1
|
Mateos B, Preedy K, Milne L, Morris J, Hedley PE, Simpson C, Hancock RD, Graham J. Altered expression of a raspberry homologue of VRN1 is associated with disruption of dormancy induction and misregulation of subsets of dormancy-associated genes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6167-6181. [PMID: 39243357 PMCID: PMC11480652 DOI: 10.1093/jxb/erae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
Winter dormancy is a key process in the phenology of temperate perennials. Climate change is severely impacting its course leading to economic losses in agriculture. A better understanding of the underlying mechanisms, as well as the genetic basis of the different responses, is necessary for the development of climate-resilient cultivars. This study aims to provide an insight into winter dormancy in red raspberry (Rubus idaeus L). We report the transcriptomic profiles during dormancy in two raspberry cultivars with contrasting responses. The cultivar 'Glen Ample' showed a typical perennial phenology, whereas 'Glen Dee' registered consistent dormancy dysregulation, exhibiting active growth and flowering out of season. RNA-seq combined with weighted gene co-expression network analysis identified gene clusters in both genotypes that exhibited time-dependent expression profiles. Functional analysis of 'Glen Ample' gene clusters highlighted the significance of the cell and structural development prior to dormancy entry as well the role of genetic and epigenetic processes such as RNAi and DNA methylation in regulating gene expression. Dormancy release in 'Glen Ample' was associated with up-regulation of transcripts associated with the resumption of metabolism, nucleic acid biogenesis, and processing signal response pathways. Many of the processes occurring in 'Glen Ample' were dysregulated in 'Glen Dee' and 28 transcripts exhibiting time-dependent expression in 'Glen Ample' that also had an Arabidopsis homologue were not found in 'Glen Dee'. These included a gene with homology to Arabidopsis VRN1 (RiVRN1.1) that exhibited a sharp decline in expression following dormancy induction in 'Glen Ample'. Characterization of the gene region in the 'Glen Dee' genome revealed two large insertions upstream of the ATG start codon. We propose that expression below detection level of a specific VRN1 homologue in 'Glen Dee' causes dormancy misregulation as a result of inappropriate expression of a subset of genes that are directly or indirectly regulated by RiVRN1.1.
Collapse
Affiliation(s)
- Brezo Mateos
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Katharine Preedy
- Biomathematics and Statistics Scotland, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Linda Milne
- Informational and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
2
|
Šarhanová P, Majeský Ľ, Sochor M. A novel strategy to study apomixis, automixis, and autogamy in plants. PLANT REPRODUCTION 2024; 37:379-392. [PMID: 38431531 PMCID: PMC11377528 DOI: 10.1007/s00497-024-00499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
KEY MESSAGE The combination of a flow cytometric seed screen and genotyping of each single seed offers a cost-effective approach to detecting complex reproductive pathways in flowering plants. Reproduction may be seen as one of the driving forces of evolution. Flow cytometric seed screen and genotyping of parents and progeny are commonly employed techniques to discern various modes of reproduction in flowering plants. Nevertheless, both methods possess limitations constraining their individual capacity to investigate reproductive modes thoroughly. We implemented both methods in a novel manner to analyse reproduction pathways using a carefully selected material of parental individuals and their seed progeny. The significant advantage of this approach lies in its ability to apply both methods to a single seed. The introduced methodology provides valuable insights into discerning the levels of apomixis, sexuality, and selfing in complex Rubus taxa. The results may be explained by the occurrence of automixis in Rubus, which warrants further investigation. The approach showcased its effectiveness in a different apomictic system, specifically in Taraxacum. Our study presents a comprehensive methodological approach for determining the mode of reproduction where flow cytometry loses its potential. It provides a reliable and cost-effective method with significant potential in biosystematics, population genetics, and crop breeding.
