1
|
Roller S, Würschum T. Genetic architecture of phosphorus use efficiency across diverse environmental conditions: insights from maize elite and landrace lines. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:363-380. [PMID: 39435644 DOI: 10.1093/jxb/erae431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/12/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Phosphorus is an essential nutrient for all crops. Thus, a better understanding of the genetic control of phosphorus use efficiency evident in physiological, developmental, and morphological traits and its environmental plasticity is required to establish the basis for maintaining or enhancing yield while making agriculture more sustainable. In this study, we utilized a diverse panel of maize (Zea mays L.), including 398 elite and landrace lines, phenotyped across three environments and two phosphorus fertilization treatments. We performed genome-wide association mapping for 13 traits, including phosphorus uptake and allocation, that showed a strong environment dependency in their expression. Our results highlight the complex genetic architecture of phosphorus use efficiency as well as the substantial differences between the evaluated genetic backgrounds. Despite harboring more of the identified quantitative trait loci, almost all of the favorable alleles from landraces were found to be present in at least one of the two elite heterotic groups. Notably, we also observed trait-specific genetic control even among biologically related characteristics, as well as a substantial plasticity of the genetic architecture of several traits in response to the environment and phosphorus fertilization. Collectively, our work illustrates the difficulties in improving phosphorus use efficiency, but also presents possible solutions for the future contribution of plant breeding to improve the phosphorus cycle.
Collapse
Affiliation(s)
- Sandra Roller
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, D-70593, Germany
| |
Collapse
|
2
|
Tyborski N, Koehler T, Steiner FA, Tung SY, Wild AJ, Carminati A, Mueller CW, Vidal A, Wolfrum S, Pausch J, Lueders T. Consistent prokaryotic community patterns along the radial root axis of two Zea mays L. landraces across two distinct field locations. Front Microbiol 2024; 15:1386476. [PMID: 39091306 PMCID: PMC11292614 DOI: 10.3389/fmicb.2024.1386476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The close interconnection of plants with rhizosphere- and root-associated microorganisms is well recognized, and high expectations are raised for considering their symbioses in the breeding of future crop varieties. However, it is unclear how consistently plant-mediated selection, a potential target in crop breeding, influences microbiome members compared to selection imposed by the agricultural environment. Landraces may have traits shaping their microbiome, which were lost during the breeding of modern varieties, but knowledge about this is scarce. We investigated prokaryotic community composition along the radial root axis of two European maize (Zea mays L.) landraces. A sampling gradient included bulk soil, a distal and proximal rhizosphere fraction, and the root compartment. Our study was replicated at two field locations with differing edaphic and climatic conditions. Further, we tested for differences between two plant developmental stages and two precipitation treatments. Community data were generated by metabarcoding of the V4 SSU rRNA region. While communities were generally distinct between field sites, the effects of landrace variety, developmental stage, and precipitation treatment were comparatively weak and not statistically significant. Under all conditions, patterns in community composition corresponded strongly to the distance to the root. Changes in α- and β-diversity, as well as abundance shifts of many taxa along this gradient, were similar for both landraces and field locations. Most affected taxa belonged to a core microbiome present in all investigated samples. Remarkably, we observed consistent enrichment of Actinobacteriota (particularly Streptomyces, Lechevalieria) and Pseudomonadota (particularly Sphingobium) toward the root. Further, we report a depletion of ammonia-oxidizers along this axis at both field sites. We identified clear enrichment and depletion patterns in microbiome composition along the radial root axis of Z. mays. Many of these were consistent across two distinct field locations, plant developmental stages, precipitation treatments, and for both landraces. This suggests a considerable influence of plant-mediated effects on the microbiome. We propose that the affected taxa have key roles in the rhizosphere and root microbiome of Z. mays. Understanding the functions of these taxa appears highly relevant for the development of methods aiming to promote microbiome services for crops.
Collapse
Affiliation(s)
- Nicolas Tyborski
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tina Koehler
- Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franziska A. Steiner
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Shu-Yin Tung
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas J. Wild
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Carsten W. Mueller
- Soil Science, Institute of Ecology, Technical University of Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Alix Vidal
- Soil Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Sebastian Wolfrum
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture (LfL), Freising, Germany
| | - Johanna Pausch
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Tillmann Lueders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Melchinger AE, Fernando R, Melchinger AJ, Schön CC. Optimizing selection based on BLUPs or BLUEs in multiple sets of genotypes differing in their population parameters. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:104. [PMID: 38622324 PMCID: PMC11018695 DOI: 10.1007/s00122-024-04592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Accepted: 03/05/2024] [Indexed: 04/17/2024]
Abstract
KEY MESSAGE Selection response in truncation selection across multiple sets of candidates hinges on their post-selection proportions, which can deviate grossly from their initial proportions. For BLUPs, using a uniform threshold for all candidates maximizes the selection response, irrespective of differences in population parameters. Plant breeding programs typically involve multiple families from either the same or different populations, varying in means, genetic variances and prediction accuracy of BLUPs or BLUEs for true genetic values (TGVs) of candidates. We extend the classical breeder's equation for truncation selection from single to multiple sets of genotypes, indicating that the expected overall selection response ( Δ G Tot ) for TGVs depends on the selection response within individual sets and their post-selection proportions. For BLUEs, we show that maximizingΔ G Tot requires thresholds optimally tailored for each set, contingent on their population parameters. For BLUPs, we prove thatΔ G Tot is maximized by applying a uniform threshold across all candidates from all sets. We provide explicit formulas for the origin of the selected candidates from different sets and show that their proportions before and after selection can differ substantially, especially for sets with inferior properties and low proportion. We discuss implications of these results for (a) optimum allocation of resources to training and prediction sets and (b) the need to counteract narrowing the genetic variation under genomic selection. For genomic selection of hybrids based on BLUPs of GCA of their parent lines, selecting distinct proportions in the two parent populations can be advantageous, if these differ substantially in the variance and/or prediction accuracy of GCA. Our study sheds light on the complex interplay of selection thresholds and population parameters for the selection response in plant breeding programs, offering insights into the effective resource management and prudent application of genomic selection for improved crop development.
