1
|
Feng X, Huang M, Lou X, Yang X, Yu B, Huang K, Yang S. Identification and Mapping of QTLs for Adult Plant Resistance in Wheat Line XK502. PLANTS (BASEL, SWITZERLAND) 2024; 13:2365. [PMID: 39273849 PMCID: PMC11396990 DOI: 10.3390/plants13172365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Stripe rust is a serious wheat disease occurring worldwide. At present, the most effective way to control it is to grow resistant cultivars. In this study, a population of 221 recombinant inbred lines (RILs) derived via single-seed descent from a hybrid of a susceptible wheat line, SY95-71, and a resistant line, XK502, was tested in three crop seasons from 2022 to 2024 in five environments. A genetic linkage map was constructed using 12,577 single-nucleotide polymorphisms (SNPs). Based on the phenotypic data of infection severity and the linkage map, five quantitative trait loci (QTL) for adult plant resistance (APR) were detected using the inclusive composite interval mapping (ICIM) method. These five loci are QYrxk502.swust-1BL, QYrxk502.swust-2BL, QYrxk502.swust-3AS, QYrxk502.swust-3BS, and QYrxk502.swust-7BS, explaining 5.67-19.64%, 9.63-36.74%, 9.58-11.30%, 9.76-23.98%, and 8.02-12.41% of the phenotypic variation, respectively. All these QTL originated from the resistant parent XK502. By comparison with the locations of known stripe rust resistance genes, three of the detected QTL, QYrxk502.swust-3AS, QYrxk502.swust-3BS, and QYrxk502.swust-7BS, may harbor new, unidentified genes. From among the tested RILs, 16 lines were selected with good field stripe rust resistance and acceptable agronomic traits for inclusion in breeding programs.
Collapse
Affiliation(s)
- Xianli Feng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ming Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqin Lou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xue Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Boxun Yu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
2
|
Li C, Yan L, Liu Q, Tian R, Wang S, Umer MF, Jalil MJ, Lohani MN, Liu Y, Tang H, Xu Q, Jiang Q, Chen G, Qi P, Jiang Y, Gou L, Yao Q, Zheng Y, Wei Y, Ma J. Integration of transcriptomics, metabolomics, and hormone analysis revealed the formation of lesion spots inhibited by GA and CTK was related to cell death and disease resistance in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2024; 24:558. [PMID: 38877396 PMCID: PMC11179392 DOI: 10.1186/s12870-024-05212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Wheat is one of the important grain crops in the world. The formation of lesion spots related to cell death is involved in disease resistance, whereas the regulatory pathway of lesion spot production and resistance mechanism to pathogens in wheat is largely unknown. RESULTS In this study, a pair of NILs (NIL-Lm5W and NIL-Lm5M) was constructed from the BC1F4 population by the wheat lesion mimic mutant MC21 and its wild genotype Chuannong 16. The formation of lesion spots in NIL-Lm5M significantly increased its resistance to stripe rust, and NIL-Lm5M showed superiour agronomic traits than NIL-Lm5W under stripe rust infection.Whereafter, the NILs were subjected to transcriptomic (stage N: no spots; stage S, only a few spots; and stage M, numerous spots), metabolomic (stage N and S), and hormone analysis (stage S), with samples taken from normal plants in the field. Transcriptomic analysis showed that the differentially expressed genes were enriched in plant-pathogen interaction, and defense-related genes were significantly upregulated following the formation of lesion spots. Metabolomic analysis showed that the differentially accumulated metabolites were enriched in energy metabolism, including amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Correlation network diagrams of transcriptomic and metabolomic showed that they were both enriched in energy metabolism. Additionally, the contents of gibberellin A7, cis-Zeatin, and abscisic acid were decreased in leaves upon lesion spot formation, whereas the lesion spots in NIL-Lm5M leaves were restrained by spaying GA and cytokinin (CTK, trans-zeatin) in the field. CONCLUSION The formation of lesion spots can result in cell death and enhance strip rust resistance by protein degradation pathway and defense-related genes overexpression in wheat. Besides, the formation of lesion spots was significantly affected by GA and CTK. Altogether, these results may contribute to the understanding of lesion spot formation in wheat and laid a foundation for regulating the resistance mechanism to stripe rust.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Rong Tian
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Surong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Faisal Umer
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Junaid Jalil
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Md Nahibuzzaman Lohani
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lulu Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
| | - Qifu Yao
- College of Agroforestry Engineering and Planning, Guizhou Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, 554300, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
3
|
Yan Q, Jia G, Tan W, Tian R, Zheng X, Feng J, Luo X, Si B, Li X, Huang K, Wang M, Chen X, Ren Y, Yang S, Zhou X. Genome-wide QTL mapping for stripe rust resistance in spring wheat line PI 660122 using the Wheat 15K SNP array. FRONTIERS IN PLANT SCIENCE 2023; 14:1232897. [PMID: 37701804 PMCID: PMC10493333 DOI: 10.3389/fpls.2023.1232897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
Introduction Stripe rust is a global disease of wheat. Identification of new resistance genes is key to developing and growing resistant varieties for control of the disease. Wheat line PI 660122 has exhibited a high level of stripe rust resistance for over a decade. However, the genetics of stripe rust resistance in this line has not been studied. A set of 239 recombinant inbred lines (RILs) was developed from a cross between PI 660122 and an elite Chinese cultivar Zhengmai 9023. Methods The RIL population was phenotyped for stripe rust response in three field environments and genotyped with the Wheat 15K single-nucleotide polymorphism (SNP) array. Results A total of nine quantitative trait loci (QTLs) for stripe rust resistance were mapped to chromosomes 1B (one QTL), 2B (one QTL), 4B (two QTLs), 4D (two QTLs), 6A (one QTL), 6D (one QTL), and 7D (one QTL), of which seven QTLs were stable and designated as QYrPI660122.swust-4BS, QYrPI660122.swust-4BL, QYrPI660122.swust-4DS, QYrPI660122.swust-4DL, QYrZM9023.swust-6AS, QYrZM9023.swust-6DS, and QYrPI660122.swust-7DS. QYrPI660122.swust-4DS was a major all-stage resistance QTL explaining the highest percentage (10.67%-20.97%) of the total phenotypic variation and was mapped to a 12.15-cM interval flanked by SNP markers AX-110046962 and AX-111093894 on chromosome 4DS. Discussion The QTL and their linked SNP markers in this study can be used in wheat breeding to improve resistance to stripe rust. In addition, 26 lines were selected based on stripe rust resistance and agronomic traits in the field for further selection and release of new cultivars.
