer five clusters, which was further confirmed by classical molecular-genetic diversity analysis. Mean heterozygosity of various loci was estimated to be 0.15. Linkage disequilibrium (LD) was used to identify 17 LD blocks across various chromosomes with sizes from 0.154 Kb to 126.28 Mb. CAMS-142 of chromosome 1 was significantly associated with both capsaicin (CA) and dihydrocapsaicin (DCA) levels. Further, CAMS-142 was located in an LD block of 98.18 Mb. CAMS-142 amplified bands of 244, 268, 283 and 326 bp. Alleles 268 and 283 bp had positive effects on both CA and DCA levels, with an average R(2) of 12.15 % (CA) and 12.3 % (DCA). Eight markers from seven different chromosomes were significantly associated with fruit weight, contributing an average effect of 15 %. CAMS-199, HpmsE082 and CAMS-190 are the three major quantitative trait loci located on chromosomes 8, 9, and 10, respectively, and were associated with fruit weight in samples from both years of the study. This research demonstrates the effectiveness of using genome-wide SSR-based markers to assess features of LD and genetic diversity within C. annuum.
Collapse
|
42
|
D'hoop BB, Keizer PLC, Paulo MJ, Visser RGF, van Eeuwijk FA, van Eck HJ. Identification of agronomically important QTL in tetraploid potato cultivars using a marker-trait association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:731-48. [PMID: 24408376 DOI: 10.1007/s00122-013-2254-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/13/2013] [Indexed: 05/23/2023]
Abstract
Nineteen tuber quality traits in potato were phenotyped in 205 cultivars and 299 breeder clones. Association analysis using 3364 AFLP loci and 653 SSR-alleles identified QTL for these traits. Two association mapping panels were analysed for marker-trait associations to identify quantitative trait loci (QTL). The first panel comprised 205 historical and contemporary tetraploid potato cultivars that were phenotyped in field trials at two locations with two replicates (the academic panel). The second panel consisted of 299 potato cultivars and included recent breeds obtained from five Dutch potato breeding companies and reference cultivars (the industrial panel). Phenotypic data for the second panel were collected during subsequent clonal selection generations at the individual breeding companies. QTL were identified for 19 agro-morphological and quality traits. Two association mapping models were used: a baseline model without, and a more advanced model with correction for population structure and genetic relatedness. Correction for population structure and genetic relatedness was performed with a kinship matrix estimated from marker information. The detected QTL partly not only confirmed previous studies, e.g. for tuber shape and frying colour, but also new QTL were found like for after baking darkening and enzymatic browning. Pleiotropic effects could be discerned for several QTL.
Collapse
Affiliation(s)
- Björn B D'hoop
- Plant Breeding, Wageningen University and Research Centre, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Wang Z, Kang M, Liu H, Gao J, Zhang Z, Li Y, Wu R, Pang X. High-level genetic diversity and complex population structure of Siberian apricot (Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLoS One 2014; 9:e87381. [PMID: 24516551 PMCID: PMC3917850 DOI: 10.1371/journal.pone.0087381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/20/2013] [Indexed: 12/24/2022] Open
Abstract
Siberian apricot (Prunus sibirica L.), an ecologically and economically important tree species with a high degree of tolerance to a variety of extreme environmental conditions, is widely distributed across the mountains of northeastern and northern China, eastern and southeastern regions of Mongolia, Eastern Siberia, and the Maritime Territory of Russia. However, few studies have examined the genetic diversity and population structure of this species. Using 31 nuclear microsatellites, we investigated the level of genetic diversity and population structure of Siberian apricot sampled from 22 populations across China. The number of alleles per locus ranged from 5 to 33, with an average of 19.323 alleles. The observed heterozygosity and expected heterozygosity ranged from 0.037 to 0.874 and 0.040 to 0.924 with average values of 0.639 and 0.774, respectively. A STRUCTURE-based analysis clustered all of the populations into four genetic clusters. Significant genetic differentiation was observed between all population pairs. A hierarchical analysis of molecular variance attributed about 94% of the variation to within populations. No significant difference was detected between the wild and semi-wild groups, indicating that recent cultivation practices have had little impact on the genetic diversity of Siberian apricot. The Mantel test showed that the genetic distance among the populations was not significantly correlated with geographic distance (r = 0.4651, p = 0.9940). Our study represents the most comprehensive investigation of the genetic diversity and population structure of Siberian apricot in China to date, and it provides valuable information for the collection of genetic resources for the breeding of Siberian apricot and related species.
