1
|
Chen D, Chen H, Dai G, Zhang H, Liu Y, Shen W, Zhu B, Cui C, Tan C. Genome-wide identification and expression analysis of the anthocyanin-related genes during seed coat development in six Brassica species. BMC Genomics 2023; 24:103. [PMID: 36894869 PMCID: PMC9999611 DOI: 10.1186/s12864-023-09170-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Yellow seed is one favorite trait for the breeding of Brassica oilseed crops, but the performance of seed coat color is very complicated due to the involvement of various pigments. The change of seed coat color of Brassica crops is related to the specific synthesis and accumulation of anthocyanin, and the expression level of structural genes in anthocyanin synthesis pathway is specifically regulated by transcription factors. Despite some previous reports on the regulations of seed coat color from linkage marker development, gene fine-mapping and multi-omics association analysis, the trait of Brassica crops is affected by the evolutionary events such as genome triploidization, the regulatory mechanism is still largely unknown. In this study, we identified genes related to anthocyanin synthesis in six Brassica crops in U-triangle at the genome-wide level and performed collinearity analysis. A total of 1119 anthocyanin-related genes were identified, the collinear relationship of anthocyanin-related genes on subgenomic chromosomes was the best in B. napus (AACC) and the worst in B. carinata (BBCC). The comparisons of gene expressions for anthocyanin metabolic pathways in seed coats during seed development revealed differences in its metabolism among these species. Interestingly, the R2R3-MYB transcription factors MYB5 and TT2 were differentially expressed at all eight stages of seed coat development, indicating that they might be the key genes that caused the variation of the seed coat color. The expression curve and trend analyses of the seed coat development period showed that the main reason for the unexpressed copies of MYB5 and TT2 was likely gene silencing caused by gene structural variation. These results were valuable for the genetic improvement of Brassica seed coat color, and also provided new insights into gene multicopy evolution in Brassica polyploids.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haidong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Haimei Zhang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chendu, 610066, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Zhang Y, Qin Y, Li D, Wang W, Gao X, Hao C, Feng H, Wang Y, Li T. Fine mapping and cloning of a novel BrSCC1 gene for seed coat color in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:11. [PMID: 36658295 DOI: 10.1007/s00122-023-04287-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.
Collapse
Affiliation(s)
- Yinghuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yao Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Dongxiao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China
| |
Collapse
|
3
|
Li J, Wang H, Zhou D, Li C, Ding Q, Yang X, Wang F, Zheng H, Gao J. Genetic and Transcriptome Analysis of Leaf Trichome Development in Chinese Cabbage ( Brassica rapa L. subsp. pekinensis) and Molecular Marker Development. Int J Mol Sci 2022; 23:ijms232112721. [PMID: 36361510 PMCID: PMC9659260 DOI: 10.3390/ijms232112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 01/25/2023] Open
Abstract
Chinese cabbage (Brassica rapa L. subsp. pekinensis) is one of the vegetables with the largest cultivated area in China and has been a great addition to the daily diet of Chinese people. A genetic map has been constructed in our previous study using the F2 population of two inbred lines of Chinese cabbage, namely "G291" (a hairy line) and "ZHB" (a hairless line), based on which a candidate gene related to trichome traits was identified on chromosome A06 with a phenotypic variance of 47%. A molecular marker was found to co-segregate with the trichome traits of the F2 population, which is in the 5'-flanking region of BrGL1, and a corresponding patent has been granted (NO. CN 108545775 B). Transcriptome analysis was carried out on the cotyledon, the first true leaf and the leaf closest to each inflorescence of F2 individuals of "G291 × ZHB" with or without trichomes, respectively. Ten pathways, including 189 DEGs, were identified to be involved in the development of trichomes in Chinese cabbage, which may be specifically related to the development of leaf trichomes. Most of the pathways were related to the biosynthesis of the secondary metabolites, which may help plants to adapt to the ever-changing external environment. DEGs also enriched the "plant-pathogen interaction" pathway, which is consistent with the conclusion that trichomes are related to the disease resistance of plants. Our study provides a basis for future research on the occurrence and development of trichomes in Chinese cabbage.
