1
|
Hou F, Chen H, Zhang T, Jin Y, Kong L, Liu X, Xing L, Cao A, Zhang R. Introgression of an All-Stage and Broad-Spectrum Powdery Mildew Resistance Gene Pm3VS from Dasypyrum villosum Chromosome 3V into Wheat. PLANT DISEASE 2024; 108:2073-2080. [PMID: 38389384 DOI: 10.1094/pdis-11-23-2495-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a serious disease that threatens wheat production globally. It is imperative to explore novel resistance genes to control this disease by developing and planting resistant varieties. Here, we identified a wheat-Dasypyrum villosum 3V (3D) disomic substitution line, NAU3815 (2n = 42), with a high level of powdery mildew resistance at both the seedling and adult-plant stages. Subsequently, NAU3815 was used to generate recombination between chromosomes 3V and 3D. Through genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and 3VS- and 3VL-specific markers analysis, four introgression lines were developed from the selfing progenies of 3V and 3D double monosomic line NAU3816, which was derived from the F1 hybrids of NAU3815/NAU0686. There were t3VS (3D) ditelosomic substitution line NAU3817, t3VL (3D) ditelosomic substitution line NAU3818, homozygous T3DL·3VS translocation line NAU3819, and homozygous T3DS·3VL translocation line NAU3820. Powdery mildew tests of these lines confirmed the presence of an all-stage and broad-spectrum powdery mildew resistance gene, Pm3VS, located on chromosome arm 3VS. When compared with the recurrent parent NAU0686 plants, the T3DL·3VS translocation line NAU3819 showed no obvious negative effect on yield-related traits. However, the introduction of the T3DL·3VS translocated chromosome had a strong effect on reducing the flag-leaf length. Consequently, the T3DL·3VS translocation line NAU3819 provides a new germplasm in breeding for both resistance and plant architecture.
Collapse
Affiliation(s)
- Fu Hou
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Area in Jiangsu, Huaian 223001, China
| | - Heyu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Xiaoxue Liu
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement and Application/JCIC-MCP, Nanjing 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
2
|
Lee S, Vemanna RS, Oh S, Rojas CM, Oh Y, Kaundal A, Kwon T, Lee HK, Senthil-Kumar M, Mysore KS. Functional role of formate dehydrogenase 1 (FDH1) for host and nonhost disease resistance against bacterial pathogens. PLoS One 2022; 17:e0264917. [PMID: 35594245 PMCID: PMC9122214 DOI: 10.1371/journal.pone.0264917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Nonhost disease resistance is the most common type of plant defense mechanism against potential pathogens. In the present study, the metabolic enzyme formate dehydrogenase 1 (FDH1) was identified to associate with nonhost disease resistance in Nicotiana benthamiana and Arabidopsis thaliana. In Arabidopsis, AtFDH1 was highly upregulated in response to both host and nonhost bacterial pathogens. The Atfdh1 mutants were compromised in nonhost resistance, basal resistance, and gene-for-gene resistance. The expression patterns of salicylic acid (SA) and jasmonic acid (JA) marker genes after pathogen infections in Atfdh1 mutant indicated that both SA and JA are involved in the FDH1-mediated plant defense response to both host and nonhost bacterial pathogens. Previous studies reported that FDH1 localizes to mitochondria, or both mitochondria and chloroplasts. Our results showed that the AtFDH1 mainly localized to mitochondria, and the expression level of FDH1 was drastically increased upon infection with host or nonhost pathogens. Furthermore, we identified the potential co-localization of mitochondria expressing FDH1 with chloroplasts after the infection with nonhost pathogens in Arabidopsis. This finding suggests the possible role of FDH1 in mitochondria and chloroplasts during defense responses against bacterial pathogens in plants.