Collapse
Affiliation(s)
- Zhe Wang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ming Kang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huabo Liu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jiao Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Zhengdong Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
44
|
Long NV, Dolstra O, Malosetti M, Kilian B, Graner A, Visser RGF, van der Linden CG. Association mapping of salt tolerance in barley (Hordeum vulgare L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2335-51. [PMID: 23771136 DOI: 10.1007/s00122-013-2139-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/21/2013] [Indexed: 05/18/2023]
Abstract
A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2-8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na(+), shoot Cl(-) and shoot, root Na(+)/K(+) contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.
Collapse
Affiliation(s)
- Nguyen Viet Long
- Graduate School Experimental Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
45
|
Uitdewilligen JGAML, Wolters AMA, D’hoop BB, Borm TJA, Visser RGF, van Eck HJ. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 2013; 8:e62355. [PMID: 23667470 PMCID: PMC3648547 DOI: 10.1371/journal.pone.0062355] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/20/2013] [Indexed: 11/23/2022] Open
Abstract
Assessment of genomic DNA sequence variation and genotype calling in autotetraploids implies the ability to distinguish among five possible alternative allele copy number states. This study demonstrates the accuracy of genotyping-by-sequencing (GBS) of a large collection of autotetraploid potato cultivars using next-generation sequencing. It is still costly to reach sufficient read depths on a genome wide scale, across the cultivated gene pool. Therefore, we enriched cultivar-specific DNA sequencing libraries using an in-solution hybridisation method (SureSelect). This complexity reduction allowed to confine our study to 807 target genes distributed across the genomes of 83 tetraploid cultivars and one reference (DM 1–3 511). Indexed sequencing libraries were paired-end sequenced in 7 pools of 12 samples using Illumina HiSeq2000. After filtering and processing the raw sequence data, 12.4 Gigabases of high-quality sequence data was obtained, which mapped to 2.1 Mb of the potato reference genome, with a median average read depth of 63× per cultivar. We detected 129,156 sequence variants and genotyped the allele copy number of each variant for every cultivar. In this cultivar panel a variant density of 1 SNP/24 bp in exons and 1 SNP/15 bp in introns was obtained. The average minor allele frequency (MAF) of a variant was 0.14. Potato germplasm displayed a large number of relatively rare variants and/or haplotypes, with 61% of the variants having a MAF below 0.05. A very high average nucleotide diversity (π = 0.0107) was observed. Nucleotide diversity varied among potato chromosomes. Several genes under selection were identified. Genotyping-by-sequencing results, with allele copy number estimates, were validated with a KASP genotyping assay. This validation showed that read depths of ∼60–80× can be used as a lower boundary for reliable assessment of allele copy number of sequence variants in autotetraploids. Genotypic data were associated with traits, and alleles strongly influencing maturity and flesh colour were identified.
Collapse
Affiliation(s)
- Jan G. A. M. L. Uitdewilligen
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
| | - Anne-Marie A. Wolters
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
| | - Bjorn B. D’hoop
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
| | - Theo J. A. Borm
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
| | - Richard G. F. Visser
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
| | - Herman J. van Eck
- Laboratory of Plant Breeding, Wageningen University, Wageningen, The Netherlands
- The Graduate School for Experimental Plant Sciences, Wageningen, The Netherlands
- Centre for BioSystems Genomics, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
46
|
Monneveux P, Ramírez DA, Pino MT. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:76-86. [PMID: 23498865 DOI: 10.1016/j.plantsci.2013.01.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 01/23/2013] [Accepted: 01/31/2013] [Indexed: 05/24/2023]
Abstract
Drought tolerance is a complex trait of increasing importance in potato. Our knowledge is summarized concerning drought tolerance and water use efficiency in this crop. We describe the effects of water restriction on physiological characteristics, examine the main traits involved, report the attempts to improve drought tolerance through in vitro screening and marker assisted selection, list the main genes involved and analyze the potential interest of native and wild potatoes to improve drought tolerance. Drought tolerance has received more attention in cereals than in potato. The review compares these crops for indirect selection methods available for assessment of drought tolerance related traits, use of genetic resources, progress in genomics, application of water saving techniques and availability of models to anticipate the effects of climate change on yield. It is concluded that drought tolerance improvement in potato could greatly benefit from the transfer of research achievements in cereals. Several promising research directions are presented, such as the use of fluorescence, reflectance, color and thermal imaging and stable isotope techniques to assess drought tolerance related traits, the application of the partial root-zone drying technique to improve efficiency of water supply and the exploitation of stressful memory to enhance hardiness.