Collapse
Affiliation(s)
- Qiong Yan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Guoyun Jia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Wenjing Tan
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Ran Tian
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaochen Zheng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Junming Feng
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xiaoqin Luo
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Binfan Si
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Kebing Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, US Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Institute of Agricultural Science, Mianyang, Sichuan, China
| | - Suizhuang Yang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Xinli Zhou
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
4
|
Liu S, Liu D, Zhang C, Zhang W, Wang X, Mi Z, Gao X, Ren Y, Lan C, Liu X, Zhao Z, Liu J, Li H, Yuan F, Su B, Kang Z, Li C, Han D, Wang C, Cao X, Wu J. Slow stripe rusting in Chinese wheat Jimai 44 conferred by Yr29 in combination with a major QTL on chromosome arm 6AL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:175. [PMID: 37498321 DOI: 10.1007/s00122-023-04420-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
YrJ44, a more effective slow rusting gene than Yr29, was localized to a 3.5-cM interval between AQP markers AX-109373479 and AX-109563479 on chromosome 6AL. "Slow rusting" (SR) is a type of adult plant resistance (APR) that can provide non-specific durable resistance to stripe rust in wheat. Chinese elite wheat cultivar Jimai 44 (JM44) has maintained SR to stripe rust in China since its release despite exposure to a changing and variable pathogen population. An F2:6 population comprising 295 recombinant inbred lines (RILs) derived from a cross between JM44 and susceptible cultivar Jimai 229 (JM229) was used in genetic analysis of the SR. The RILs and parental lines were evaluated for stripe rust response in five field environments and genotyped using the Affymetrix Wheat55K SNP array and 13 allele-specific quantitative PCR-based (AQP) markers. Two stable QTL on chromosome arms 1BL and 6AL were identified by inclusive composite interval mapping. The 1BL QTL was probably the pleiotropic gene Lr46/Yr29/Sr58. QYr.nwafu-6AL (hereafter named YrJ44), mapped in a 3.5-cM interval between AQP markers AX-109373479 and AX-109563479, was more effective than Yr29 in reducing disease severity and relative area under the disease progress curve (rAUDPC). RILs harboring both YrJ44 and Yr29 displayed levels of SR equal to the resistant parent JM44. The AQP markers linked with YrJ44 were polymorphic and significantly correlated with stripe rust resistance in a panel of 1,019 wheat cultivars and breeding lines. These results suggested that adequate SR resistance can be obtained by combining YrJ44 and Yr29 and the AQP markers can be used in breeding for durable stripe rust resistance.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chuanliang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wenjing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhiwen Mi
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Laboratory of Agricultural Information Perception and Intelligent Services, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xin Gao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Yong Ren
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang Institute of Agricultural Science, Mianyang, 621023, Sichuan, China
| | - Caixia Lan
- College of Plant Science and Technology, Huazhong Agricultural University/Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiukun Liu
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Zhendong Zhao
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Jianjun Liu
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Haosheng Li
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China
| | - Fengping Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Baofeng Su
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, Laboratory of Agricultural Information Perception and Intelligent Services, College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xinyou Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Crop Research Institute, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture /Shandong Provincial Technology Innovation Center for Wheat, Shandong Academy of Agricultural Sciences / National Engineering Research Center for Wheat and Maize, Jinan, 250100, China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
5
|
Li T, Kong C, Deng P, Li C, Zhao G, Li H, Gao L, Cui D, Jia J. Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. Int J Mol Sci 2023; 24:10217. [PMID: 37373363 DOI: 10.3390/ijms241210217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Crop genetic diversity is essential for adaptation and productivity in agriculture. A previous study revealed that poor allele diversity in wheat commercial cultivars is a major barrier to its further improvement. Homologs within a variety, including paralogs and orthologs in polyploid, account for a large part of the total genes of a species. Homolog diversity, intra-varietal diversity (IVD), and their functions have not been elucidated. Common wheat, an important food crop, is a hexaploid species with three subgenomes. This study analyzed the sequence, expression, and functional diversity of homologous genes in common wheat based on high-quality reference genomes of two representative varieties, a modern commercial variety Aikang 58 (AK58) and a landrace Chinese Spring (CS). A total of 85,908 homologous genes, accounting for 71.9% of all wheat genes, including inparalogs (IPs), outparalogs (OPs), and single-copy orthologs (SORs), were identified, suggesting that homologs are an important part of the wheat genome. The levels of sequence, expression, and functional variation in OPs and SORs were higher than that of IPs, which indicates that polyploids have more homologous diversity than diploids. Expansion genes, a specific type of OPs, made a great contribution to crop evolution and adaptation and endowed crop with special characteristics. Almost all agronomically important genes were from OPs and SORs, demonstrating their essential functions for polyploid evolution, domestication, and improvement. Our results suggest that IVD analysis is a novel approach for evaluating intra-genomic variations, and exploitation of IVD might be a new road for plant breeding, especially for polyploid crops, such as wheat.
Collapse
Affiliation(s)
- Tianbao Li
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuizheng Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Jizeng Jia
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Wang S, Wang T, Xuan Q, Qu X, Xu Q, Jiang Q, Pu Z, Li Y, Jiang Y, Chen G, Deng M, Liu Y, Tang H, Chen G, He Y, Gou L, Wei Y, Zheng Y, Ma J. Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:90. [PMID: 37000252 DOI: 10.1007/s00122-023-04346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Two major and stably expressed QTL for traits related to mature wheat embryo independent of kernel size were identified and validated in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. As the juvenile of a highly differentiated plant, mature wheat (Triticum aestivum L.) embryos are highly significant to agricultural production. To understand the genetic basis of traits related to wheat embryo size, the embryo of mature kernels in a recombination inbred line that contained 126 lines from four environments was measured. The genetic loci of embryo size, including embryo length (EL), embryo width (EW), embryo area (EA), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and EL/EW, were identified based on a genetic linkage map constructed based on PCR markers and the Wheat 55 K single nucleotide polymorphism (SNP) array. A total of 50 quantitative trait loci (QTL) for traits related to wheat embryo size were detected. Among them, QEL.sicau-2SY-4A for EL and QEW.sicau-2SY-7B for EW were major and stably expressed and were genetically independent of KL and KW, respectively. Their effects were further verified in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. Further analysis showed that TraesCS4A02G343300 and TraesCS7B02G006800 could be candidate genes for QEL.sicau-2SY-4A and QEW.sicau-2SY-7B, respectively. In addition, significant positive correlations between EL and kernel-related traits and the 1,000-grain weight were detected. Collectively, this study broadens our understanding of the genetic basis of wheat embryo size and will be helpful for the further fine-mapping of interesting loci in the future.