Collapse
Affiliation(s)
- Seonghee Lee
- Noble Research Institute, LLC, Ardmore, OK, United States of America
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, United States of America
| | - Ramu S. Vemanna
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | - Sunhee Oh
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | | | - Youngjae Oh
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Wimauma, FL, United States of America
| | - Amita Kaundal
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | - Taegun Kwon
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | - Hee-Kyung Lee
- Noble Research Institute, LLC, Ardmore, OK, United States of America
| | | | - Kirankumar S. Mysore
- Noble Research Institute, LLC, Ardmore, OK, United States of America
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States of America
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States of America
| |
Collapse
|
3
|
Ollivier R, Glory I, Cloteau R, Le Gallic JF, Denis G, Morlière S, Miteul H, Rivière JP, Lesné A, Klein A, Aubert G, Kreplak J, Burstin J, Pilet-Nayel ML, Simon JC, Sugio A. A major-effect genetic locus, ApRVII, controlling resistance against both adapted and non-adapted aphid biotypes in pea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1511-1528. [PMID: 35192006 DOI: 10.1007/s00122-022-04050-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE A genome-wide association study for pea resistance against a pea-adapted biotype and a non-adapted biotype of the aphid, Acyrthosiphon pisum, identified a genomic region conferring resistance to both biotypes. In a context of reduced insecticide use, the development of cultivars resistant to insect pests is crucial for an integrated pest management. Pea (Pisum sativum) is a crop of major importance among cultivated legumes, for the supply of dietary proteins and nitrogen in low-input cropping systems. However, yields of the pea crop have become unstable due to plant parasites. The pea aphid (Acyrthosiphon pisum) is an insect pest species forming a complex of biotypes, each one adapted to feed on one or a few related legume species. This study aimed to identify resistance to A. pisum and the underlying genetic determinism by examining a collection of 240 pea genotypes. The collection was screened against a pea-adapted biotype and a non-adapted biotype of A. pisum to characterize their resistant phenotype. Partial resistance was observed in some pea genotypes exposed to the pea-adapted biotype. Many pea genotypes were completely resistant to non-adapted biotype, but some exhibited partial susceptibility. A genome-wide association study, using pea exome-capture sequencing data, enabled the identification of the major-effect quantitative trait locus ApRVII on the chromosome 7. ApRVII includes linkage disequilibrium blocks significantly associated with resistance to one or both of the two aphid biotypes studied. Finally, we identified candidate genes underlying ApRVII that are potentially involved in plant-aphid interactions and marker haplotypes linked with aphid resistance. This study sets the ground for the functional characterization of molecular pathways involved in pea defence to the aphids but also is a step forward for breeding aphid-resistant cultivars.
Collapse
Affiliation(s)
- Rémi Ollivier
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Romuald Cloteau
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Gaëtan Denis
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Henri Miteul
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Anthony Klein
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Grégoire Aubert
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, AgroSup Dijon, Univ Bourgogne-Franche-Comté, 21065, Dijon, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France.
| |
Collapse
|
4
|
Pm67, a new powdery mildew resistance gene transferred from Dasypyrum villosum chromosome 1V to common wheat (Triticum aestivum L.). ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
5
|
Ge C, Moolhuijzen P, Hickey L, Wentzel E, Deng W, Dinglasan EG, Ellwood SR. Physiological Changes in Barley mlo-11 Powdery Mildew Resistance Conditioned by Tandem Repeat Copy Number. Int J Mol Sci 2020; 21:E8769. [PMID: 33233522 PMCID: PMC7699567 DOI: 10.3390/ijms21228769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
Wild barley accessions have evolved broad-spectrum defence against barley powdery mildew through recessive mlo mutations. However, the mlo defence response is associated with deleterious phenotypes with a cost to yield and fertility, with implications for natural fitness and agricultural productivity. This research elucidates the mechanism behind a novel mlo allele, designated mlo-11(cnv2), which has a milder phenotype compared to standard mlo-11. Bisulphite sequencing and histone ChIP-seq analyses using near-isogenic lines showed pronounced repression of the Mlo promoter in standard mlo-11 compared to mlo-11(cnv2), with repression governed by 24 nt heterochromatic small interfering RNAs. The mlo-11(cnv2) allele appears to largely reduce the physiological effects of mlo while still endorsing a high level of powdery mildew resistance. RNA sequencing showed that this is achieved through only partly restricted expression of Mlo, allowing adequate temporal induction of defence genes during infection and expression close to wild-type Mlo levels in the absence of infection. The two mlo-11 alleles showed copy number proportionate oxidase and peroxidase expression levels during infection, but lower amino acid and aromatic compound biosynthesis compared to the null allele mlo-5. Examination of highly expressed genes revealed a common WRKY W-box binding motif (consensus ACCCGGGACTAAAGG) and a transcription factor more highly expressed in mlo-11 resistance. In conclusion, mlo-11(cnv2) appears to significantly mitigate the trade-off between mlo defence and normal gene expression.