Collapse
Affiliation(s)
- Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongxia Wang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dandan Zhou
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Cheng Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qian Ding
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaogang Yang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengde Wang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Han Zheng
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (H.Z.); (J.G.)
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
- Correspondence: (H.Z.); (J.G.)
| |
Collapse
|
4
|
Zhao H, Shang G, Yin N, Chen S, Shen S, Jiang H, Tang Y, Sun F, Zhao Y, Niu Y, Zhao Z, Xu L, Lu K, Du D, Qu C, Li J. Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2083-2099. [PMID: 35606456 DOI: 10.1007/s00122-022-04099-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Multi-omics analysis of the transcriptome, metabolome and genome identified major and minor loci and candidate genes for seed coat color and explored the mechanism of flavonoid metabolites biosynthesis in Brassica rapa. Yellow seed trait is considered an agronomically desirable trait with great potential for improving seed quality of Brassica crops. Mechanisms of the yellow seed trait are complex and not well understood. In this study, we performed an integrated metabolome, transcriptome and genome-wide association study (GWAS) on different B. rapa varieties to explore the mechanisms underlying the seed coat color formation. A total of 2,499 differentially expressed genes and 116 differential metabolites between yellow and black seeds with strong association with the flavonoid biosynthesis pathway was identified. In addition, 330 hub genes involved in the seed coat color formation, and the most significantly differential flavonoids biosynthesis were detected based on weighted gene co-expression network analysis. Metabolite GWAS analysis using the contents of 42 flavonoids in developing seeds of 159 B. rapa lines resulted in the identification of 1,626 quantitative trait nucleotides (QTNs) and 37 chromosomal intervals, including one major locus on chromosome A09. A combination of QTNs detection, transcriptome and functional analyses led to the identification of 241 candidate genes that were associated with different flavonoid metabolites. The flavonoid biosynthesis pathway in B. rapa was assembled based on the identified flavonoid metabolites and candidate genes. Furthermore, BrMYB111 members (BraA09g004490.3C and BraA06g034790.3C) involved in the biosynthesis of taxifolin were functionally analyzed in vitro. Our findings lay a foundation and provide a reference for systematically investigating the mechanism of seed coat color in B. rapa and in the other plants.
Collapse
Affiliation(s)
- Huiyan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Guoxia Shang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Nengwen Yin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Si Chen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Shulin Shen
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Haiyan Jiang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yunshan Tang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Fujun Sun
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yuhan Zhao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | | | - Zhi Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
- Academy of Agricultural Sciences, Germplasm Creation Special Program of Southwest University, Southwest University, Chongqing, 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Key Laboratory of Spring Rapeseed Genetic Improvement, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Germplasm Creation Special Program of Southwest University, Southwest University, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.
- Academy of Agricultural Sciences, Germplasm Creation Special Program of Southwest University, Southwest University, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
5
|
Construction of an Intragenic SSR-Based Linkage Map and QTL Mapping for Agronomic Traits in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most widely cultivated and economically important vegetables in China. Constructing an effective genetic linkage map and mapping quantitative trait loci (QTLs) related to yield and leafy head morphology is of great importance for molecular breeding of Chinese cabbage. Using two diverse Chinese cabbage inbred lines, ZHB and G291, as parents, an F2 segregating population consisting of 240 individuals was prepared for genetic map construction and phenotype investigation in this study. The two parents are significantly different in both shape and size. Sixteen important agronomic traits of F2 individuals were investigated. A genetic map of 105 intragenic simple sequence repeat (SSR) markers distributed across 10 linkage groups (LGs) was constructed, which was 2034.1 cM in length and had an average inter-locus distance of 21.75 cM. We identified 48 QTLs for the tested important agronomic traits on the studied LGs, with LOD scores of 2.51–12.49, which explained the phenotypic variance of 3.41–26.66%. The QTLs identified in this study will facilitate further genetic analysis and marker-assisted genetic improvement of Chinese cabbage.