Collapse
Affiliation(s)
- Surong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tianyu Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qijing Xuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanjiang He
- Mianyang Academy of Agricultural Science/Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Providence, Mianyang, 621000, China
| | - Lulu Gou
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Hou S, Wu F, Wang Z, Yan N, Chen H, Li H, Yang P, Zhang Y, Li C, Lin Y, Ma J, Huang L, Liu Y. Mapping Stripe Rust Resistance QTL in 'N2496', a Synthetic Hexaploid Wheat Derivative. PLANT DISEASE 2023; 107:443-449. [PMID: 35802018 DOI: 10.1094/pdis-07-22-1518-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stripe rust is a destructive disease that affects plant growth and substantially reduces wheat yields globally. An economically and environmentally friendly way to control this disease is to use resistant cultivars. 'N2496' is a synthetic hexaploid wheat derivative that exhibits high resistance and could serve as a source of resistance for breeding programs. We developed three recombinant inbred lines (RILs) populations by crossing 'N2496' with common wheat cultivars 'CN16', 'CM107', and 'MM37'. Stripe rust responses were evaluated in all three populations using a mixture of current predominant Chinese Puccinia striiformis f. sp. tritici races. A stripe rust resistance quantitative trait locus (QTL) in the 'N2496'/'CN16' RIL population was mapped on chromosome arm 6BL at 519.35 to 526.55 Mb using bulked segregant RNA sequencing. The population was genotyped using simple sequence repeats and kompetitive allele-specific polymerase (KASP) markers. The QTL QYr.sicau-6B was localized to a 1.19-cM interval flanked by markers KASP-TXK-10 and KASP-TXK-6. The genetic effect of QYr.sicau-6B was validated in the 'N2496' × 'CM107' and 'N2496' × 'MM37' RILs populations and explained up to 63.16% of the phenotypic variation. RNA sequencing and quantitative real-time polymerase chain reaction identified two differentially expressed candidate genes in the physical interval of QYr.sicau-6B.
Collapse
Affiliation(s)
- Shuai Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Fangkun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Zhiqiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Ning Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Haojie Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Peiyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Ying Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Caixia Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Wenjiang, Chengdu 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, China
| |
Collapse
|
8
|
Chen H, Zhao C, Yang Y, Zeng Z, Li W, Liu Y, Tang H, Xu Q, Deng M, Jiang Q, Chen G, Peng Y, Jiang Y, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J. Identification and validation of a locus for wheat maximum root length independent of parental reproductive environment. FRONTIERS IN PLANT SCIENCE 2022; 13:999414. [PMID: 36172559 PMCID: PMC9511226 DOI: 10.3389/fpls.2022.999414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Maximum root length (MRL) plays an important role in the uptake of nutrients and resisting abiotic stresses. Understanding the genetic mechanism of root development is of great significance for genetic improvement of wheat. Previous studies have confirmed that parental reproductive environment (PRE) has a significant impact on growth and development of the next generation in the whole life cycle of a given plant. In this study, a recombinant inbred line population genotyped using the Wheat55K SNP array, was used to map quantitative trait loci (QTL) for wheat seedling MRL based on the harvested seeds from five different PREs. A total of 5 QTL located on chromosomes 3D and 7A were identified. Among them, QMrl.sicau-2SY-3D.2 located in a 4.0 cM interval on chromosome 3D was likely independent of PREs. QMrl.sicau-2SY-7A.2 was detected in two tests and probably influenced by PREs. The effect of QMrl.sicau-2SY-3D.2 was further validated using the tightly linked kompetitive allele specific PCR (KASP) marker, KASP-AX-111589572, in populations with different genetic backgrounds. Lines with a combination of positive alleles from QMrl.sicau-2SY-3D.2 and QMrl.sicau-2SY-7A.2 have significantly longer MRL. Furthermore, four genes (TraesCS3D03G0612000, TraesCS3D03G0608400, TraesCS3D03G0613600, and TraesCS3D03G0602400) mainly expressed in wheat root were predicted to be associated with root growth. Taken together, this study reports on a major QTL independent of PREs and lays a foundation for understanding the regulation mechanism of wheat MRL at the seedling stage.
Collapse
Affiliation(s)
- Huangxin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Conghao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaoyao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoyong Zeng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanlin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun Jiang
- Institute of Biotechnology and Nuclear Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Wang Y, Hu Y, Gong F, Jin Y, Xia Y, He Y, Jiang Y, Zhou Q, He J, Feng L, Chen G, Zheng Y, Liu D, Huang L, Wu B. Identification and Mapping of QTL for Stripe Rust Resistance in the Chinese Wheat Cultivar Shumai126. PLANT DISEASE 2022; 106:1278-1285. [PMID: 34818916 DOI: 10.1094/pdis-09-21-1946-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a damaging disease of wheat globally, and breeding resistant cultivars is the best control strategy. The Chinese winter wheat cultivar Shumai126 (SM126) exhibited strong resistance to P. striiformis f. sp. tritici in the field for more than 10 years. The objective of this study was to identify and map quantitative trait loci (QTL) for resistance to stripe rust in a population of 154 recombinant inbred lines (RILs) derived from a cross between cultivars Taichang29 (TC29) and SM126. The RILs were tested in six field environments with a mixture of the Chinese prevalent races (CYR32, CYR33, CYR34, Zhong4, and HY46) of P. striiformis f. sp. tritici and in growth chamber with race CYR34 and genotyped using the Wheat55K single nucleotide polymorphism (SNP) array. Six QTL were mapped on chromosomes 1BL, 2AS, 2AL, 6AS, 6BS, and 7BL, respectively. All QTL were contributed by SM126 except QYr.sicau-2AL. The QYr.sicau-1BL and QYr.sicau-2AS had major effects, explaining 27.00 to 39.91% and 11.89 to 17.11% of phenotypic variances, which may correspond to known resistance genes Yr29 and Yr69, respectively. The QYr.sicau-2AL, QYr.sicau-6AS, and QYr.sicau-6BS with minor effects are likely novel. QYr.sicau-7BL was only detected based on growth chamber seedling data. Additive effects were detected for the combination of QYr.sicau-1BL, QYr.sicau-2AS, and QYr.sicau-2AL. SNP markers linked to QYr.sicau-1BL (AX-111056129 and AX-108839316) and QYr.sicau-2AS (AX-111557864 and AX-110433540) were converted to breeder-friendly Kompetitive allele-specific PCR (KASP) markers that would facilitate the deployment of stripe rust resistance genes in wheat breeding.
Collapse
Affiliation(s)
- Yufan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Fangyi Gong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yarong Jin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yingjie Xia
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Jingshu He
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
10
|
Li C, Liu H, Wang J, Pan Q, Wang Y, Wu K, Jia P, Mu Y, Tang H, Xu Q, Jiang Q, Liu Y, Qi P, Zhang X, Huang L, Chen G, Wang J, Wei Y, Zheng Y, Gou L, Yao Q, Lan X, Ma J. Characterization and fine mapping of a lesion mimic mutant (Lm5) with enhanced stripe rust and powdery mildew resistance in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:421-438. [PMID: 34661696 DOI: 10.1007/s00122-021-03973-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
A novel light intensity-dependent lesion mimic mutant with enhanced disease resistance was physiologically, biochemically, and genetically characterized, and the causative gene was fine mapped to a 1.28 Mbp interval containing 17 high-confidence genes. Lesion mimic mutants are ideal for studying disease resistance and programmed cell death photosynthesis in plants to improve crop yield. In this study, a novel light intensity-dependent lesion mimic mutant (MC21) was obtained from the wheat variety Chuannong16 (CN16) by ethyl methane sulfonate treatment. The mutant initially developed tiny lesion spots on the basal part of the leaves, which then gradually proceeded down to leaf sheaths, stems, shells, and awns at the flowering stage. The major agronomic traits were significantly altered in the mutant compared to that in the wild-type CN16. Furthermore, the mutant exhibited a lesion phenotype with degenerated chloroplast structure, decreased chlorophyll content, increased level of reactive oxygen species, and increased resistance to stripe rust and powdery mildew. Genetic analysis indicated that the lesion phenotype was controlled by a novel single semi-dominant nuclear gene. The target gene was mapped on chromosome arm 2AL located between Kompetitive Allele Specific PCR (KASP) markers, KASP-4211 and KASP-5353, and tentatively termed as lesion mimic 5 (Lm5). The fine mapping suggested that Lm5 was located in a 1.28 Mbp interval between markers KASP-5825 and KASP-9366; 17 high-confidence candidate genes were included in this genomic region. This study provides an important foundational step for further cloning of Lm5 using a map-based approach.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Pan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kunyan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiying Jia
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaojun Zhang
- College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lulu Gou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qifu Yao
- College of Agroforestry Engineering and Planning/Guizhou Key Laboratory of Biodiversity Conservation and Utilization in the Fanjing Mountain Region, Tongren University, Tongren, 554300, China.