Collapse
Affiliation(s)
- Cynthia Ge
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; (C.G.); (P.M.); (E.W.); (W.D.)
| | - Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; (C.G.); (P.M.); (E.W.); (W.D.)
| | - Lee Hickey
- Centre Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4069, Australia; (L.H.); (E.G.D.)
| | - Elzette Wentzel
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; (C.G.); (P.M.); (E.W.); (W.D.)
| | - Weiwei Deng
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; (C.G.); (P.M.); (E.W.); (W.D.)
| | - Eric G. Dinglasan
- Centre Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4069, Australia; (L.H.); (E.G.D.)
| | - Simon R. Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; (C.G.); (P.M.); (E.W.); (W.D.)
| |
Collapse
|
6
|
Panstruga R, Moscou MJ. What is the Molecular Basis of Nonhost Resistance? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1253-1264. [PMID: 32808862 DOI: 10.1094/mpmi-06-20-0161-cr] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that "nonhost resistance" is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term "nonhost genes" is misleading and should be avoided. Depending on the plant-pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term "nonhost resistance" should be used more cautiously in the light of a holistic view of plant immunity.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, 52056 Aachen, Germany
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom
| |
Collapse
|
7
|
Dreiseitl A. Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review. Genes (Basel) 2020; 11:E971. [PMID: 32825722 PMCID: PMC7565388 DOI: 10.3390/genes11090971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Powdery mildew caused by the airborne ascomycete fungus Blumeria graminis f. sp. hordei (Bgh) is one of most common diseases of barley (Hordeum vulgare). This, as with many other plant pathogens, can be efficiently controlled by inexpensive and environmentally-friendly genetic resistance. General requirements for resistance to the pathogens are effectiveness and durability. Resistance of barley to Bgh has been studied intensively, and this review describes recent research and summarizes the specific resistance genes found in barley varieties since the last conspectus. Bgh is extraordinarily adaptable, and some commonly recommended strategies for using genetic resistance, including pyramiding of specific genes, may not be effective because they can only contribute to a limited extent to obtain sufficient resistance durability of widely-grown cultivars. In spring barley, breeding the nonspecific mlo gene is a valuable source of durable resistance. Pyramiding of nonspecific quantitative resistance genes or using introgressions derived from bulbous barley (Hordeum bulbosum) are promising ways for breeding future winter barley cultivars. The utilization of a wide spectrum of nonhost resistances can also be adopted once practical methods have been developed.
Collapse
Affiliation(s)
- Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic
| |
Collapse
|
8
|
Pogoda M, Liu F, Douchkov D, Djamei A, Reif JC, Schweizer P, Schulthess AW. Identification of novel genetic factors underlying the host-pathogen interaction between barley (Hordeum vulgare L.) and powdery mildew (Blumeria graminis f. sp. hordei). PLoS One 2020; 15:e0235565. [PMID: 32614894 PMCID: PMC7332009 DOI: 10.1371/journal.pone.0235565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Powdery mildew is an important foliar disease of barley (Hordeum vulgare L.) caused by the biotrophic fungus Blumeria graminis f. sp. hordei (Bgh). The understanding of the resistance mechanism is essential for future resistance breeding. In particular, the identification of race-nonspecific resistance genes is important because of their regarded durability and broad-spectrum activity. We assessed the severity of powdery mildew infection on detached seedling leaves of 267 barley accessions using two poly-virulent isolates and performed a genome-wide association study exploiting 201 of these accessions. Two-hundred and fourteen markers, located on six barley chromosomes are associated with potential race-nonspecific Bgh resistance or susceptibility. Initial steps for the functional validation of four promising candidates were performed based on phenotype and transcription data. Specific candidate alleles were analyzed via transient gene silencing as well as transient overexpression. Microarray data of the four selected candidates indicate differential regulation of the transcription in response to Bgh infection. Based on our results, all four candidate genes seem to be involved in the responses to powdery mildew attack. In particular, the transient overexpression of specific alleles of two candidate genes, a potential arabinogalactan protein and the barley homolog of Arabidopsis thaliana’s Light-Response Bric-a-Brac/-Tramtrack/-Broad Complex/-POxvirus and Zinc finger (AtLRB1) or AtLRB2, were top candidates of novel powdery mildew susceptibility genes.