Collapse
|
6
|
Li K, Xu L, Jia Y, Chen C, Yao Y, Liu H, Du D. A novel locus (Bnsdt2) in a TFL1 homologue sustaining determinate growth in Brassica napus. BMC PLANT BIOLOGY 2021; 21:568. [PMID: 34861823 PMCID: PMC8641158 DOI: 10.1186/s12870-021-03348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The determinate growth habits is beneficial for plant architecture modification and the development of crops cultivars suited to mechanized production systems. Which play an important role in the genetic improvement of crops. In Brassica napus, a determinate inflorescence strain (4769) has been discovered among doubled haploid (DH) lines obtained from a spring B. napus × winter B. napus cross, but there are few reports on it. We fine mapped a determinate inflorescence locus, and evaluated the effect of the determinate growth habit on agronomic traits. RESULTS In this study, we assessed the effect of the determinate growth habit on agronomic traits. The results showed that determinacy is beneficial for reducing plant height and flowering time, advancing maturity, enhancing lodging resistance, increasing plant branches and maintaining productivity. Genetic analysis in the determinate (4769) and indeterminate (2982) genotypes revealed that two independently inherited recessive genes (Bnsdt1, Bnsdt2) are responsible for this determinate growth trait. Bnsdt2 was subsequently mapped in BC2 and BC3 populations derived from the combination 2982 × 4769. Bnsdt2 could be delimited to an approximately 122.9 kb region between 68,586.2 kb and 68,709.1 kb on C09. BLAST analysis of these candidate intervals showed that chrC09g006434 (BnaC09.TFL1) is homologous to TFL1 of A. thaliana. Sequence analysis of two alleles identified two non-synonymous SNPs (T136C, G141C) in the first exon of BnaC09.TFL1, resulting in two amino acid substitutions (Phe46Leu, Leu47Phe). Subsequently, qRT-PCR revealed that BnaC09.TFL1 expression in shoot apexes was significantly higher in NIL-4769 than in 4769, suggesting its essential role in sustaining the indeterminate growth habit. CONCLUSIONS In this study, the novel locus Bnsdt2, a recessive genes for determinate inflorescence in B. napus, was fine-mapped to a 68,586.2 kb - 68,709.1 kb interval on C09. The annotated genes chrC09g006434 (BnaC09.TFL1) that may be responsible for inflorescence traits were found.
Collapse
Affiliation(s)
- Kaixiang Li
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Liang Xu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Yongpeng Jia
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Cuiping Chen
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Haidong Liu
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China
| | - Dezhi Du
- Academy of Agricultural and Forestry Sciences of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Rapeseed Research and Development Center of Qinghai Province, Xining, 810016, Qinghai, China.
| |
Collapse
|
7
|
Fine mapping of the major QTL for seed coat color in Brassica rapa var. Yellow Sarson by use of NIL populations and transcriptome sequencing for identification of the candidate genes. PLoS One 2019; 14:e0209982. [PMID: 30716096 PMCID: PMC6361427 DOI: 10.1371/journal.pone.0209982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/15/2018] [Indexed: 11/19/2022] Open
Abstract
Yellow seed is a desirable trait in Brassica oilseed crops. The B. rapa var. Yellow Sarson carry unique yellow seed color genes which are not only important for the development of yellow-seeded oilseed B. rapa cultivars but this variant can also be used to develop yellow-seeded B. napus. In this study, we developed near-isogenic lines (NILs) of Yellow Sarson for the major seed coat color QTL SCA9-2 of the chromosome A9 and used the NILs to fine map this QTL region and to identify the candidate genes through linkage mapping and transcriptome sequencing of the developing seeds. From the 18.4 to 22.79 Mb region of SCA9-2, six SSR markers showing 0.63 to 5.65% recombination were developed through linkage analysis and physical mapping. A total of 55 differentially expressed genes (DEGs) were identified in the SCA9-2 region through transcriptome analysis; these included three transcription factors, Bra028039 (NAC), Bra023223 (C2H2 type zinc finger), Bra032362 (TIFY), and several other genes which encode unknown or nucleic acid binding protein; these genes might be the candidates and involved in the regulation of seed coat color in the materials used in this study. Several biosynthetic pathways, including the flavonoid, phenylpropanoid and suberin biosynthetic pathways were significantly enriched through GO and KEGG enrichment analysis of the DEGs. This is the first comprehensive study to understand the yellow seed trait of Yellow Sarson through employing linkage mapping and global transcriptome analysis approaches.