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
11
|
Rollar S, Geyer M, Hartl L, Mohler V, Ordon F, Serfling A. Quantitative Trait Loci Mapping of Adult Plant and Seedling Resistance to Stripe Rust ( Puccinia striiformis Westend.) in a Multiparent Advanced Generation Intercross Wheat Population. FRONTIERS IN PLANT SCIENCE 2021; 12:684671. [PMID: 35003147 PMCID: PMC8733622 DOI: 10.3389/fpls.2021.684671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/19/2021] [Indexed: 05/20/2023]
Abstract
Stripe rust caused by the biotrophic fungus Puccinia striiformis Westend. is one of the most important diseases of wheat worldwide, causing high yield and quality losses. Growing resistant cultivars is the most efficient way to control stripe rust, both economically and ecologically. Known resistance genes are already present in numerous cultivars worldwide. However, their effectiveness is limited to certain races within a rust population and the emergence of stripe rust races being virulent against common resistance genes forces the demand for new sources of resistance. Multiparent advanced generation intercross (MAGIC) populations have proven to be a powerful tool to carry out genetic studies on economically important traits. In this study, interval mapping was performed to map quantitative trait loci (QTL) for stripe rust resistance in the Bavarian MAGIC wheat population, comprising 394 F6 : 8 recombinant inbred lines (RILs). Phenotypic evaluation of the RILs was carried out for adult plant resistance in field trials at three locations across three years and for seedling resistance in a growth chamber. In total, 21 QTL for stripe rust resistance corresponding to 13 distinct chromosomal regions were detected, of which two may represent putatively new QTL located on wheat chromosomes 3D and 7D.
Collapse
Affiliation(s)
- Sandra Rollar
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Manuel Geyer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Lorenz Hartl
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Frank Ordon
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Albrecht Serfling
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| |
Collapse
|
12
|
You J, Liu H, Wang S, Luo W, Gou L, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Peng Y, Tang L, Habib A, Wei Y, Zheng Y, Lan X, Ma J. Spike Density Quantitative Trait Loci Detection and Analysis in Tetraploid and Hexaploid Wheat Recombinant Inbred Line Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:796397. [PMID: 34975986 PMCID: PMC8716915 DOI: 10.3389/fpls.2021.796397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/26/2021] [Indexed: 05/15/2023]
Abstract
Spike density (SD) is an agronomically important character in wheat. In addition, an optimized spike structure is a key basis for high yields. Identification of quantitative trait loci (QTL) for SD has provided a genetic basis for constructing ideal spike morphologies in wheat. In this study, two recombinant inbred line (RIL) populations (tetraploid RIL AM and hexaploid RIL 20828/SY95-71 (2SY)) previously genotyped using the wheat55K SNP array were used to identify SD QTL. A total of 18 QTL were detected, and three were major and one was stably expressed (QSd.sau-2SY-7A.2, QSd.sau-AM-5A.2, QSd.sau-AM-7B, and QSd.sau-2SY-2D). They can explain up to 23.14, 19.97, 12.00, and 9.44% of phenotypic variation, respectively. QTL × environment and epistatic interactions for SD were further analyzed. In addition, pyramiding analysis further revealed that there were additive effects between QSd.sau-2SY-2D and QSd.sau-2SY-7A.2 in 2SY, and QSd.sau-AM-5A.2 and QSd.sau-AM-7B in AM. Pearson's correlation between SD and other agronomic traits, and effects of major or stable QTL on yield related traits indicated SD significantly impacted spike length (SL), spikelet number per spike (SNS) and kernel length (KL). Several genes related to spike development within the physical intervals of major or stable QTL were predicted and discussed. Collectively, our research identified QTL with potential applications for modern wheat breeding and broadening the genetic basis of SD.
Collapse
Affiliation(s)
- Jianing You
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Surong Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lulu Gou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Liwei Tang
- Panzhihua Academy of Agricultural and Forestry Sciences, Panzhihua, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
13
|
Wang Y, Liang F, Guan F, Yao F, Long L, Zhao X, Duan L, Wu Y, Li H, Li W, Jiang Q, Wei Y, Ma J, Qi P, Deng M, Zheng Y, Kang H, Jiang Y, Chen G. Molecular Mapping and Analysis of an Excellent Quantitative Trait Loci Conferring Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landrace Gaoxianguangtoumai. FRONTIERS IN PLANT SCIENCE 2021; 12:756557. [PMID: 34858460 PMCID: PMC8631748 DOI: 10.3389/fpls.2021.756557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Chinese wheat landrace "Gaoxianguangtoumai" (GX) has exhibited a high level of adult-plant resistance (APR) to stripe rust in the field for more than a decade. To reveal the genetic background for APR to stripe rust in GX, a set of 249 F6:8 (F6, F7, and F8) recombinant inbred lines (RILs) was developed from a cross between GX and the susceptible cultivar "Taichung 29." The parents and RILs were evaluated for disease severity at the adult-plant stage in the field by artificial inoculation with the currently predominant Chinese Puccinia striiformis f. sp. tritici races during three cropping seasons and genotyped using the Wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,871 SNP markers finally. Two stable APR quantitative trait loci (QTL), QYr.GX-2AS and QYr.GX-7DS in GX, were detected on chromosomes 2AS and 7DS, which explained 15.5-27.0% and 11.5-13.5% of the total phenotypic variation, respectively. Compared with published Yr genes and QTL, QYr.GX-7DS and Yr18 may be the same, whereas QYr.GX-2AS is likely to be novel. Haplotype analysis revealed that QYr.GX-2AS is likely to be rare which presents in 5.3% of the 325 surveyed Chinese wheat landraces. By analyzing a heterogeneous inbred family (HIF) population from a residual heterozygous plant in an F8 generation of RIL, QYr.GX-2AS was further flanked by KP2A_36.85 and KP2A_38.22 with a physical distance of about 1.37Mb and co-segregated with the KP2A_37.09. Furthermore, three tightly linked Kompetitive allele-specific PCR (KASP) markers were highly polymorphic among 109 Chinese wheat cultivars. The results of this study can be used in wheat breeding for improving resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fengying Liang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Long L, Yao F, Guan F, Cheng Y, Duan L, Zhao X, Li H, Pu Z, Li W, Jiang Q, Wei Y, Ma J, Kang H, Dai S, Qi P, Xu Q, Deng M, Zheng Y, Jiang Y, Chen G. A Stable Quantitative Trait Locus on Chromosome 5BL Combined with Yr18 Conferring High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong. PHYTOPATHOLOGY 2021; 111:1594-1601. [PMID: 33599530 DOI: 10.1094/phyto-10-20-0465-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chinese wheat landrace Anyuehong (AYH) has displayed high levels of stable adult plant resistance (APR) to stripe rust for >15 years. To identify quantitative trait loci (QTLs) for stripe rust resistance in AYH, a set of 110 recombinant inbred lines (RILs) was developed from a cross between AYH and susceptible cultivar Taichung 29. The parents and RILs were evaluated for final disease severity (FDS) in six field tests with a mixture of predominant Puccinia striiformis f. sp. tritici races at the adult plant stage and genotyped via the wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,143 SNP markers. Three QTLs, designated as QYr.AYH-1AS, QYr.AYH-5BL, and QYr.AYH-7DS, were mapped on chromosome 1AS, 5BL, and 7DS, respectively. RILs combining three QTLs showed significantly lower FDS compared with the lines in other combinations. Of them, QYr.AYH-5BL and QYr.AYH-7DS were stably detected in all environments, explaining 13.6 to 21.4% and 17.6 to 33.6% of phenotypic variation, respectively. Compared with previous studies, QYr.AYH-5BL may be a new QTL, whereas QYr.AYH-7DS may be Yr18. Haplotype analysis revealed that QYr.AYH-5BL is probably present in 6.2% of the 323 surveyed Chinese wheat landraces. The kompetitive allele specific PCR (KASP) markers for QYr.AYH-5BL were developed by the linked SNP markers to successfully confirm the effects of the QTL in a validation population derived from a residual heterozygous line and were further assessed in 38 Chinese wheat landraces and 92 cultivars. Our results indicated that QYr.AYH-5BL with linked KASP markers has potential value for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Fangnian Guan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Luyao Duan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xuyang Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiang Xu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