Collapse
Affiliation(s)
- Maria Pogoda
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Fang Liu
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Dimitar Douchkov
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Armin Djamei
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jochen C. Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Patrick Schweizer
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Albert W. Schulthess
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
9
|
Goddard R, de Vos S, Steed A, Muhammed A, Thomas K, Griggs D, Ridout C, Nicholson P. Mapping of agronomic traits, disease resistance and malting quality in a wide cross of two-row barley cultivars. PLoS One 2019; 14:e0219042. [PMID: 31314759 PMCID: PMC6636724 DOI: 10.1371/journal.pone.0219042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/16/2019] [Indexed: 11/23/2022] Open
Abstract
Wide crosses between genetically diverged parents may reveal novel loci for crop improvement that are not apparent in crosses between elite cultivars. The landrace Chevallier was a noted malting barley first grown in 1820. To identify potentially novel alleles for agronomic traits, Chevallier was crossed with the modern malting cultivar NFC Tipple generating two genetically diverse recombinant inbred line populations. Genetic maps were produced using genotyping-by-sequencing and 384-SNP genotyping, and the populations were phenotyped for agronomic traits to allow the identification of quantitative trait loci (QTL). Within the semi-dwarf 1 (sdw1) region on chromosome 3H Chevallier conferred increased plant height and reduced tiller number, with QTL for these traits explaining 79.4% and 35.2% of the phenotypic variance observed, respectively. Chevallier was also associated with powdery mildew susceptibility, with a QTL on 1H accounting for up to 19.1% of the variance and resistance at this locus most likely resulting from an Mla variant from Tipple. Two novel QTL for physiological leaf spotting were identified on 3H and 7H, explaining up to 17.1% of the variance and with the Chevallier allele reducing symptom severity on 7H. Preliminary micromalting analysis was also undertaken to compare the malting characteristics of Chevallier and Tipple. Chevallier malt contained significantly lower levels of both α-amylase and wort β-glucan than Tipple malt, however no significant differences were observed for the remaining malting parameters measured. This suggests that the most obvious improvements in barley since the introduction of Chevallier are for agronomic traits such as height, yield and lodging resistance rather than for malting characteristics. Overall, our results demonstrate that this wide cross between Chevallier and Tipple may provide a source of novel QTL for barley breeding.
Collapse
Affiliation(s)
- Rachel Goddard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
- * E-mail: (RG); (PN)
| | - Sarah de Vos
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| | - Andrew Steed
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| | - Amal Muhammed
- Faculty of Applied Sciences, University of Sunderland, Sunderland, England
| | - Keith Thomas
- Faculty of Applied Sciences, University of Sunderland, Sunderland, England
- Brewlab Ltd, Sunderland Enterprise Park, Sunderland, England
| | - David Griggs
- Crisp Malting Group Ltd, Fakenham, Norfolk, England
| | - Christopher Ridout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
- * E-mail: (RG); (PN)
| |
Collapse
|
10
|
Bartaula R, Melo ATO, Kingan S, Jin Y, Hale I. Mapping non-host resistance to the stem rust pathogen in an interspecific barberry hybrid. BMC PLANT BIOLOGY 2019; 19:319. [PMID: 31311507 PMCID: PMC6636152 DOI: 10.1186/s12870-019-1893-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/19/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Non-host resistance (NHR) presents a compelling long-term plant protection strategy for global food security, yet the genetic basis of NHR remains poorly understood. For many diseases, including stem rust of wheat [causal organism Puccinia graminis (Pg)], NHR is largely unexplored due to the inherent challenge of developing a genetically tractable system within which the resistance segregates. The present study turns to the pathogen's alternate host, barberry (Berberis spp.), to overcome this challenge. RESULTS In this study, an interspecific mapping population derived from a cross between Pg-resistant Berberis thunbergii (Bt) and Pg-susceptible B. vulgaris was developed to investigate the Pg-NHR exhibited by Bt. To facilitate QTL analysis and subsequent trait dissection, the first genetic linkage maps for the two parental species were constructed and a chromosome-scale reference genome for Bt was assembled (PacBio + Hi-C). QTL analysis resulted in the identification of a single 13 cM region (~ 5.1 Mbp spanning 13 physical contigs) on the short arm of Bt chromosome 3. Differential gene expression analysis, combined with sequence variation analysis between the two parental species, led to the prioritization of several candidate genes within the QTL region, some of which belong to gene families previously implicated in disease resistance. CONCLUSIONS Foundational genetic and genomic resources developed for Berberis spp. enabled the identification and annotation of a QTL associated with Pg-NHR. Although subsequent validation and fine mapping studies are needed, this study demonstrates the feasibility of and lays the groundwork for dissecting Pg-NHR in the alternate host of one of agriculture's most devastating pathogens.