Collapse
|
8
|
Li K, Yao Y, Xiao L, Zhao Z, Guo S, Fu Z, Du D. Fine mapping of the Brassica napus Bnsdt1 gene associated with determinate growth habit. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:193-208. [PMID: 29051971 DOI: 10.1007/s00122-017-2996-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
The newly discovered determinate plant growth habit of Brassica napus is a potential trait that might contribute to the genetic improvement of rapeseed. Brassica napus is an important species of rapeseed and has an indeterminate growth habit. However, a determinate inflorescence strain (4769) has been discovered among doubled haploid (DH) lines obtained from a spring B. napus × winter B. napus cross. We assessed the effect of the determinate growth habit on agronomic traits. The results showed that determinacy is beneficial for reducing plant height and flowering time, advancing maturity and maintaining productivity. We also investigated the inheritance of determinacy. A genetic analysis revealed that the phenotype of the determinate trait is controlled by one recessive gene, Bnsdt1. Mapping of the Bnsdt1 gene was subsequently conducted in BC1 and BC3 populations derived from combination 2014 × 4769. The results showed that the Bnsdt1 gene could be delimited to a region of approximately 220 kb, between 16,627 and 16,847 kb on A10. Within the target region, whole-genome re-sequencing identified two candidate regions (16,628-16,641 and 16,739-16,794 kb) of approximately 68 kb. A Blast analysis of the two candidate intervals found that BnaA10g26300D/GSBRNA2T00136426001 (BnTFL1) is homologous to the TFL1 gene of A. thaliana. Subsequently, quantitative reverse transcription (qRT)-PCR revealed that BnTFL1 was specifically expressed in the shoot apex. Collectively, the results of expression analysis provide preliminary evidence that BnTFL1 is a candidate gene for the inflorescence trait in 4769.
Collapse
Affiliation(s)
- Kaixiang Li
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China
| | - Lu Xiao
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China
| | - Zhigang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China
| | - Shaomin Guo
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China
| | - Zhong Fu
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China
| | - Dezhi Du
- State Key Laboratory of Plateau Ecology and Agriculture of Qinghai University, Key Laboratory of Spring Rape Genetic Improvement of Qinghai Province, Academy of Agricultural and Forestry Sciences of Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
9
|
Ren Y, Wu J, Zhao J, Hao L, Zhang L. Identification of SSR markers closely linked to the yellow seed coat color gene in heading Chinese cabbage ( Brassica rapa L. ssp. pekinensis). Biol Open 2017; 6:278-282. [PMID: 28069590 PMCID: PMC5312096 DOI: 10.1242/bio.021592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Research on the yellow-seeded variety of heading Chinese cabbage will aid in broadening its germplasm resources and lay a foundation for AA genome research in Brassica crops. Here, an F2 segregating population of 1575 individuals was constructed from two inbred lines (brown-seeded ‘92S105’ and yellow-seeded ‘91-125’). This population was used to identify the linkage molecular markers of the yellow seed coat trait using simple sequence repeat (SSR) techniques combined with a bulk segregant analysis (BSA). Of the 144 SSR primer pairs on the A01-A10 chromosomes from the Brassica database (http://brassicadb.org/brad/), two pairs located on the A06 chromosome showed polymorphic bands between the bulk DNA pools of eight brown-seeded and eight yellow-seeded F2 progeny. Based on the genome sequence, 454 SSR markers were designed to A06 to detect these polymorphic bands and were synthesized. Six SSR markers linked to the seed coat color gene were successfully selected for fine linkage genetic map construction, in which the two closest flanking markers, SSR449a and SSR317, mapped the Brsc-ye gene to a 40.2 kb region with distances of 0.07 and 0.06 cM, respectively. The molecular markers obtained in this report will assist in the marker-assisted selection and breeding of yellow-seeded lines in Brassica rapa L. and other close species. Summary: Genetic mapping of the yellow seed coat gene Brsc-ye to a 40.2 kb region of the Chinese cabbage (Brassica rapa ssp. pekinensis) genome will allow marker-assisted selection and breeding of yellow-seeded lines.