Collapse
Affiliation(s)
- Albrecht E Melchinger
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Rohan Fernando
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | | | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| |
Collapse
|
4
|
Sanchez D, Allier A, Ben Sadoun S, Mary-Huard T, Bauland C, Palaffre C, Lagardère B, Madur D, Combes V, Melkior S, Bettinger L, Murigneux A, Moreau L, Charcosset A. Assessing the potential of genetic resource introduction into elite germplasm: a collaborative multiparental population for flint maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:19. [PMID: 38214870 PMCID: PMC10786986 DOI: 10.1007/s00122-023-04509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/01/2023] [Accepted: 11/18/2023] [Indexed: 01/13/2024]
Abstract
KEY MESSAGE Implementing a collaborative pre-breeding multi-parental population efficiently identifies promising donor x elite pairs to enrich the flint maize elite germplasm. Genetic diversity is crucial for maintaining genetic gains and ensuring breeding programs' long-term success. In a closed breeding program, selection inevitably leads to a loss of genetic diversity. While managing diversity can delay this loss, introducing external sources of diversity is necessary to bring back favorable genetic variation. Genetic resources exhibit greater diversity than elite materials, but their lower performance levels hinder their use. This is the case for European flint maize, for which elite germplasm has incorporated only a limited portion of the diversity available in landraces. To enrich the diversity of this elite genetic pool, we established an original cooperative maize bridging population that involves crosses between private elite materials and diversity donors to create improved genotypes that will facilitate the incorporation of original favorable variations. Twenty donor × elite BC1S2 families were created and phenotyped for hybrid value for yield related traits. Crosses showed contrasted means and variances and therefore contrasted potential in terms of selection as measured by their usefulness criterion (UC). Average expected mean performance gain over the initial elite material was 5%. The most promising donor for each elite line was identified. Results also suggest that one more generation, i.e., 3 in total, of crossing to the elite is required to fully exploit the potential of a donor. Altogether, our results support the usefulness of incorporating genetic resources into elite flint maize. They call for further effort to create fixed diversity donors and identify those most suitable for each elite program.
Collapse
Affiliation(s)
- Dimitri Sanchez
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
| | - Antoine Allier
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
- Syngenta, 12 Chemin de L'Hobit, 31790, Saint-Sauveur, France
| | - Sarah Ben Sadoun
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA-Paris Saclay, 91120, Palaiseau, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
| | - Carine Palaffre
- UE 0394 SMH, INRAE, 2297 Route de l'INRA, 40390, Saint-Martin-de-Hinx, France
| | - Bernard Lagardère
- UE 0394 SMH, INRAE, 2297 Route de l'INRA, 40390, Saint-Martin-de-Hinx, France
| | - Delphine Madur
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
| | - Valérie Combes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
| | | | | | - Alain Murigneux
- Limagrain Europe, 28 Route d'Ennezat, 63720, Chappes, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France
| | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, Génétique Quantitative et Evolution-Le Moulon, 91190, Gif-Sur-Yvette, France.
| |
Collapse
|
5
|
Ledesma A, Santana AS, Sales Ribeiro FA, Aguilar FS, Edwards J, Frei U, Lübberstedt T. Genome-wide association analysis of plant architecture traits using doubled haploid lines derived from different cycles of the Iowa Stiff Stalk Synthetic maize population. FRONTIERS IN PLANT SCIENCE 2023; 14:1294507. [PMID: 38235209 PMCID: PMC10792766 DOI: 10.3389/fpls.2023.1294507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/14/2023] [Accepted: 11/17/2023] [Indexed: 01/19/2024]
Abstract
Selection in the Iowa Stiff Stalk Synthetic (BSSS) maize population for high yield, grain moisture, and root and stalk lodging has indirectly modified plant architecture traits that are important for adaptation to high plant density. In this study, we developed doubled haploid (DH) lines from the BSSS maize population in the earliest cycle of recurrent selection (BSSS), cycle 17 of reciprocal recurrent selection, [BSSS(R)17] and the cross between the two cycles [BSSS/BSSS(R)C17]. We aimed to determine the phenotypic variation and changes in agronomic traits that have occurred through the recurrent selection program in this population and to identify genes or regions in the genome associated with the plant architecture changes observed in the different cycles of selection. We conducted a per se evaluation of DH lines focusing on high heritability traits important for adaptation to high planting density and grain yield. Trends for reducing flowering time, anthesis-silking interval, ear height, and the number of primary tassel branches in BSSS(R)17 DH lines compared to BSSS and BSSS/BSSS(R)C17 DH lines were observed. Additionally, the BSSS(R)C17 DH lines showed more upright flag leaf angles. Using the entire panel of DH lines increased the number of SNP markers identified within candidate genes associated with plant architecture traits. The genomic regions identified for plant architecture traits in this study may help to elucidate the genetic basis of these traits and facilitate future work about marker-assisted selection or map-based cloning in maize breeding programs.