Collapse
Affiliation(s)
- Petra Šarhanová
- Department of Botany and Zoology, Masaryk University, Kotlářská 267/2, 611 37, Brno, Czech Republic.
| | - Ľuboš Majeský
- Faculty of Science, Department of Botany, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc-Holice, Czech Republic
| | - Michal Sochor
- Centre of the Region Haná for Biotechnological and Agricultural Research, Crop Research Institute, Šlechtitelů 29, 78371, Olomouc, Czech Republic
| |
Collapse
|
3
|
Brůna T, Aryal R, Dudchenko O, Sargent DJ, Mead D, Buti M, Cavallini A, Hytönen T, Andrés J, Pham M, Weisz D, Mascagni F, Usai G, Natali L, Bassil N, Fernandez GE, Lomsadze A, Armour M, Olukolu B, Poorten T, Britton C, Davik J, Ashrafi H, Aiden EL, Borodovsky M, Worthington M. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. "Hillquist"). G3 (BETHESDA, MD.) 2023; 13:jkac289. [PMID: 36331334 PMCID: PMC9911083 DOI: 10.1093/g3journal/jkac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, Kent, UK
- Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Daniel Mead
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Owlstone Medical Ltd, Cambridge CB4 0GJ, UK
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - David Weisz
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Gina E Fernandez
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Alexandre Lomsadze
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Mitchell Armour
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, N-1431 Ås, Norway
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Erez Lieberman Aiden
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Mark Borodovsky
- Department of Biomedical Engineering, School of Computational Science and Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332USA
| | | |
Collapse
|
4
|
Zhou N, Simonneau F, Thouroude T, Oyant LHS, Foucher F. Morphological studies of rose prickles provide new insights. HORTICULTURE RESEARCH 2021; 8:221. [PMID: 34556626 PMCID: PMC8460668 DOI: 10.1038/s41438-021-00689-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Prickles are common structures in plants that play a key role in defense against herbivores. In the Rosa genus, prickles are widely present with great diversity in terms of form and density. For cut rose production, prickles represent an important issue, as they can damage the flower and injure workers. Our objectives were to precisely describe the types of prickles that exist in roses, their tissues of origin and their development. We performed a detailed histological analysis of prickle initiation and development in a rose F1 population. Based on the prickle investigation of 110 roses, we proposed the first categorization of prickles in the Rosa genus. They are mainly divided into two categories, nonglandular prickles (NGPs) and glandular prickles (GPs), and subcategories were defined based on the presence/absence of hairs and branches. We demonstrated that NGPs and GPs both originate from multiple cells of the ground meristem beneath the protoderm. For GPs, the gland cells originate from the protoderm of the GP at the early developmental stage. Our findings clearly demonstrate that prickles are not modified trichomes (which originate from the protoderm). These conclusions are different from the current mainstream hypothesis. These results provide a foundation for further studies on prickle initiation and development in plants.
Collapse
Affiliation(s)
- Ningning Zhou
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
- National Engineering Research Center for Ornamental Horticulture; Flower Research Institute (FRI), Yunnan Academy of Agricultural Sciences, Kunming, 650231, China.