Collapse
Affiliation(s)
- Yanjing Ren
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Junqing Wu
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lingyu Hao
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Area, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
10
|
Wang Y, Xiao L, Guo S, An F, Du D. Fine Mapping and Whole-Genome Resequencing Identify the Seed Coat Color Gene in Brassica rapa. PLoS One 2016; 11:e0166464. [PMID: 27829069 PMCID: PMC5102352 DOI: 10.1371/journal.pone.0166464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
A yellow seed coat is a desirable agronomic trait in the seeds of oilseed-type Brassica crops. In this study, we identified a candidate gene for seed coat color in Dahuang, a landrace of Brassica rapa. A previous study of Dahuang mapped the seed coat color gene Brsc1 to a 2.8-Mb interval on chromosome A9 of B. rapa. In the present study, the density of the linkage map for Brsc1 was increased by adding simple sequence repeat (SSR) markers, and the candidate region for Brsc1 was narrowed to 1.04 Mb. In addition, whole-genome resequencing with bulked segregant analysis (BSA) was conducted to identify candidate intervals for Brsc1. A genome-wide comparison of SNP profiles was performed between yellow-seeded and brown-seeded bulk samples. SNP index analyses identified a major candidate interval on chromosome A9 (A09:18,255,838-18,934,000, 678 kb) containing a long overlap with the target region recovered from the fine mapping results. According to gene annotation, Bra028067 (BrTT1) is an important candidate gene for Brsc1 in the overlapping region. Quantitative reverse transcription (qRT)-PCR revealed that BrTT1 mainly functions in the seed. Point mutations and small deletions in BrTT1 were found between yellow- and brown-seeded Dahuang plants. Collectively, the expression and sequence analysis results provide preliminary evidence that BrTT1 is a candidate gene for the seed coat color trait in Dahuang.
Collapse
Affiliation(s)
- Yanhua Wang
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Lu Xiao
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Shaomin Guo
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Fengyun An
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Dezhi Du
- Key Laboratory of Spring Rapeseed Genetic Improvement, The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- * E-mail:
| |
Collapse
|
11
|
Huang Z, Liu L, Lu H, Lang L, Zhao N, Ding J, Xu A. Development of IP and SCAR markers linked to the yellow seed color gene in Brassica juncea L. BREEDING SCIENCE 2016; 66:175-80. [PMID: 27162489 PMCID: PMC4784995 DOI: 10.1270/jsbbs.66.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/25/2015] [Indexed: 05/11/2023]
Abstract
Previous studies showed that the yellow seed color gene of a yellow mustard was located on the A09 chromosome. In this study, the sequences of the molecular markers linked to the yellow seed color gene were analyzed, the gene was primarily mapped to an interval of 23.304 to 29.402M. Twenty genes and eight markers' sequences in this region were selected to design the IP and SCAR primers. These primers were used to screen a BC8S1 population consisting of 1256 individuals. As a result, five IP and five SCAR markers were successfully developed. IP4 and Y1 were located on either side of the yellow seed color gene at a distance of 0.1 and 0.3 cM, respectively. IP1, IP2 and IP3 derived from Bra036827, Bra036828, Bra036829 separately, co-segregated with the target gene. BLAST analysis indicated that the sequences of newly developed markers showed good collinearity with those of the A09 chromosome, and that the target gene might exist between 27.079 and 27.616M. In light of annotations of the genes in this region, only Bra036828 is associated with flavonoid biosynthesis. This gene has high similarity with the TRANSPARENT TESTA6 gene, Bra036828 was hence identified as being the gene possibly responsible for yellow seed color, in our research.