Collapse
Affiliation(s)
- Alejandro Ledesma
- National Institute of Forestry, Crop and Livestock Research, Tepatitlán, Jalisco, Mexico
| | - Alice Silva Santana
- Department of Agronomy, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Fernando S. Aguilar
- Colombian Sugarcane Research Center (Cenicana), Cali, Cauca Valley, Colombia
| | - Jode Edwards
- U.S. Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Ursula Frei
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
6
|
Arshad S, Wei M, Ali Q, Mustafa G, Ma Z, Yan Y. Paclitaxel and Caffeine-Taurine, New Colchicine Alternatives for Chromosomes Doubling in Maize Haploid Breeding. Int J Mol Sci 2023; 24:14659. [PMID: 37834106 PMCID: PMC10572353 DOI: 10.3390/ijms241914659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Revised: 08/25/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
The doubled haploid (DH) technology is employed worldwide in various crop-breeding programs, especially maize. Still, restoring tassel fertility is measured as one of the major restrictive factors in producing DH lines. Colchicine, nitrous oxide, oryzalin, and amiprophosmethyl are common chromosome-doubling agents that aid in developing viable diploids (2n) from sterile haploids (n). Although colchicine is the most widely used polyploidy-inducing agent, it is highly toxic to mammals and plants. Therefore, there is a dire need to explore natural, non-toxic, or low-toxic cheaper and accessible substitutes with a higher survival and fertility rate. To the best of our knowledge, the advanced usage of human anticancer drugs "Paclitaxel (PTX)" and "Caffeine-Taurine (CAF-T)" for in vivo maize haploids doubling is being disclosed for the first time. These two antimitotic and antimicrotubular agents (PTX and CAF-T) were assessed under various treatment conditions compared to colchicine. As a result, the maximum actual doubling rates (ADR) for PTX versus colchicine in maize haploid seedlings were 42.1% (400 M, 16 h treatment) versus 31.9% (0.5 mM, 24 h treatment), respectively. In addition, the ADR in maize haploid seeds were CAF-T 20.0% (caffeine 2 g/L + taurine 12 g/L, 16 h), PTX 19.9% (100 μM, 24 h treatment), and colchicine 26.0% (2.0 mM, 8 h treatment). Moreover, the morphological and physiological by-effects in haploid plants by PTX were significantly lower than colchicine. Hence, PTX and CAF-T are better alternatives than the widely used traditional colchicine to improve chromosome-doubling in maize crop.
Collapse
Affiliation(s)
- Saeed Arshad
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
| | - Mengli Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.A.); (G.M.)
| | - Ghulam Mustafa
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (Q.A.); (G.M.)
| | - Zhengqiang Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
| | - Yuanxin Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (S.A.); (M.W.); (Z.M.)
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing 210095, China
| |
Collapse
|
7
|
Ledesma A, Ribeiro FAS, Uberti A, Edwards J, Hearne S, Frei U, Lübberstedt T. Molecular characterization of doubled haploid lines derived from different cycles of the Iowa Stiff Stalk Synthetic (BSSS) maize population. FRONTIERS IN PLANT SCIENCE 2023; 14:1226072. [PMID: 37600186 PMCID: PMC10433169 DOI: 10.3389/fpls.2023.1226072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/20/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023]
Abstract
Molecular characterization of a given set of maize germplasm could be useful for understanding the use of the assembled germplasm for further improvement in a breeding program, such as analyzing genetic diversity, selecting a parental line, assigning heterotic groups, creating a core set of germplasm and/or performing association analysis for traits of interest. In this study, we used single nucleotide polymorphism (SNP) markers to assess the genetic variability in a set of doubled haploid (DH) lines derived from the unselected Iowa Stiff Stalk Synthetic (BSSS) maize population, denoted as C0 (BSSS(R)C0), the seventeenth cycle of reciprocal recurrent selection in BSSS (BSSS(R)C17), denoted as C17 and the cross between BSSS(R)C0 and BSSS(R)C17 denoted as C0/C17. With the aim to explore if we have potentially lost diversity from C0 to C17 derived DH lines and observe whether useful genetic variation in C0 was left behind during the selection process since C0 could be a reservoir of genetic diversity that could be untapped using DH technology. Additionally, we quantify the contribution of the BSSS progenitors in each set of DH lines. The molecular characterization analysis confirmed the apparent separation and the loss of genetic variability from C0 to C17 through the recurrent selection process. Which was observed by the degree of differentiation between the C0_DHL versus C17_DHL groups by Wright's F-statistics (FST). Similarly for the population structure based on principal component analysis (PCA) revealed a clear separation among groups of DH lines. Some of the progenitors had a higher genetic contribution in C0 compared with C0/C17 and C17 derived DH lines. Although genetic drift can explain most of the genetic structure genome-wide, phenotypic data provide evidence that selection has altered favorable allele frequencies in the BSSS maize population through the reciprocal recurrent selection program.
Collapse
Affiliation(s)
- Alejandro Ledesma
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | - Alison Uberti
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Jode Edwards
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, United States
| | - Sarah Hearne
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco, Mexico
| | - Ursula Frei
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
8
|
Roller S, Weiß TM, Li D, Liu W, Schipprack W, Melchinger AE, Hahn V, Leiser WL, Würschum T. Can we abandon phosphorus starter fertilizer in maize? Results from a diverse panel of elite and doubled haploid landrace lines of maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1005931. [PMID: 36589134 PMCID: PMC9800985 DOI: 10.3389/fpls.2022.1005931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The importance of phosphorus (P) in agriculture contrasts with the negative environmental impact and the limited resources worldwide. Reducing P fertilizer application by utilizing more efficient genotypes is a promising way to address these issues. To approach this, a large panel of maize (Zea mays L.) comprising each 100 Flint and Dent elite lines and 199 doubled haploid lines from six landraces was assessed in multi-environment field trials with and without the application of P starter fertilizer. The treatment comparison showed that omitting the starter fertilizer can significantly affect traits in early plant development but had no effect on grain yield. Young maize plants provided with additional P showed an increased biomass, faster growth and superior vigor, which, however, was only the case under environmental conditions considered stressful for maize cultivation. Importantly, though the genotype-by-treatment interaction variance was comparably small, there is genotypic variation for this response that can be utilized in breeding. The comparison of elite and doubled haploid landrace lines revealed a superior agronomic performance of elite material but also potentially valuable variation for early traits in the landrace doubled haploid lines. In conclusion, our results illustrate that breeding for P efficient maize cultivars is possible towards a reduction of P fertilizer in a more sustainable agriculture.