| | | | - Tatiana Thouroude
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | | | - Fabrice Foucher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
5
|
Qi X, Ogden EL, Bostan H, Sargent DJ, Ward J, Gilbert J, Iorizzo M, Rowland LJ. High-Density Linkage Map Construction and QTL Identification in a Diploid Blueberry Mapping Population. FRONTIERS IN PLANT SCIENCE 2021; 12:692628. [PMID: 34234801 PMCID: PMC8256855 DOI: 10.3389/fpls.2021.692628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/24/2021] [Indexed: 05/11/2023]
Abstract
Genotyping by sequencing approaches have been widely applied in major crops and are now being used in horticultural crops like berries and fruit trees. As the original and largest producer of cultivated blueberry, the United States maintains the most diverse blueberry germplasm resources comprised of many species of different ploidy levels. We previously constructed an interspecific mapping population of diploid blueberry by crossing the parent F1#10 (Vaccinium darrowii Fla4B × diploid V. corymbosum W85-20) with the parent W85-23 (diploid V. corymbosum). Employing the Capture-Seq technology developed by RAPiD Genomics, with an emphasis on probes designed in predicted gene regions, 117 F1 progeny, the two parents, and two grandparents of this population were sequenced, yielding 131.7 Gbp clean sequenced reads. A total of 160,535 single nucleotide polymorphisms (SNPs), referenced to 4,522 blueberry genome sequence scaffolds, were identified and subjected to a parent-dependent sliding window approach to further genotype the population. Recombination breakpoints were determined and marker bins were deduced to construct a high density linkage map. Twelve blueberry linkage groups (LGs) consisting of 17,486 SNP markers were obtained, spanning a total genetic distance of 1,539.4 cM. Among 18 horticultural traits phenotyped in this population, quantitative trait loci (QTLs) that were significant over at least 2 years were identified for chilling requirement, cold hardiness, and fruit quality traits of color, scar size, and firmness. Interestingly, in 1 year, a QTL associated with timing of early bloom, full bloom, petal fall, and early green fruit was identified in the same region harboring the major QTL for chilling requirement. In summary, we report here the first high density bin map of a diploid blueberry mapping population and the identification of several horticulturally important QTLs.
Collapse
Affiliation(s)
- Xinpeng Qi
- Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center-West, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Elizabeth L. Ogden
- Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center-West, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | - Hamed Bostan
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | | | - Judson Ward
- Driscoll’s Inc., Watsonville, CA, United States
| | | | - Massimo Iorizzo
- Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Lisa J. Rowland
- Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center-West, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
- *Correspondence: Lisa J. Rowland, ;
| |
Collapse
|
6
|
Jibran R, Spencer J, Fernandez G, Monfort A, Mnejja M, Dzierzon H, Tahir J, Davies K, Chagné D, Foster TM. Two Loci, RiAF3 and RiAF4, Contribute to the Annual-Fruiting Trait in Rubus. FRONTIERS IN PLANT SCIENCE 2019; 10:1341. [PMID: 31708950 PMCID: PMC6824294 DOI: 10.3389/fpls.2019.01341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/26/2019] [Indexed: 05/31/2023]
Abstract
Most Rubus species have a biennial cycle of flowering and fruiting with an intervening period of winter dormancy, in common with many perennial fruit crops. Annual-fruiting (AF) varieties of raspberry (Rubus idaeus and Rubus occidentalis L.) and blackberry (Rubus subgenus Rubus) are able to flower and fruit in one growing season, without the intervening dormant period normally required in biennial-fruiting (BF) varieties. We used a red raspberry (R. idaeus) population segregating for AF obtained from a cross between NC493 and 'Chilliwack' to identify genetic factors controlling AF. Genotyping by sequencing (GBS) was used to generate saturated linkage maps in both parents. Trait mapping in this population indicated that AF is controlled by two newly identified loci (RiAF3 and RiAF4) located on Rubus linkage groups (LGs) 3 and 4. The location of these loci was analyzed using single-nucleotide polymorphism (SNP) markers on independent red raspberry and blackberry populations segregating for the AF trait. This confirmed that AF in Rubus is regulated by loci on LG 3 and 4, in addition to a previously reported locus on LG 7. Comparative RNAseq analysis at the time of floral bud differentiation in an AF and a BF variety revealed candidate genes potentially regulating the trait.