Collapse
Affiliation(s)
- Radhika Bartaula
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824 USA
| | - Arthur T. O. Melo
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| | | | - Yue Jin
- USDA-ARS Cereal Disease Laboratory, St. Paul, MN 55108 USA
| | - Iago Hale
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH 03824 USA
| |
Collapse
|
11
|
Jatoi GH, Lihua G, Xiufen Y, Gadhi MA, Keerio AU, Abdulle YA, Qiu D. A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant. THE PLANT PATHOLOGY JOURNAL 2019; 35:208-218. [PMID: 31244567 PMCID: PMC6586191 DOI: 10.5423/ppj.oa.11.2018.0276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/26/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species (H2O2 and O2 -) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.
Collapse
Affiliation(s)
- Ghulam Hussain Jatoi
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
- Department of Plant Pathology Sindh Agriculture University Tandojam, Sindh,
Pakistan
| | - Guo Lihua
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Yang Xiufen
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Muswar Ali Gadhi
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Azhar Uddin Keerio
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Yusuf Ali Abdulle
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| | - Dewen Qiu
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081,
China
| |
Collapse
|
12
|
Yao X, Wu K, Yao Y, Bai Y, Ye J, Chi D. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color ( Psc) in hulless barley. Hereditas 2018; 155:37. [PMID: 30473656 PMCID: PMC6240233 DOI: 10.1186/s41065-018-0072-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 01/24/2023] Open
Abstract
Background Colored hulless barley are more suitable in food processing compared to normal (yellow) varieties because it is rich in bioactive compounds and produces higher extraction pearling fractions. Therefore, seed coat color is an important agronomic trait for the breeding and study of hulless barley. Results Genotyping-by-sequencing single-nucleotide polymorphism (GBS-SNP) analysis of a doubled haploid (DH) mapping population (Nierumuzha × Kunlun10) was conducted to map the purple seed coat color genes (Psc). A high-density genetic map of hulless barley was constructed, which contains 3662 efficient SNP markers with 1129 bin markers. Seven linkage groups were resolved, which had a total length of 645.56 cM. Chromosome length ranged from 60.21 cM to 127.21 cM, with average marker density of 0.57 cM. A total of five loci accounting for 3.79% to 23.86% of the observed phenotypic variation for Psc were detected using this high-density map. Five structural candidate genes (F3’M, HID, UF3GT, UFGT and 5MAT) and one regulatory factor (Ant1) related to flavonoid or anthocyanin biosynthesis were identified.. Conclusions Five structural candidate genes and one regulatory factor related to flavonoid or anthocyanin biosynthesis have been identified using a high-density genetic map of hulless barley. This study lays the foundation for map-based cloning of Psc but provides a valuable tool for studying marker-trait associations and its application to marker-assisted breeding of hulless barley. Electronic supplementary material The online version of this article (10.1186/s41065-018-0072-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Kunlun Wu
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Youhua Yao
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Yixiong Bai
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| | - Jingxiu Ye
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China
| | - Dezhao Chi
- 1State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016 China.,2Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016 China.,Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, 810016 China.,Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016 China
| |
Collapse
|