Collapse
Affiliation(s)
- Sandra Roller
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Thea M. Weiß
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Dongdong Li
- Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wenxin Liu
- Key Laboratory of Crop Heterosis and Utilization, The Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Albrecht E. Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
9
|
Theoretical and experimental assessment of genome-based prediction in landraces of allogamous crops. Proc Natl Acad Sci U S A 2022; 119:e2121797119. [PMID: 35486687 PMCID: PMC9170147 DOI: 10.1073/pnas.2121797119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceGenetic variation inherent in landraces is essential for broadening the genetic diversity of our crops. This study pioneers the development of a theoretical framework to link molecular inventories of plant genetic resources to phenotypic variation, allowing an informed choice of landraces and their crossing partners. We show that genome-based prediction of genetic values can be implemented successfully in landrace-derived material, despite a strongly reduced level of relatedness compared with elite germplasm. Theoretical derivations are validated with unique experimental data collected on two different landraces. Our results are a pivotal contribution toward the optimization of genome-enabled prebreeding schemes.
Collapse
|
10
|
Weiß TM, Zhu X, Leiser WL, Li D, Liu W, Schipprack W, Melchinger AE, Hahn V, Würschum T. Unraveling the potential of phenomic selection within and among diverse breeding material of maize (Zea mays L.). G3 (BETHESDA, MD.) 2022; 12:6509517. [PMID: 35100379 PMCID: PMC8895988 DOI: 10.1093/g3journal/jkab445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
Genomic selection is a well-investigated approach that facilitates and supports selection decisions for complex traits and has meanwhile become a standard tool in modern plant breeding. Phenomic selection has only recently been suggested and uses the same statistical procedures to predict the targeted traits but replaces marker data with near-infrared spectroscopy data. It may represent an attractive low-cost, high-throughput alternative but has not been sufficiently studied until now. Here, we used 400 genotypes of maize (Zea mays L.) comprising elite lines of the Flint and Dent heterotic pools as well as 6 Flint landraces, which were phenotyped in multienvironment trials for anthesis-silking-interval, early vigor, final plant height, grain dry matter content, grain yield, and phosphorus concentration in the maize kernels, to compare the predictive abilities of genomic as well as phenomic prediction under different scenarios. We found that both approaches generally achieved comparable predictive abilities within material groups. However, phenomic prediction was less affected by population structure and performed better than its genomic counterpart for predictions among diverse groups of breeding material. We therefore conclude that phenomic prediction is a promising tool for practical breeding, for instance when working with unknown and rather diverse germplasm. Moreover, it may make the highly monopolized sector of plant breeding more accessible also for low-tech institutions by combining well established, widely available, and cost-efficient spectral phenotyping with the statistical procedures elaborated for genomic prediction - while achieving similar or even better results than with marker data.
Collapse
Affiliation(s)
- Thea Mi Weiß
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany.,Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Xintian Zhu
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany.,Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany
| | - Dongdong Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxin Liu
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| |
Collapse
|
11
|
Würschum T, Weiß TM, Renner J, Friedrich Utz H, Gierl A, Jonczyk R, Römisch-Margl L, Schipprack W, Schön CC, Schrag TA, Leiser WL, Melchinger AE. High-resolution association mapping with libraries of immortalized lines from ancestral landraces. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:243-256. [PMID: 34668978 PMCID: PMC8741726 DOI: 10.1007/s00122-021-03963-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 05/30/2023]
Abstract
Association mapping with immortalized lines of landraces offers several advantages including a high mapping resolution, as demonstrated here in maize by identifying the causal variants underlying QTL for oil content and the metabolite allantoin. Landraces are traditional varieties of crops that present a valuable yet largely untapped reservoir of genetic variation to meet future challenges of agriculture. Here, we performed association mapping in a panel comprising 358 immortalized maize lines from six European Flint landraces. Linkage disequilibrium decayed much faster in the landraces than in the elite lines included for comparison, permitting a high mapping resolution. We demonstrate this by fine-mapping a quantitative trait locus (QTL) for oil content down to the phenylalanine insertion F469 in DGAT1-2 as the causal variant. For the metabolite allantoin, related to abiotic stress response, we identified promoter polymorphisms and differential expression of an allantoinase as putative cause of variation. Our results demonstrate the power of this approach to dissect QTL potentially down to the causal variants, toward the utilization of natural or engineered alleles in breeding. Moreover, we provide guidelines for studies using ancestral landraces for crop genetic research and breeding.
Collapse
Affiliation(s)
- Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| | - Thea M Weiß
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
| | - Juliane Renner
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - H Friedrich Utz
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Alfons Gierl
- Genetics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Rafal Jonczyk
- Genetics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Lilla Römisch-Margl
- Genetics, Technical University of Munich, Wissenschaftszentrum Weihenstephan, 85354, Freising, Germany
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Tobias A Schrag
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70599, Stuttgart, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
12
|
Babić V, Andjelkovic V, Jovovic Z, Babic M, Vasic V, Kravic N. Diversity Assessment of the Montenegrin Maize Landrace Gene Pool Maintained in Two Gene Banks. PLANTS 2021; 10:plants10081503. [PMID: 34451548 PMCID: PMC8399334 DOI: 10.3390/plants10081503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/05/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/04/2022]
Abstract
Due to the loss of agro-biodiversity, there is a strong effort to find apparent and efficient mechanisms for the conservation and sustainable use of genetic diversity. A joint monitoring of the diversity and collections structure of the Montenegrin maize landraces conserved in the Serbian (MRIZPGB) and Montenegrin (MGB) gene banks has been conducted in order to improve the composition of the collections and to identify and eliminate possible redundancy. Based on a separate analysis of white- and yellow-orange maize landraces, it can be concluded that the diversity and evolution of distinct maize landraces grown and collected in Montenegro have been simultaneously shaped by both environmental (i.e., natural selection) and socially driven factors (farmers’ selection, migration and colonization processes of the human population). Although it has been determined that the authenticity and variability of the Montenegrin maize landraces gene pool have largely been preserved in the MRIZPGB collection, a significant amount of redundancy was observed. The obtained results will contribute to the cost-efficient conservation of the maize gene pool in the Montenegrin and Serbian gene banks. The recognized and well-preserved original variability of the MRIZPGB and MGB Montenegrin gene pool represents a valuable source for pre-breeding activities on broadening the white and flint maize breeding programmes under temperate conditions.