Collapse
Affiliation(s)
- Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Gina Fernandez
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Amparo Monfort
- IRTA (Institut de Recerca I Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Mourad Mnejja
- IRTA (Institut de Recerca I Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Helge Dzierzon
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
| | - Jibran Tahir
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
| | - Kevin Davies
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
| | - Toshi M. Foster
- The New Zealand Institute for Plant & Food Research Limited, Palmerston North Research Centre, Palmerston North, New Zealand
| |
Collapse
|
7
|
Foster TM, Bassil NV, Dossett M, Leigh Worthington M, Graham J. Genetic and genomic resources for Rubus breeding: a roadmap for the future. HORTICULTURE RESEARCH 2019; 6:116. [PMID: 31645970 PMCID: PMC6804857 DOI: 10.1038/s41438-019-0199-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/17/2019] [Accepted: 08/27/2019] [Indexed: 05/09/2023]
Abstract
Rubus fruits are high-value crops that are sought after by consumers for their flavor, visual appeal, and health benefits. To meet this demand, production of red and black raspberries (R. idaeus L. and R. occidentalis L.), blackberries (R. subgenus Rubus), and hybrids, such as Boysenberry and marionberry, is growing worldwide. Rubus breeding programmes are continually striving to improve flavor, texture, machine harvestability, and yield, provide pest and disease resistance, improve storage and processing properties, and optimize fruits and plants for different production and harvest systems. Breeders face numerous challenges, such as polyploidy, the lack of genetic diversity in many of the elite cultivars, and until recently, the relative shortage of genetic and genomic resources available for Rubus. This review will highlight the development of continually improving genetic maps, the identification of Quantitative Trait Loci (QTL)s controlling key traits, draft genomes for red and black raspberry, and efforts to improve gene models. The development of genetic maps and markers, the molecular characterization of wild species and germplasm, and high-throughput genotyping platforms will expedite breeding of improved cultivars. Fully sequenced genomes and accurate gene models facilitate identification of genes underlying traits of interest and enable gene editing technologies such as CRISPR/Cas9.
Collapse
Affiliation(s)
- Toshi M. Foster
- The New Zealand Institute for Plant and Food Research (PFR) Ltd, 55 Old Mill Road, Motueka, New Zealand
| | - Nahla V. Bassil
- USDA ARS National Clonal Germplasm Repository (NCGR), 33447 Peoria Rd., Corvallis, OR USA
| | - Michael Dossett
- Blueberry Council (in Partnership with Agriculture and Agri-Food Canada) Agassiz Food Research Centre, Columbia, BC V0M 1A0 Canada
| | - Margaret Leigh Worthington
- Department of Horticulture, University of Arkansas, 316 Plant Science Building, Fayetteville, AR 72701 USA
| | - Julie Graham
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA Scotland
| |
Collapse
|
8
|
Sharma S, Kaur R, Solanke AKU, Dubey H, Tiwari S, Kumar K. Transcriptome sequencing of Himalayan Raspberry ( Rubus ellipticus) and development of simple sequence repeat markers. 3 Biotech 2019; 9:161. [PMID: 30944808 DOI: 10.1007/s13205-019-1685-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
KEY MESSAGE Rubus ellipticus is a wild crop having less number of EST-SSR markers. First attempt was made towards the transcriptomics data analysis and generation of EST-SSR markers which were used in genetic diversity and transferability studies. ABSTRACT Rubus ellipticus is a raspberry with yellow fruits, native to tropical and subtropical India and Asia. Leaves of Rubus ellipticus 'Kumarhatti' collection were utilized for cDNA library construction. More than 15 million sequencing reads were generated using NextSeq 500 Illumina RNA-seq technology. The DNASTAR software was used for de novo assembly from which 7777 unigenes with an average length of 500 bp was obtained. These unigenes were annotated using public databases, including NCBI non-redundant and gene ontology. De novo assembly of R. ellipticus unigenes found the highest similarity to apple than to other members of Rosaceae. This is the first attempt to use the Illumina platform of RNA sequencing and de novo assembly for R. ellipticus without a reference genome. In this study, unigenes were used for SSR marker development. ESTs containing SSR motifs were extracted using an online Microsatellite Identification Tool (MISA). SSR primers were designed from the SSR containing 704 EST sequences using the Websat software. Total 304 EST-SSRs primers were successfully designed, out of which 68 randomly selected primer pairs were custom synthesized and used for validation. Real-time PCR was also performed to analyze the relationship of transcriptional factors with fruit ripening. Out of 68 primer pairs, 61 were found to be informative in R. ellipticus, whereas 65 primer pairs were informative in the five tested genera of Rosaceae, i.e., pear, peach, apple, rose, and strawberry with 95.3% and 93.5% polymorphism, leading to the conclusion that these marker systems are very efficient to carryout diversity and cross transferability study in Rosaceae genera.