15
|
Liu S, Huang S, Zeng Q, Wang X, Yu R, Wang Q, Singh RP, Bhavani S, Kang Z, Wu J, Han D. Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2005-2021. [PMID: 33683400 DOI: 10.1007/s00122-021-03801-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A large genomic region spanning over 300 Mb on chromosome 6A under intense artificial selection harbors multiple loci associated with favorable traits including stripe rust resistance in wheat. The development of resistance cultivars can be an optimal strategy for controlling wheat stripe rust disease. Although loci for stripe rust resistance have been identified on chromosome 6A in previous studies, it is unclear whether these loci span a common genetic interval, and few studies have attempted to analyze the haplotype changes that have accompanied wheat improvement over the period of modern breeding. In this study, we used F2:3 families and F6:7 recombinant inbred lines (RILs) derived from a cross between a resistant CIMMYT wheat accession P10090 and the susceptible landrace Mingxian 169 to improve the resolution of the QTL on chromosome 6A. The co-located QTL, designated as YrP10090, was flanked by SNP markers AX-94460938 and AX-110585473 with a genetic interval of 3.5 cM, however, corresponding to a large physical distance of over 300 Mb in RefSeq v.1.0 (positions 107.1-446.5 Mb). More than 1,300 SNP markers in this genetic region were extracted for haplotype analysis in a panel of 1,461 worldwide common wheat accessions, and three major haplotypes (Hap1, Hap2, and Hap3) were identified. The favorable haplotype Hap1 associated with stripe rust resistance exhibited a large degree of linkage disequilibrium. Selective sweep analyses were performed between different haplotype groups, revealing specific genomic regions with strong artificial selection signals. These regions harbored multiple desirable traits associated with resilience to environmental stress, different yield components, and quality characteristics. P10090 and its derivatives that carry the desirable haplotype can provide a concrete foundation for bread wheat improvement including the genomic selection.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
16
|
Wu N, Lei Y, Pei D, Wu H, Liu X, Fang J, Guo J, Wang C, Guo J, Zhang J, Liu A, Wen M, Qi Z, Yang X, Bie T, Chu C, Zhou B, Chen P. Predominant wheat-alien chromosome translocations in newly developed wheat of China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:30. [PMID: 37309352 PMCID: PMC10236125 DOI: 10.1007/s11032-021-01206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/15/2021] [Indexed: 06/14/2023]
Abstract
Founder wheat lines have played key role in Chinese wheat improvement. Wheat-Dasypyrum villosum translocation T6VS·6AL has been widely used in wheat breeding in recent years due to its high level of powdery mildew resistance and other beneficial genes. Reference oligo-nucleotide multiplex probe (ONMP)-FISH karyotypes of six T6VS·6AL donor lines were developed and used for characterizing 32 derivative cultivars and lines. T6VS·6AL was present in 27 cultivar/lines with 20 from southern China. Next, ONMP-FISH was used to study chromosome constitution of randomly collected wheat cultivars and advanced breeding lines from southern and northern regions of China: 123 lines from the regional test plots of southern China and 110 from northern China. In southern China, T6VS·6AL (35.8%) was the most predominant variation, while T1RS·1BL (27.3%) was the most predominant in northern China. The pericentric inversion perInv 6B derived from its founder wheat Funo and Abbondaza was the second most predominant chromosome variant in both regions. Other chromosome variants were present in very low frequencies. Additionally, 167 polymorphic chromosome types were identified. Based on these variations, 271 cultivars and lines were clustered into three groups, including southern, northern, and mixed groups that contained wheat from both regions. Different dominant chromosome variations were seen, indicating chromosome differentiation in the three groups of wheat. The clearly identified wheat lines with T6VS·6AL in different backgrounds and oligonucleotide probe set will facilitate their utilization in wheat breeding and in identifying other beneficial traits that may be linked to this translocation. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01206-3.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yanhong Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Dan Pei
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hao Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiaxin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jiangtao Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Conglei Wang
- Tianjin Crops Research Institute, Tianjin, 300384 China
| | - Jie Guo
- Agriculture College, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Jinlong Zhang
- Henan Institute of Science and Technology, Xinxiang, 453003 China
| | - Aifeng Liu
- Crop Institute, Shandong Academy of Agriculture Science, Jinan, 2501000 China
| | - Mingxing Wen
- Zhenjiang Institute of Agricultural Sciences, Jurong, 212400 Jiangsu China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xueming Yang
- Institute of Food Crops, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| | - Tongde Bie
- Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007 China
| | - Chenggen Chu
- USDA - ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Bo Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Peidu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
17
|
QTL Analysis of Adult Plant Resistance to Stripe Rust in a Winter Wheat Recombinant Inbred Population. PLANTS 2021; 10:plants10030572. [PMID: 33803625 PMCID: PMC8002966 DOI: 10.3390/plants10030572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Stripe rust, caused by the fungus Puccinia striiformis f. sp. tritici, is a worldwide disease of wheat that causes devastating crop losses. Resistant cultivars have been developed over the last 40 years that have significantly reduced the economic impact of the disease on growers, but in heavy infection years it is mostly controlled through the intensive application of fungicides. The Pacific Northwest of the United States has an ideal climate for stripe rust and has one of the most diverse race compositions in the country. This has resulted in many waves of epidemics that have overcome most of the resistance genes traditionally used in elite germplasm. The best way to prevent high yield losses, reduce production costs to growers, and reduce the heavy application of fungicides is to pyramid multiple stripe rust resistance genes into new cultivars. Using genotyping-by-sequencing, we identified 4662 high quality variant positions in a recombinant inbred line population of 196 individuals derived from a cross between Skiles, a highly resistant winter wheat cultivar, and Goetze, a moderately to highly susceptible winter wheat cultivar, both developed at Oregon State University. A subsequent genome wide association study identified two quantitative trait loci (QTL) on chromosomes 3B and 3D within the predicted locations of stripe rust resistance genes. Resistance QTL, when combined together, conferred high levels of stripe rust resistance above the level of Skiles in some locations, indicating that these QTL would be important additions to future breeding efforts of Pacific Northwest winter wheat cultivars.