Collapse
Affiliation(s)
- Vojka Babić
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia; (V.A.); (N.K.)
- Correspondence:
| | - Violeta Andjelkovic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia; (V.A.); (N.K.)
| | - Zoran Jovovic
- Faculty of Biotechnology, University of Montenegro, Mihaila Lalića 1, 81000 Podgorica, Montenegro;
| | - Milosav Babic
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia;
| | - Vladimir Vasic
- Department of Statistics and Mathematics, Faculty of Economics, University of Belgrade, Kamenička 6, 11000 Belgrade, Serbia;
| | - Natalija Kravic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia; (V.A.); (N.K.)
| |
Collapse
|
13
|
Technow F, Podlich D, Cooper M. Back to the future: Implications of genetic complexity for the structure of hybrid breeding programs. G3 (BETHESDA, MD.) 2021; 11:6265599. [PMID: 33950172 PMCID: PMC8495936 DOI: 10.1093/g3journal/jkab153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/15/2021] [Accepted: 04/28/2021] [Indexed: 11/14/2022]
Abstract
Commercial hybrid breeding operations can be described as decentralized networks of smaller, more or less isolated breeding programs. There is further a tendency for the disproportionate use of successful inbred lines for generating the next generation of recombinants, which has led to a series of significant bottlenecks, particularly in the history of the North American and European maize germplasm. Both the decentralization and the disproportionate contribution of inbred lines reduce effective population size and constrain the accessible genetic space. Under these conditions, long-term response to selection is not expected to be optimal under the classical infinitesimal model of quantitative genetics. In this study, we therefore aim to propose a rationale for the success of large breeding operations in the context of genetic complexity arising from the structure and properties of interactive genetic networks. For this, we use simulations based on the NK model of genetic architecture. We indeed found that constraining genetic space through program decentralization and disproportionate contribution of parental inbred lines, is required to expose additive genetic variation and thus facilitate heritable genetic gains under high levels of genetic complexity. These results introduce new insights into why the historically grown structure of hybrid breeding programs was successful in improving the yield potential of hybrid crops over the last century. We also hope that a renewed appreciation for “why things worked” in the past can guide the adoption of novel technologies and the design of future breeding strategies for navigating biological complexity.
Collapse
Affiliation(s)
- Frank Technow
- Plant Breeding, Corteva Agriscience, Tavistock, ON, N0B 2R0, Canada
| | - Dean Podlich
- Systems and Innovation for Breeding and Seed Products, Corteva Agriscience, Johnston, IA, 50131, USA
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4067, Australia
| |
Collapse
|
14
|
Gaikpa DS, Kessel B, Presterl T, Ouzunova M, Galiano-Carneiro AL, Mayer M, Melchinger AE, Schön CC, Miedaner T. Exploiting genetic diversity in two European maize landraces for improving Gibberella ear rot resistance using genomic tools. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:793-805. [PMID: 33274402 PMCID: PMC7925457 DOI: 10.1007/s00122-020-03731-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE High genetic variation in two European maize landraces can be harnessed to improve Gibberella ear rot resistance by integrated genomic tools. Fusarium graminearum (Fg) causes Gibberella ear rot (GER) in maize leading to yield reduction and contamination of grains with several mycotoxins. This study aimed to elucidate the molecular basis of GER resistance among 500 doubled haploid lines derived from two European maize landraces, "Kemater Landmais Gelb" (KE) and "Petkuser Ferdinand Rot" (PE). The two landraces were analyzed individually using genome-wide association studies and genomic selection (GS). The lines were genotyped with a 600-k maize array and phenotyped for GER severity, days to silking, plant height, and seed-set in four environments using artificial infection with a highly aggressive Fg isolate. High genotypic variances and broad-sense heritabilities were found for all traits. Genotype-environment interaction was important throughout. The phenotypic (r) and genotypic ([Formula: see text]) correlations between GER severity and three agronomic traits were low (r = - 0.27 to 0.20; [Formula: see text]= - 0.32 to 0.22). For GER severity, eight QTLs were detected in KE jointly explaining 34% of the genetic variance. In PE, no significant QTLs for GER severity were detected. No common QTLs were found between GER severity and the three agronomic traits. The mean prediction accuracies ([Formula: see text]) of weighted GS (wRR-BLUP) were higher than [Formula: see text] of marker-assisted selection (MAS) and unweighted GS (RR-BLUP) for GER severity. Using KE as the training set and PE as the validation set resulted in very low [Formula: see text] that could be improved by using fixed marker effects in the GS model.