Collapse
|
9
|
Hackett CA, Milne L, Smith K, Hedley P, Morris J, Simpson CG, Preedy K, Graham J. Enhancement of Glen Moy x Latham raspberry linkage map using GbS to further understand control of developmental processes leading to fruit ripening. BMC Genet 2018; 19:59. [PMID: 30111279 PMCID: PMC6094467 DOI: 10.1186/s12863-018-0666-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The changing climate is altering timing of key fruit ripening processes and increasing the occurrence of fruit defects. To improve our understanding of the genetic control of raspberry fruit development an enhanced genetic linkage map was developed and used to examine ripening phenotypic data. RESULTS In this study we developed an enhanced genetic linkage map for the raspberry cvs. Glen Moy x Latham reference mapping population using genotyping by sequencing (GbS). Alignment to a newly sequenced draft reference genome of red raspberry, cultivar (cv.) Glen Moy, identified 8019 single nucleotide polymorphisms (SNPs). After stringent filtering to take account of read coverage over all the progeny individuals, association with a single chromosome, heterozygosity and marker regression mapping, 2348 high confidence SNPs were retained and integrated with an existing raspberry genetic map. The linkage map contained many more SNPs segregating in Latham than in Glen Moy. This caused difficulties in quantitative trait loci (QTL) mapping with standard software and a novel analysis based on a hidden Markov model was used to improve the mapping. QTL mapping using the newly generated dense genetic map not only corroborated previously identified genetic locations but also provided additional genetic elements controlling fruit ripening in raspberry. CONCLUSION The high-density GbS map located the QTL peaks more precisely than in earlier studies, aligned the QTLs with Glen Moy genome scaffolds, narrowed the range of potential candidate genes to these regions that can be utilised in other populations or in gene expression studies to confirm their role and increased the repertoire of markers available to understand the genetic control of fruit ripening traits.
Collapse
Affiliation(s)
| | - Linda Milne
- The James Hutton Institute, Invergowrie, Dundee, DD25DA Scotland
| | - Kay Smith
- The James Hutton Institute, Invergowrie, Dundee, DD25DA Scotland
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD25DA Scotland
| | - Jenny Morris
- The James Hutton Institute, Invergowrie, Dundee, DD25DA Scotland
| | - Craig G. Simpson
- The James Hutton Institute, Invergowrie, Dundee, DD25DA Scotland
| | - Katharine Preedy
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD25DA Scotland
| | - Julie Graham
- The James Hutton Institute, Invergowrie, Dundee, DD25DA Scotland
| |
Collapse
|
10
|
Construction of a High-Density American Cranberry ( Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage Mapping. G3-GENES GENOMES GENETICS 2017; 7:1177-1189. [PMID: 28250016 PMCID: PMC5386866 DOI: 10.1534/g3.116.037556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three interrelated cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman rank correlations >0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.
Collapse
|
11
|
VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER, Priest HD, Michael TP, Lyons E, Filichkin SA, Dossett M, Finn CE, Bassil NV, Mockler TC. The genome of black raspberry (Rubus occidentalis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:535-47. [PMID: 27228578 DOI: 10.1111/tpj.13215] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/27/2016] [Accepted: 05/12/2016] [Indexed: 05/02/2023]
Abstract
Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars.