Collapse
|
18
|
Mo Z, Zhu J, Wei J, Zhou J, Xu Q, Tang H, Mu Y, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Li W, Wei Y, Zheng Y, Lan X, Ma J. The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat ( Triticum turgidum L.) Population: Chinese Landrace "Ailanmai" × Wild Emmer. FRONTIERS IN PLANT SCIENCE 2021; 12:732837. [PMID: 34531890 PMCID: PMC8439258 DOI: 10.3389/fpls.2021.732837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/18/2021] [Indexed: 05/08/2023]
Abstract
Spikelet number per spike (SNS) is the primary factor that determines wheat yield. Common wheat breeding reduces the genetic diversity among elite germplasm resources, leading to a detrimental effect on future wheat production. It is, therefore, necessary to explore new genetic resources for SNS to increase wheat yield. A tetraploid landrace "Ailanmai" × wild emmer wheat recombinant inbred line (RIL) population was used to construct a genetic map using a wheat 55K single- nucleotide polymorphism (SNP) array. The linkage map containing 1,150 bin markers with a total genetic distance of 2,411.8 cm was obtained. Based on the phenotypic data from the eight environments and best linear unbiased prediction (BLUP) values, five quantitative trait loci (QTLs) for SNS were identified, explaining 6.71-29.40% of the phenotypic variation. Two of them, QSns.sau-AM-2B.2 and QSns.sau-AM-3B.2, were detected as a major and novel QTL. Their effects were further validated in two additional F2 populations using tightly linked kompetitive allele-specific PCR (KASP) markers. Potential candidate genes within the physical intervals of the corresponding QTLs were predicted to participate in inflorescence development and spikelet formation. Genetic associations between SNS and other agronomic traits were also detected and analyzed. This study demonstrates the feasibility of the wheat 55K SNP array developed for common wheat in the genetic mapping of tetraploid population and shows the potential application of wheat-related species in wheat improvement programs.
Collapse
Affiliation(s)
- Ziqiang Mo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiatai Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jieguang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Xiujin Lan
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Jian Ma
| |
Collapse
|
19
|
Tu Y, Liu H, Liu J, Tang H, Mu Y, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Pu Z, Chen G, Peng Y, Jiang Y, Xu Q, Kang H, Lan X, Wei Y, Zheng Y, Ma J. QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:261-278. [PMID: 33026461 DOI: 10.1007/s00122-020-03695-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 05/24/2023]
Abstract
Eight major and stably expressed QTL for flag leaf morphology across eleven environments were identified and validated using newly developed KASP markers in seven biparental populations with different genetic backgrounds. Flag leaf morphology is a determinant trait influencing plant architecture and yield potential in wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population with a 55 K SNP-based constructed genetic map was used to map quantitative trait loci (QTL) for flag leaf length (FLL), width (FLW), area (FLA), angle (FLANG), opening angle (FLOA), and bend angle (FLBA) in eleven environments. Eight major QTL were detected in 11 environments with 5.73-54.38% of explained phenotypic variation. These QTL were successfully verified using the newly developed Kompetitive Allele Specific PCR (KASP) markers in six biparental populations with different genetic backgrounds. Among these 8 major QTL, two co-located intervals were identified. Significant interactions for both FLL- and FLW-related QTL were detected. Comparison analysis showed that QFll.sau-SY-2B and QFla.sau-SY-2B are likely new loci. Significant relationships between flag leaf- and yield-related traits were observed and discussed. Several genes associated with leaf development including the ortholog of maize ZmRAVL1, a B3-domain transcription factor involved in regulation of leaf angle, were predicted in physical intervals harboring these major QTL on reference genomes of bread wheat 'Chinese spring', T. turgidum, and Aegilops tauschii. Taken together, these results broaden our understanding on genetic basis of flag leaf morphology and provide clues for fine mapping and marker-assisted breeding wheat with optimized plant architecture for promising loci.
Collapse
Affiliation(s)
- Yang Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
20
|
Qu X, Liu J, Xie X, Xu Q, Tang H, Mu Y, Pu Z, Li Y, Ma J, Gao Y, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Habib A, Wei Y, Zheng Y, Lan X, Ma J. Genetic Mapping and Validation of Loci for Kernel-Related Traits in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:667493. [PMID: 34163507 PMCID: PMC8215603 DOI: 10.3389/fpls.2021.667493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 05/11/2023]
Abstract
Kernel size (KS) and kernel weight play a key role in wheat yield. Phenotypic data from six environments and a Wheat55K single-nucleotide polymorphism array-based constructed genetic linkage map from a recombinant inbred line population derived from the cross between the wheat line 20828 and the line SY95-71 were used to identify quantitative trait locus (QTL) for kernel length (KL), kernel width (KW), kernel thickness (KT), thousand-kernel weight (TKW), kernel length-width ratio (LWR), KS, and factor form density (FFD). The results showed that 65 QTLs associated with kernel traits were detected, of which the major QTLs QKL.sicau-2SY-1B, QKW.sicau-2SY-6D, QKT.sicau-2SY-2D, and QTKW.sicau-2SY-2D, QLWR.sicau-2SY-6D, QKS.sicau-2SY-1B/2D/6D, and QFFD.sicau-2SY-2D controlling KL, KW, KT, TKW, LWR, KS, and FFD, and identified in multiple environments, respectively. They were located on chromosomes 1BL, 2DL, and 6DS and formed three QTL clusters. Comparison of genetic and physical interval suggested that only QKL.sicau-2SY-1B located on chromosome 1BL was likely a novel QTL. A Kompetitive Allele Specific Polymerase chain reaction (KASP) marker, KASP-AX-109379070, closely linked to this novel QTL was developed and used to successfully confirm its effect in two different genetic populations and three variety panels consisting of 272 Chinese wheat landraces, 300 Chinese wheat cultivars most from the Yellow and Huai River Valley wheat region, and 165 Sichuan wheat cultivars. The relationships between kernel traits and other agronomic traits were detected and discussed. A few predicted genes involved in regulation of kernel growth and development were identified in the intervals of these identified major QTL. Taken together, these stable and major QTLs provide valuable information for understanding the genetic composition of kernel yield and provide the basis for molecular marker-assisted breeding.