Collapse
Affiliation(s)
| | - Bettina Kessel
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Thomas Presterl
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Milena Ouzunova
- Kleinwanzlebener Saatzucht (KWS) KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | | | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Population Genetics and Seed Science, University of Hohenheim, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
15
|
Miedaner T, Boeven ALGC, Gaikpa DS, Kistner MB, Grote CP. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int J Mol Sci 2020; 21:E9717. [PMID: 33352763 PMCID: PMC7766114 DOI: 10.3390/ijms21249717] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Ana Luisa Galiano-Carneiro Boeven
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - David Sewodor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Maria Belén Kistner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), CC31, B2700WAA Pergamino, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Cathérine Pauline Grote
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| |
Collapse
|
16
|
Zeitler L, Ross-Ibarra J, Stetter MG. Selective Loss of Diversity in Doubled-Haploid Lines from European Maize Landraces. G3 (BETHESDA, MD.) 2020; 10:2497-2506. [PMID: 32467127 PMCID: PMC7341142 DOI: 10.1534/g3.120.401196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/13/2018] [Accepted: 06/28/2019] [Indexed: 11/18/2022]
Abstract
Maize landraces are well adapted to their local environments and present valuable sources of genetic diversity for breeding and conservation. But the maintenance of open-pollinated landraces in ex-situ programs is challenging, as regeneration of seed can often lead to inbreeding depression and the loss of diversity due to genetic drift. Recent reports suggest that the production of doubled-haploid (DH) lines from landraces may serve as a convenient means to preserve genetic diversity in a homozygous form that is immediately useful for modern breeding. The production of doubled-haploid (DH) lines presents an extreme case of inbreeding which results in instantaneous homozygosity genome-wide. Here, we analyzed the effect of DH production on genetic diversity, using genome-wide SNP data from hundreds of individuals of five European landraces and their related DH lines. In contrast to previous findings, we observe a dramatic loss of diversity at both the haplotype level and that of individual SNPs. We identify thousands of SNPs that exhibit allele frequency differences larger than expected under models of neutral genetic drift and document losses of shared haplotypes. We find evidence consistent with selection at functional sites that are potentially involved in the diversity differences between landrace and DH populations. Although we were unable to uncover more details about the mode of selection, we conclude that landrace DH lines may be a valuable tool for the introduction of variation into maize breeding programs but come at the cost of decreased genetic diversity.
Collapse
Affiliation(s)
- Leo Zeitler
- Department of Biology, Institute of Molecular Plant Biology, ETH Zürich, Zürich, Switzerland
- Department of Plant Sciences, University of California, Davis, CA
| | - Jeffrey Ross-Ibarra
- Department of Plant Sciences, University of California, Davis, CA,
- Department of Evolution and Ecology, Genome Center, and Center for Population Biology, University of California, Davis, CA, and
| | - Markus G Stetter
- Department of Plant Sciences, University of California, Davis, CA,
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences, University of Cologne, Germany
| |
Collapse
|
17
|
Allier A, Teyssèdre S, Lehermeier C, Moreau L, Charcosset A. Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics 2020; 21:349. [PMID: 32393177 PMCID: PMC7216646 DOI: 10.1186/s12864-020-6756-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2020] [Accepted: 04/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background The narrow genetic base of elite germplasm compromises long-term genetic gain and increases the vulnerability to biotic and abiotic stresses in unpredictable environmental conditions. Therefore, an efficient strategy is required to broaden the genetic base of commercial breeding programs while not compromising short-term variety release. Optimal cross selection aims at identifying the optimal set of crosses that balances the expected genetic value and diversity. We propose to consider genomic selection and optimal cross selection to recurrently improve genetic resources (i.e. pre-breeding), to bridge the improved genetic resources with elites (i.e. bridging), and to manage introductions into the elite breeding population. Optimal cross selection is particularly adapted to jointly identify bridging, introduction and elite crosses to ensure an overall consistency of the genetic base broadening strategy. Results We compared simulated breeding programs introducing donors with different performance levels, directly or indirectly after bridging. We also evaluated the effect of the training set composition on the success of introductions. We observed that with recurrent introductions of improved donors, it is possible to maintain the genetic diversity and increase mid- and long-term performances with only limited penalty at short-term. Considering a bridging step yielded significantly higher mid- and long-term genetic gain when introducing low performing donors. The results also suggested to consider marker effects estimated with a broad training population including donor by elite and elite by elite progeny to identify bridging, introduction and elite crosses. Conclusion Results of this study provide guidelines on how to harness polygenic variation present in genetic resources to broaden elite germplasm.
Collapse
Affiliation(s)
- Antoine Allier
- GQE - Le Moulon, INRAE, University Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France. .,RAGT2n, Statistical Genetics Unit, 12510, Druelle, France.
| | | | | | - Laurence Moreau
- GQE - Le Moulon, INRAE, University Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Alain Charcosset
- GQE - Le Moulon, INRAE, University Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
18
|
Allier A, Teyssèdre S, Lehermeier C, Charcosset A, Moreau L. Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:201-215. [PMID: 31595338 DOI: 10.1007/s00122-019-03451-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/20/2019] [Accepted: 09/28/2019] [Indexed: 05/02/2023]
Abstract
Collaborative diversity panels and genomic prediction seem relevant to identify and harness genetic resources for polygenic trait-specific enrichment of elite germplasms. In plant breeding, genetic diversity is important to maintain the pace of genetic gain and the ability to respond to new challenges in a context of climatic and social expectation changes. Many genetic resources are accessible to breeders but cannot all be considered for broadening the genetic diversity of elite germplasm. This study presents the use of genomic predictions trained on a collaborative diversity panel, which assembles genetic resources and elite lines, to identify resources to enrich an elite germplasm. A maize collaborative panel (386 lines) was considered to estimate genome-wide marker effects. Relevant predictive abilities (0.40-0.55) were observed on a large population of private elite materials, which supported the interest of such a collaborative panel for diversity management perspectives. Grain-yield estimated marker effects were used to select a donor that best complements an elite recipient at individual loci or haplotype segments, or that is expected to give the best-performing progeny with the elite. Among existing and new criteria that were compared, some gave more weight to the donor-elite complementarity than to the donor value, and appeared more adapted to long-term objective. We extended this approach to the selection of a set of donors complementing an elite population. We defined a crossing plan between identified donors and elite recipients. Our results illustrated how collaborative projects based on diversity panels including both public resources and elite germplasm can contribute to a better characterization of genetic resources in view of their use to enrich elite germplasm.