Collapse
|
47
|
Crops that feed the world 8: Potato: are the trends of increased global production sustainable? Food Secur 2012. [DOI: 10.1007/s12571-012-0220-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Du Q, Wang B, Wei Z, Zhang D, Li B. Genetic diversity and population structure of Chinese White poplar (Populus tomentosa) revealed by SSR markers. ACTA ACUST UNITED AC 2012; 103:853-62. [PMID: 23008443 DOI: 10.1093/jhered/ess061] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An understanding of allelic diversity and population structure is important in developing association studies and constructing core collections for tree breeding. We examined population genetic differentiation in the native Populus tomentosa by genotyping 460 unrelated individuals using 20 species-specific microsatellite markers. We identified 99 alleles with a mean of 4.95 observed alleles per locus, indicating a moderate level of polymorphism across all individuals. A model-based population structure analysis divided P. tomentosa into 11 subpopulations (K = 11). The pattern of individual assignments into the subsets (K = 3) provided reasonable evidence for treating climatic zones as genetic regions for population genetics. The highest level of genetic variation was found in the southern region (i.e., N = 93, N (P) = 11, H (E) = 0.445, F = -0.102), followed by the northeastern and northwestern regions. Thus, the southern region is probably the center of the current species distribution. No correlation was found between population genetic distance and geographic distance (r = 0.0855, P = 0.3140), indicating that geographical distance was not the principal factor influencing genetic differentiation in P. tomentosa. These data provide a starting point for conserving valuable natural resources and optimizing breeding programs.
Collapse
Affiliation(s)
- Qingzhang Du
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, Peoples' Republic of China
| | | | | | | | | |
Collapse
|
49
|
Odong TL, van Heerwaarden J, Jansen J, van Hintum TJL, van Eeuwijk FA. Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:195-205. [PMID: 21472410 PMCID: PMC3114091 DOI: 10.1007/s00122-011-1576-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/18/2011] [Indexed: 05/04/2023]
Abstract
Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using real and simulated molecular marker data. Our study also compared the performance of traditional hierarchical clustering with model-based clustering (STRUCTURE). We showed that the cophenetic correlation coefficient is directly related to subgroup differentiation and can thus be used as an indicator of the presence of genetically distinct subgroups in germplasm collections. Whereas UPGMA performed well in preserving distances between accessions, Ward excelled in recovering groups. Our results also showed a close similarity between clusters obtained by Ward and by STRUCTURE. Traditional cluster analysis can provide an easy and effective way of determining structure in germplasm collections using molecular marker data, and, the output can be used for sampling core collections or for association studies.
Collapse
Affiliation(s)
- T L Odong
- Wageningen University and Research, Biometris, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Voorrips RE, Gort G, Vosman B. Genotype calling in tetraploid species from bi-allelic marker data using mixture models. BMC Bioinformatics 2011; 12:172. [PMID: 21595880 PMCID: PMC3121645 DOI: 10.1186/1471-2105-12-172] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
Background Automated genotype calling in tetraploid species was until recently not possible, which hampered genetic analysis. Modern genotyping assays often produce two signals, one for each allele of a bi-allelic marker. While ample software is available to obtain genotypes (homozygous for either allele, or heterozygous) for diploid species from these signals, such software is not available for tetraploid species which may be scored as five alternative genotypes (aaaa, baaa, bbaa, bbba and bbbb; nulliplex to quadruplex). Results We present a novel algorithm, implemented in the R package fitTetra, to assign genotypes for bi-allelic markers to tetraploid samples from genotyping assays that produce intensity signals for both alleles. The algorithm is based on the fitting of several mixture models with five components, one for each of the five possible genotypes. The models have different numbers of parameters specifying the relation between the five component means, and some of them impose a constraint on the mixing proportions to conform to Hardy-Weinberg equilibrium (HWE) ratios. The software rejects markers that do not allow a reliable genotyping for the majority of the samples, and it assigns a missing score to samples that cannot be scored into one of the five possible genotypes with sufficient confidence. Conclusions We have validated the software with data of a collection of 224 potato varieties assayed with an Illumina GoldenGate™ 384 SNP array and shown that all SNPs with informative ratio distributions are fitted. Almost all fitted models appear to be correct based on visual inspection and comparison with diploid samples. When the collection of potato varieties is analyzed as if it were a population, almost all markers seem to be in Hardy-Weinberg equilibrium. The R package fitTetra is freely available under the GNU Public License from http://www.plantbreeding.wur.nl/UK/software_fitTetra.html and as Additional files with this article.
Collapse
Affiliation(s)
- Roeland E Voorrips
- Plant Breeding Department, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | |
Collapse
|