Collapse
Affiliation(s)
- Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinlin Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yang Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yutian Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Xiujin Lan,
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Jian Ma, ;
| |
Collapse
|
21
|
Li C, Tang H, Luo W, Zhang X, Mu Y, Deng M, Liu Y, Jiang Q, Chen G, Wang J, Qi P, Pu Z, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J. A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3381-3393. [PMID: 32870326 DOI: 10.1007/s00122-020-03675-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/21/2020] [Indexed: 05/24/2023]
Abstract
A novel, stably expressed, and plant height-independent QTL for spike extension length on 5AS was identified and validated in different populations using a newly developed and tightly linked KASP marker. As an important component of plant height (PH), spike extension length (SEL) plays a significant role in formation of an ideotype in wheat. Despite the fact that numerous loci for SEL in wheat have been reported, our knowledge on PH-independent loci remains to be limited. In this study, two recombinant inbred line (RIL) populations genotyped using the Wheat55K SNP were used to detect quantitative trait loci (QTL) controlling SEL across six environments. A total of 30 QTL for SEL were detected in these two RIL populations, and four of them, i.e., QSEL.sicau-2CN-4D, QSEL.sicau-2SY-4B.2, QSEL.sicau-2SY-4D.1, and QSEL.sicau-2CN-5A, were stably expressed. Genetic and conditional QTL analysis showed that the first three were significantly associated with PH, while the last one, QSEL.sicau-2CN-5A, is independent of PH. Comparison of genetic and physical maps suggested that only QSEL.sicau-2CN-5A located on chromosome arm 5AS is likely a novel QTL. A Kompetitive Allele-Specific PCR (KASP) marker, KASP-AX-110413733, tightly linked to this novel QTL was developed to successfully confirm its effect in three different genetic populations. Further, in the interval where QSEL.sicau-2CN-5A was located on 'Chinese Spring' wheat reference genome, three promising genes mainly expressed in wheat stem were predicated and they all encode the cytochrome P450 that was demonstrated to be closely associated with SEL elongation in rice. In addition, significant correlations between SEL and PH, spikelet number per spike, and thousand-grain weight were also detected. Altogether, our results broaden our understanding on genetic basis of SEL and will be useful for marker-based selection of lines with different SELs and fine mapping the novel and PH-independent QTL QSEL.sicau-2CN-5A.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
22
|
Jin J, Liu D, Qi Y, Ma J, Zhen W. Major QTL for Seven Yield-Related Traits in Common Wheat (Triticum aestivum L.). Front Genet 2020; 11:1012. [PMID: 33005181 PMCID: PMC7485215 DOI: 10.3389/fgene.2020.01012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/10/2020] [Indexed: 11/13/2022] Open
Abstract
Flag leaves, plant height (PH), and spike-related traits are key determinants contributing to yield potential in wheat. In this study, we developed a recombinant inbred line (RIL) population with 94 lines derived from the cross between 'AS985472' and 'Sumai 3.' A genetic map spanned 3553.69 cM in length were constructed using 1978 DArT markers. Severn traits including flag leaf width (FLW), flag leaf length (FLL), PH, anthesis date (AD), spike length (SL), spikelet number spike (SNS), and spike density (SD) were evaluated against this RIL population under three different environments. Combined phenotypic data and genetic map, we identified quantitative trait loci (QTL) for each trait. A total of four major and stably expressed QTLs for FLW, PH, and SD were detected on chromosomes 2D and 4B. Of them, the major QTLs individually explained 10.10 - 30.68% of the phenotypic variation. QTLs with pleiotropic effects were identified on chromosomes 4A and 6D as well. Furthermore, the genetic relationships between seven yield-related traits were detected and discussed. A few genes related to leaf growth and development at the interval of a major locus for FLW on chromosome 2D were predicated. Overall, the present study provided useful information for understanding the genetic basis of yield-related traits and will be useful for marker-assisted selection in wheat breeding.
Collapse
Affiliation(s)
- Jingjing Jin
- College of Plant Protection, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Dan Liu
- Neijiang Academy of Agricultural Sciences, Neijiang, China.,School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yongzhi Qi
- College of Plant Protection, Hebei Agricultural University, Baoding, China.,State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China
| | - Jun Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China.,College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
23
|
Liu J, Tang H, Qu X, Liu H, Li C, Tu Y, Li S, Habib A, Mu Y, Dai S, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Chen G, Li W, Jiang Y, Wei Y, Lan X, Zheng Y, Ma J. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. PLANT MOLECULAR BIOLOGY 2020; 104:173-185. [PMID: 32734417 DOI: 10.1007/s11103-020-01035-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
A novel and major QTL for the effective tiller number was identified on chromosomal arm 1BL and validated in two genetic backgrounds The effective tiller number (ETN) substantially influences plant architecture and the wheat yield improvement. In this study, we constructed a genetic map of the 2SY (20828/SY95-71) recombinant inbred line population based on the Wheat 55K array as well as the simple sequence repeat (SSR) and Kompetitive Allele Specific PCR (KASP) markers. A comparison between the genetic and physical maps indicated the marker positions were consistent in the two maps. Additionally, we identified seven tillering-related quantitative trait locus (QTLs), including Qetn-sau-1B.1, which is a major QTL localized to a 6.17-cM interval flanked by markers AX-89635557 and AX-111544678 on chromosome 1BL. The Qetn-sau-1B.1 QTL was detected in eight environments and explained 12.12-55.71% of the phenotypic variance. Three genes associated with the ETN were detected in the physical interval of Qetn-sau-1B.1. We used a tightly linked KASP marker, KASP-AX-110129912, to further validate this QTL in two other populations with different genetic backgrounds. The results indicated that Qetn-sau-1B.1 significantly increased the ETN by up to 23.5%. The results of this study will be useful for the precise mapping and cloning of Qetn-sau-1B.1.