Collapse
Affiliation(s)
- Antoine Allier
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- RAGT2n, Genetics and Analytics Unit, 12510, Druelle, France
| | | | | | - Alain Charcosset
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Laurence Moreau
- GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM. Doubled haploid technology for line development in maize: technical advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3227-3243. [PMID: 31555890 PMCID: PMC6820599 DOI: 10.1007/s00122-019-03433-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/08/2019] [Accepted: 09/17/2019] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Increased efficiencies achieved in different steps of DH line production offer greater benefits to maize breeding programs. Doubled haploid (DH) technology has become an integral part of many commercial maize breeding programs as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide. The established method for maize DH production covered in this review involves in vivo induction of maternal haploids by a male haploid inducer genotype, identification of haploids from diploids at the seed or seedling stage, chromosome doubling of haploid (D0) seedlings and finally, selfing of fertile D0 plants. Development of haploid inducers with high haploid induction rates and adaptation to different target environments have facilitated increased adoption of DH technology in the tropics. New marker systems for haploid identification, such as the red root marker and high oil marker, are being increasingly integrated into new haploid inducers and have the potential to make DH technology accessible in germplasm such as some Flint, landrace, or tropical material, where the standard R1-nj marker is inhibited. Automation holds great promise to further reduce the cost and time in haploid identification. Increasing success rates in chromosome doubling protocols and/or reducing environmental and human toxicity of chromosome doubling protocols, including research on genetic improvement in spontaneous chromosome doubling, have the potential to greatly reduce the production costs per DH line.
Collapse
Affiliation(s)
- Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621, Kenya
| | - Willem Molenaar
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
| | - Prasanna M Boddupalli
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621, Kenya.
| |
Collapse
|
20
|
Hölker AC, Mayer M, Presterl T, Bolduan T, Bauer E, Ordas B, Brauner PC, Ouzunova M, Melchinger AE, Schön CC. European maize landraces made accessible for plant breeding and genome-based studies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3333-3345. [PMID: 31559526 PMCID: PMC6820615 DOI: 10.1007/s00122-019-03428-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2019] [Accepted: 09/17/2019] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Doubled-haploid libraries from landraces capture native genetic diversity for a multitude of quantitative traits and make it accessible for breeding and genome-based studies. Maize landraces comprise large allelic diversity. We created doubled-haploid (DH) libraries from three European flint maize landraces and characterized them with respect to their molecular diversity, population structure, trait means, variances, and trait correlations. In total, 899 DH lines were evaluated using high-quality genotypic and multi-environment phenotypic data from up to 11 environments. The DH lines covered 95% of the molecular variation present in 35 landraces of an earlier study and represent the original three landrace populations in an unbiased manner. A comprehensive analysis of the target trait plant development at early growth stages as well as other important agronomic traits revealed large genetic variation for line per se and testcross performance. The majority of the 378 DH lines evaluated as testcrosses outperformed the commercial hybrids for early development. For total biomass yield, we observed a yield gap of 15% between mean testcross yield of the commercial hybrids and mean testcross yield of the DH lines. The DH lines also exhibited genetic variation for undesirable traits like root lodging and tillering, but correlations with target traits early development and yield were low or nonsignificant. The presented diversity atlas is a valuable, publicly available resource for genome-based studies to identify novel trait variation and evaluate the prospects of genomic prediction in landrace-derived material.
Collapse
Affiliation(s)
- Armin C Hölker
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | | | | | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Pontevedra, Spain
| | - Pedro C Brauner
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
- Maize Breeding, KWS SAAT SE, 37574, Einbeck, Germany
| | | | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
21
|
Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat Genet 2019; 51:1076-1081. [PMID: 31253974 DOI: 10.1038/s41588-019-0443-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023]
Abstract
Genebanks have the long-term mission of preserving plant genetic resources as an agricultural legacy for future crop improvement. Operating procedures for seed storage and plant propagation have been in place for decades, but there is a lack of effective means for the discovery and transfer of beneficial alleles from landraces and wild relatives into modern varieties. Here, we review the prospects of using molecular passport data derived from genomic sequence information as a universal monitoring tool at the single-plant level within and between genebanks. Together with recent advances in breeding methodologies, the transformation of genebanks into bio-digital resource centers will facilitate the selection of useful genetic variation and its use in breeding programs, thus providing easy access to past crop diversity. We propose linking catalogs of natural genetic variation and enquiries into biological mechanisms of plant performance as a long-term joint research goal of genebanks, plant geneticists and breeders.
Collapse
|
22
|
Brauner PC, Schipprack W, Utz HF, Bauer E, Mayer M, Schön CC, Melchinger AE. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1897-1908. [PMID: 30877313 DOI: 10.1007/s00122-019-03325-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/21/2018] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
Selected doubled haploid lines averaged similar testcross performance as their original landraces, and the best of them approached the yields of elite inbreds, demonstrating their potential to broaden the narrow genetic diversity of the flint germplasm pool. Maize landraces represent a rich source of genetic diversity that remains largely idle because the high genetic load and performance gap to elite germplasm hamper their use in modern breeding programs. Production of doubled haploid (DH) lines can mitigate problems associated with the use of landraces in pre-breeding. Our objective was to assess in comparison with modern materials the testcross performance (TP) of the best 89 out of 389 DH lines developed from six landraces and evaluated in previous studies for line per se performance (LP). TP with a dent tester was evaluated for the six original landraces, ~ 15 DH lines from each landrace selected for LP, and six elite flint inbreds together with nine commercial hybrids for grain and silage traits. Mean TP of the DH lines rarely differed significantly from TP of their corresponding landrace, which averaged in comparison with the mean TP of the elite flint inbreds ~ 20% lower grain yield and ~ 10% lower dry matter and methane yield. Trait correlations of DH lines closely agreed with the literature; correlation of TP with LP was zero for grain yield, underpinning the need to evaluate TP in addition to LP. For all traits, we observed substantial variation for TP among the DH lines and the best showed similar TP yields as the elite inbreds. Our results demonstrate the high potential of landraces for broadening the narrow genetic base of the flint heterotic pool and the usefulness of the DH technology for exploiting idle genetic resources from gene banks.