Collapse
|
12
|
Basnet RK, Duwal A, Tiwari DN, Xiao D, Monakhos S, Bucher J, Visser RGF, Groot SPC, Bonnema G, Maliepaard C. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:1032. [PMID: 26648948 PMCID: PMC4664704 DOI: 10.3389/fpls.2015.01032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding.
Collapse
Affiliation(s)
- Ram K. Basnet
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
- Centre for BioSystems GenomicsWageningen, Netherlands
| | - Anita Duwal
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
| | - Dev N. Tiwari
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
| | - Dong Xiao
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural UniversityNanjing, China
| | - Sokrat Monakhos
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
- Russian State Agrarian University, Moscow Timiryazev Agricultural AcademyMoscow, Russia
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
| | - Richard G. F. Visser
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
- Centre for BioSystems GenomicsWageningen, Netherlands
| | | | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
- Centre for BioSystems GenomicsWageningen, Netherlands
| | - Chris Maliepaard
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Chris Maliepaard
| |
Collapse
|
13
|
Dechaine JM, Brock MT, Weinig C. QTL architecture of reproductive fitness characters in Brassica rapa. BMC PLANT BIOLOGY 2014; 14:66. [PMID: 24641198 PMCID: PMC4004417 DOI: 10.1186/1471-2229-14-66] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 03/03/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) × wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. RESULTS Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. CONCLUSIONS This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations.
Collapse
Affiliation(s)
- Jennifer M Dechaine
- Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
14
|
Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One 2013; 8:e83052. [PMID: 24386142 PMCID: PMC3873396 DOI: 10.1371/journal.pone.0083052] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
A high density genetic linkage map for the complex allotetraploid crop species Brassica napus (oilseed rape) was constructed in a late-generation recombinant inbred line (RIL) population, using genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array. The linkage map contains 9164 SNP markers covering 1832.9 cM. 1232 bins account for 7648 of the markers. A subset of 2795 SNP markers, with an average distance of 0.66 cM between adjacent markers, was applied for QTL mapping of seed colour and the cell wall fiber components acid detergent lignin (ADL), cellulose and hemicellulose. After phenotypic analyses across four different environments a total of 11 QTL were detected for seed colour and fiber traits. The high-density map considerably improved QTL resolution compared to the previous low-density maps. A previously identified major QTL with very high effects on seed colour and ADL was pinpointed to a narrow genome interval on chromosome A09, while a minor QTL explaining 8.1% to 14.1% of variation for ADL was detected on chromosome C05. Five and three QTL accounting for 4.7% to 21.9% and 7.3% to 16.9% of the phenotypic variation for cellulose and hemicellulose, respectively, were also detected. To our knowledge this is the first description of QTL for seed cellulose and hemicellulose in B. napus, representing interesting new targets for improving oil content. The high density SNP genetic map enables navigation from interesting B. napus QTL to Brassica genome sequences, giving useful new information for understanding the genetics of key seed quality traits in rapeseed.
Collapse
Affiliation(s)
- Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Benjamin Wittkop
- Department of Plant Breeding, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Subcenter of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yang Xiao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Yajun He
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Rod J. Snowdon
- Department of Plant Breeding, Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
- * E-mail: (RJS); (JL)
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
- * E-mail: (RJS); (JL)
| |
Collapse
|
15
|
Yu X, Wang H, Zhong W, Bai J, Liu P, He Y. QTL mapping of leafy heads by genome resequencing in the RIL population of Brassica rapa. PLoS One 2013; 8:e76059. [PMID: 24204591 PMCID: PMC3810141 DOI: 10.1371/journal.pone.0076059] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/21/2013] [Indexed: 11/26/2022] Open
Abstract
Leaf heads of cabbage (Brassica oleracea), Chinese cabbage (B. rapa), and lettuce (Lactuca sativa) are important vegetables that supply mineral nutrients, crude fiber and vitamins in the human diet. Head size, head shape, head weight, and heading time contribute to yield and quality. In an attempt to investigate genetic basis of leafy head in Chinese cabbage (B. rapa), we took advantage of recent technical advances of genome resequencing to perform quantitative trait locus (QTL) mapping using 150 recombinant inbred lines (RILs) derived from the cross between heading and non-heading Chinese cabbage. The resequenced genomes of the parents uncovered more than 1 million SNPs. Genotyping of RILs using the high-quality SNPs assisted by Hidden Markov Model (HMM) generated a recombination map. The raw genetic map revealed some physical assembly error and missing fragments in the reference genome that reduced the quality of SNP genotyping. By deletion of the genetic markers in which recombination rates higher than 20%, we have obtained a high-quality genetic map with 2209 markers and detected 18 QTLs for 6 head traits, from which 3 candidate genes were selected. These QTLs provide the foundation for study of genetic basis of leafy heads and the other complex traits.