Collapse
Affiliation(s)
- Robert VanBuren
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Doug Bryant
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jill M Bushakra
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Kelly J Vining
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
| | - Erik R Rowley
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Henry D Priest
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | | | - Eric Lyons
- CyVerse, BIO5, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Sergei A Filichkin
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University Corvallis, Corvallis, OR, 97331, USA
| | - Michael Dossett
- B.C. Blueberry Council (in Partnership with Agriculture and Agri-Food Canada) - Agassiz Research and Development Centre, Agassiz, BC, VOM 1A0, Canada
| | - Chad E Finn
- USDA-ARS Horticultural Crops Research Unit, Corvallis, OR, 97330, USA
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR, 97333, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
| |
Collapse
|
12
|
Bushakra JM, Lewers KS, Staton ME, Zhebentyayeva T, Saski CA. Developing expressed sequence tag libraries and the discovery of simple sequence repeat markers for two species of raspberry (Rubus L.). BMC PLANT BIOLOGY 2015; 15:258. [PMID: 26499487 PMCID: PMC4620654 DOI: 10.1186/s12870-015-0629-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/28/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed sequence tags (ESTs) are a source of SSRs that can be used to develop markers to facilitate plant breeding and for more basic research across genera and higher plant orders. METHODS Leaf and meristem tissue from 'Heritage' red raspberry (Rubus idaeus) and 'Bristol' black raspberry (R. occidentalis) were utilized for RNA extraction. After conversion to cDNA and library construction, ESTs were sequenced, quality verified, assembled and scanned for SSRs. Primers flanking the SSRs were designed and a subset tested for amplification, polymorphism and transferability across species. ESTs containing SSRs were functionally annotated using the GenBank non-redundant (nr) database and further classified using the gene ontology database. RESULTS To accelerate development of EST-SSRs in the genus Rubus (Rosaceae), 1149 and 2358 cDNA sequences were generated from red raspberry and black raspberry, respectively. The cDNA sequences were screened using rigorous filtering criteria which resulted in the identification of 121 and 257 SSR loci for red and black raspberry, respectively. Primers were designed from the surrounding sequences resulting in 131 and 288 primer pairs, respectively, as some sequences contained more than one SSR locus. Sequence analysis revealed that the SSR-containing genes span a diversity of functions and share more sequence identity with strawberry genes than with other Rosaceous species. CONCLUSION This resource of Rubus-specific, gene-derived markers will facilitate the construction of linkage maps composed of transferable markers for studying and manipulating important traits in this economically important genus.
Collapse
Affiliation(s)
- Jill M Bushakra
- USDA-ARS, National Clonal Germplasm Repository, 33447 Peoria Road, Corvallis, OR, 97333-2521, USA.
| | - Kim S Lewers
- USDA-ARS, Beltsville Agricultural Research Center, Genetic Improvement of Fruits and Vegetables Lab, Bldg. 010A, BARC-West, 10300 Baltimore Ave., Beltsville, MD, 20705-2350, USA.
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee, 2505 EJ Chapman Drive, 370 PBB, Knoxville, TN, 37996, USA.
| | - Tetyana Zhebentyayeva
- Genomics & Computational Biology Laboratory, Biosystems Research Complex, Clemson University, 51 New Cherry St., 304, Clemson, SC, 29634, USA.
| | - Christopher A Saski
- Genomics & Computational Biology Laboratory, Biosystems Research Complex, Clemson University, 51 New Cherry St., 304, Clemson, SC, 29634, USA.
| |
Collapse
|
13
|
Bushakra JM, Bryant DW, Dossett M, Vining KJ, VanBuren R, Gilmore BS, Lee J, Mockler TC, Finn CE, Bassil NV. A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag(4) conferring resistance to the aphid Amphorophora agathonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1631-46. [PMID: 26037086 PMCID: PMC4477079 DOI: 10.1007/s00122-015-2541-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/18/2015] [Indexed: 05/07/2023]
Abstract
We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.
Collapse
Affiliation(s)
- Jill M Bushakra
- USDA-ARS National Clonal Germplasm Repository, 33447 Peoria Rd., Corvallis, OR, 97333, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. HORTICULTURE RESEARCH 2014; 1:1. [PMID: 26504527 PMCID: PMC4591673 DOI: 10.1038/hortres.2014.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/24/2013] [Indexed: 05/04/2023]
Abstract
The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species.
Collapse
Affiliation(s)
- Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lara Giongo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Matteo Buti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Nada Surbanovski
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Roberto Viola
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Daniel J Sargent
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|