Collapse
Affiliation(s)
- Pedro C Brauner
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany
| | - H Friedrich Utz
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, Fruwirthstraße 21, 70599, Stuttgart, Germany.
| |
Collapse
|
23
|
Brauner PC, Müller D, Schopp P, Böhm J, Bauer E, Schön CC, Melchinger AE. Genomic Prediction Within and Among Doubled-Haploid Libraries from Maize Landraces. Genetics 2018; 210:1185-1196. [PMID: 30257934 PMCID: PMC6283160 DOI: 10.1534/genetics.118.301286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2018] [Accepted: 09/24/2018] [Indexed: 12/24/2022] Open
Abstract
Thousands of maize landraces are stored in seed banks worldwide. Doubled-haploid libraries (DHL) produced from landraces harness their rich genetic diversity for future breeding. We investigated the prospects of genomic prediction (GP) for line per se performance in DHL from six European landraces and 53 elite flint (EF) lines by comparing four scenarios: GP within a single library (sL); GP between pairs of libraries (LwL); and GP among combined libraries, either including (cLi) or excluding (cLe) lines from the training set (TS) that belong to the same DHL as the prediction set. For scenario sL, with N = 50 lines in the TS, the prediction accuracy (ρ) among seven agronomic traits varied from -0.53 to 0.57 for the DHL and reached up to 0.74 for the EF lines. For LwL, ρ was close to zero for all DHL and traits. Whereas scenario cLi showed improved ρ values compared to sL, ρ for cLe remained at the low level observed for LwL. Forecasting ρ with deterministic equations yielded inflated values compared to empirical estimates of ρ for the DHL, but conserved the ranking. In conclusion, GP is promising within DHL, but large TS sizes (N > 100) are needed to achieve decent prediction accuracy because LD between QTL and markers is the primary source of information that can be exploited by GP. Since production of DHL from landraces is expensive, we recommend GP only for very large DHL produced from a few highly preselected landraces.
Collapse
Affiliation(s)
- Pedro C Brauner
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Dominik Müller
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Pascal Schopp
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Juliane Böhm
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
24
|
Mayer M, Unterseer S, Bauer E, de Leon N, Ordas B, Schön CC. Is there an optimum level of diversity in utilization of genetic resources? TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2283-2295. [PMID: 28780586 PMCID: PMC5641276 DOI: 10.1007/s00122-017-2959-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/11/2017] [Accepted: 07/26/2017] [Indexed: 05/05/2023]
Abstract
Capitalizing upon the genomic characteristics of long-term random mating populations, sampling from pre-selected landraces is a promising approach for broadening the genetic base of elite germplasm for quantitative traits. Genome-enabled strategies for harnessing untapped allelic variation of landraces are currently evolving. The success of such approaches depends on the choice of source material. Thus, the analysis of different strategies for sampling allelic variation from landraces and their impact on population diversity and linkage disequilibrium (LD) is required to ensure the efficient utilization of diversity. We investigated the impact of different sampling strategies on diversity parameters and LD based on high-density genotypic data of 35 European maize landraces each represented by more than 20 individuals. On average, five landraces already captured ~95% of the molecular diversity of the entire dataset. Within landraces, absence of pronounced population structure, consistency of linkage phases and moderate to low LD levels were found. When combining data of up to 10 landraces, LD decay distances decreased to a few kilobases. Genotyping 24 individuals per landrace with 5k SNPs was sufficient for obtaining representative estimates of diversity and LD levels to allow an informed pre-selection of landraces. Integrating results from European with Central and South American landraces revealed that European landraces represent a unique and diverse spectrum of allelic variation. Sampling strategies for harnessing allelic variation from landraces depend on the study objectives. If the focus lies on the improvement of elite germplasm for quantitative traits, we recommend sampling from pre-selected landraces, as it yields a wide range of diversity, allows optimal marker imputation, control for population structure and avoids the confounding effects of strong adaptive alleles.
Collapse
Affiliation(s)
- Manfred Mayer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Sandra Unterseer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Eva Bauer
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA, 53706
| | - Bernardo Ordas
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), 36080, Pontevedra, Spain
| | - Chris-Carolin Schön
- Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
25
|
Wang C, Hu S, Gardner C, Lübberstedt T. Emerging Avenues for Utilization of Exotic Germplasm. TRENDS IN PLANT SCIENCE 2017; 22:624-637. [PMID: 28476651 DOI: 10.1016/j.tplants.2017.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 05/21/2023]
Abstract
Breeders have been successful in increasing crop performance by exploiting genetic diversity over time. However, the reported annual yield increases are not sufficient in view of rapid human population growth and global environmental changes. Exotic germplasm possesses high levels of genetic diversity for valuable traits. However, only a small fraction of naturally occurring genetic diversity is utilized. Moreover, the yield gap between elite and exotic germplasm widens, which increases the effort needed to use exotic germplasm and to identify beneficial alleles and for their introgression. The advent of high-throughput genotyping and phenotyping technologies together with emerging biotechnologies provide new opportunities to explore exotic genetic variation. This review will summarize potential challenges for utilization of exotic germplasm and provide solutions.
Collapse
Affiliation(s)
- Cuiling Wang
- Department of Agronomy, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471023, China; Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA; State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 95 Wenhua Road, Zhenzhou, Henan 450002, China
| | - Songlin Hu
- Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA
| | - Candice Gardner
- Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA; US Department of Agrigulture (USDA) Agricultural Research Service (ARS) Plant Introduction Research Unit, 100 Osborn Drive, Iowa State University, Ames, IA 50011, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University,100 Osborn Drive, Ames, IA 50011, USA.
| |
Collapse
|