Collapse
Affiliation(s)
- Xiang Yu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Han Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weili Zhong
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinjuan Bai
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pinglin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
16
|
Kebede B, Cheema K, Greenshields DL, Li C, Selvaraj G, Rahman H. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome 2012; 55:813-23. [PMID: 23231600 DOI: 10.1139/g2012-066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A genetic linkage map of Brassica rapa L. was constructed using recombinant inbred lines (RILs) derived from a cross between yellow-seeded cultivar Sampad and a yellowish brown seeded inbred line 3-0026.027. The RILs were evaluated for seed color under three conditions: field plot, greenhouse, and controlled growth chambers. Variation for seed color in the RILs ranged from yellow, like yellow sarson, to dark brown/black even though neither parent had shown brown/black colored seeds. One major QTL (SCA9-2) and one minor QTL (SCA9-1) on linkage group (LG) A9 and two minor QTL (SCA3-1, SCA5-1) on LG A3 and LG A5, respectively, were detected. These collectively explained about 67% of the total phenotypic variance. SCA9-2 mapped in the middle of LG A9, explained about 55% phenotypic variance, and consistently expressed in all environments. The second QTL on LG A9 was ~70 cM away from SCA9-2, suggesting that independent assortment of these QTLs is possible. A digenic epistatic interaction was found between the two main effect QTL on LG A9; and the epistasis × environment interaction was nonsignificant, suggesting stability of the interaction across the environments. The QTL effect on LG A9 was validated using simple sequence repeat (SSR) markers from the two QTL regions of this LG on a B(1)S(1) population (F(1) backcrossed to Sampad followed by self-pollination) segregating for brown and yellow seed color, and on their self-pollinated progenies (B(1)S(2)). The SSR markers from the QTL region SCA9-2 showed a stronger linkage association with seed color as compared with the marker from SCA9-1. This suggests that the QTL SCA9-2 is the major determinant of seed color in the A genome of B. rapa.
Collapse
Affiliation(s)
- Berisso Kebede
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 410 Agriculture/Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Bagheri H, El-Soda M, van Oorschot I, Hanhart C, Bonnema G, Jansen-van den Bosch T, Mank R, Keurentjes JJB, Meng L, Wu J, Koornneef M, Aarts MGM. Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population. FRONTIERS IN PLANT SCIENCE 2012; 3:183. [PMID: 22912644 PMCID: PMC3419917 DOI: 10.3389/fpls.2012.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/26/2012] [Indexed: 05/18/2023]
Abstract
A recombinant inbred line (RIL) population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 Single nucleotide polymorphisms (SNPs), 130 AFLP®, 27 InDel, and 13 publicly available SSR markers. The map covers a total length of 1150 centiMorgan (cM) with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to quantitative trait loci (QTL) analysis. A total of 47 QTLs were detected, each explaining between 6 and 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis.
Collapse
Affiliation(s)
- Hedayat Bagheri
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
- Bu-Ali Sina UniversityHamedan, Iran
| | - Mohamed El-Soda
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
- Faculty of Agriculture, Department of Genetics, Cairo UniversityGiza, Egypt
| | - Inge van Oorschot
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen UniversityWageningen, Netherlands
| | | | - Rolf Mank
- Keygene N. V.Wageningen, Netherlands
| | | | - Lin Meng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
- Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Mark G. M. Aarts, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands. e-mail:
| |
Collapse
|