Collapse
Affiliation(s)
- Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangru Qu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuiqing Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shoufeng Dai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunfeng Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
25
|
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S, Liu J, Ding P, Habib A, Mu Y, Tang H, Liu Y, Jiang Q, Chen G, Wang J, Li W, Pu Z, Zheng Y, Wei Y, Kang H, Chen G, Lan X. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:297-315. [PMID: 31628527 DOI: 10.1007/s00122-019-03458-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/10/2019] [Indexed: 05/24/2023]
Abstract
Major and environmentally stable QTL for flag leaf-related traits in wheat were identified and validated across ten environments using six populations with different genetic backgrounds. Flag leaf size and posture are two important factors of "ideotype" in wheat. Despite numerous studies on genetic analysis of flag leaf size including flag leaf length (FLL), width (FLW), area (FLA) and the ratio of length/width (FLR), few have focused on flag leaf posture including flag leaf angle (FLANG), opening angle (FLOA) and bend angle (FLBA). Further, the numbers of major, environmentally stable and verified genetic loci for flag leaf-related traits are limited. In this study, QTL for FLL, FLW, FLA, FLR, FLANG, FLOA and FLBA were identified based on a recombinant inbred line population together with values from up to ten different environments. Totally, eight major and stably expressed QTL were identified. Three co-located chromosomal intervals for seven major QTL were identified. The five major QTL QFll.sicau-5B.3 and QFll.sicau-2D.3 for FLL, QFlr.sicau-5B for FLR, QFlw.sicau-2D for FLW and QFla.sicau-2D for FLA were successfully validated by the tightly linked Kompetitive Allele Specific PCR (KASP) markers in the other five populations with different genetic backgrounds. A few genes related to leaf growth and development in intervals for these major QTL were predicated. Significant relationships between flag leaf- and yield-related traits were evidenced by analyses of Pearson correlations, conditional QTL and genetic mapping. Taken together, these results provide valuable information for understanding flag leaf size and posture of "ideotype" as well as fine mapping and breeding utilization of promising loci in bread wheat.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yang Tu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hang Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Cong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuiqin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Puyang Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
26
|
Gong B, Zhu W, Li S, Wang Y, Xu L, Wang Y, Zeng J, Fan X, Sha L, Zhang H, Qi P, Huang L, Chen G, Zhou Y, Kang H. Molecular cytogenetic characterization of wheat-Elymus repens chromosomal translocation lines with resistance to Fusarium head blight and stripe rust. BMC PLANT BIOLOGY 2019; 19:590. [PMID: 31881925 PMCID: PMC6935081 DOI: 10.1186/s12870-019-2208-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/18/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) caused by the fungus Fusarium graminearum Schwabe and stripe rust caused by Puccinia striiformis f. sp. tritici are devastating diseases that affect wheat production worldwide. The use of disease-resistant genes and cultivars is the most effective means of reducing fungicide applications to combat these diseases. Elymus repens (2n = 6x = 42, StStStStHH) is a potentially useful germplasm of FHB and stripe rust resistance for wheat improvement. RESULTS Here, we report the development and characterization of two wheat-E. repens lines derived from the progeny of common wheat-E. repens hybrids. Cytological studies indicated that the mean chromosome configuration of K15-1192-2 and K15-1194-2 at meiosis were 2n = 42 = 0.86 I + 17.46 II (ring) + 3.11 II (rod) and 2n = 42 = 2.45 I + 14.17 II (ring) + 5.50 II (rod) + 0.07 III, respectively. Genomic and fluorescence in situ hybridization karyotyping and simple sequence repeats markers revealed that K15-1192-2 was a wheat-E. repens 3D/?St double terminal chromosomal translocation line. Line K15-1194-2 was identified as harboring a pair of 7DS/?StL Robertsonian translocations and one 3D/?St double terminal translocational chromosome. Further analyses using specific expressed sequence tag-SSR markers confirmed that the wheat-E. repens translocations involved the 3St chromatin in both lines. Furthermore, compared with the wheat parent Chuannong16, K15-1192-2 and K15-1194-2 expressed high levels of resistance to FHB and stripe rust pathogens prevalent in China. CONCLUSIONS Thus, this study has determined that the chromosome 3St of E. repens harbors gene(s) highly resistant to FHB and stripe rust, and chromatin of 3St introgressed into wheat chromosomes completely presented the resistance, indicating the feasibility of using these translocation lines as novel material for breeding resistant wheat cultivars and alien gene mining.
Collapse
Affiliation(s)
- Biran Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sanyue Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuqi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
27
|
Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3155-3167. [PMID: 31435704 DOI: 10.1007/s00122-019-03415-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/14/2019] [Indexed: 05/19/2023]
Abstract
A major and stably expressed QTL for spikelet number per spike identified in a 2-cM interval on chromosome arm 2DS was validated using two populations with different genetic backgrounds. Spikelet number per spike (SNS) plays a key role in wheat yield improvement. Numerous genetic and environmental factors influencing SNS have been documented, but the number of major, stably expressed and validated loci underlying SNS is still limited. In this study, a recombinant inbred line (RIL) population derived from a normal spikelet cultivar and a multiple-spikelet wheat line (with a longer spike with more canonically oriented apical spikelets) was genotyped using a Wheat55K single-nucleotide polymorphism (SNP) array and simple sequence repeat (SSR) markers. SNS was measured for this RIL population in eight environments. Five QTL were each identified in two or more environments. One of them, QSns.sau-2D (LOD = 3.47-38.24, PVE = 10.16-45.68%), was detected in all the eight environments. The QTL was located in a 2-cM interval on chromosome arm 2DS flanked by the markers AX-109836946 and AX-111956072. This QTL, QSns.sau-2D, significantly increased SNS by up to 14.72%. Several genes associated with plant growth and development were identified in the physical interval of QSns.sau-2D. This QTL was further validated by the tightly linked Kompetitive Allele Specific PCR (KASP) marker, KASP-AX-94721936, in two other populations with different genetic backgrounds. The significant correlation between SNS and anthesis date, plant height, spike length, grain number per spike and thousand-grain weight were detected and discussed. These results lay the foundation for fine mapping and cloning gene(s) underlying QSns.sau-2D.
Collapse
Affiliation(s)
- Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Puyang Ding
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaya Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Yang Mu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
28
|
Ma J, Zhang H, Li S, Zou Y, Li T, Liu J, Ding P, Mu Y, Tang H, Deng M, Liu Y, Jiang Q, Chen G, Kang H, Li W, Pu Z, Wei Y, Zheng Y, Lan X. Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet 2019; 20:77. [PMID: 31619163 PMCID: PMC6796374 DOI: 10.1186/s12863-019-0782-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 12/01/2022] Open
Abstract
Background Kernel length (KL), kernel width (KW) and thousand-kernel weight (TKW) are key agronomic traits in wheat breeding. Chuannong16 (‘CN16’) is a commercial cultivar with significantly longer kernels than the line ‘20828’. To identify and characterize potential alleles from CN16 controlling KL, the previously developed recombinant inbred line (RIL) population derived from the cross ‘20828’ × ‘CN16’ and the genetic map constructed by the Wheat55K SNP array and SSR markers were used to perform quantitative trait locus/loci (QTL) analyses for kernel traits. Results A total of 11 putative QTL associated with kernel traits were identified and they were located on chromosomes 1A (2 QTL), 2B (2 QTL), 2D (3 QTL), 3D, 4A, 6A, and 7A, respectively. Among them, three major QTL, QKL.sicau-2D, QKW.sicau-2D and QTKW.sicau-2D, controlling KL, KW and TKW, respectively, were detected in three different environments. Respectively, they explained 10.88–18.85%, 17.21–21.49% and 10.01–23.20% of the phenotypic variance. Further, they were genetically mapped in the same interval on chromosome 2DS. A previously developed kompetitive allele-specific PCR (KASP) marker KASP-AX-94721936 was integrated in the genetic map and QTL re-mapping finally located the three major QTL in a 1- cM region flanked by AX-111096297 and KASP-AX-94721936. Another two co-located QTL intervals for KL and TKW were also identified. A few predicted genes involved in regulation of kernel growth and development were identified in the intervals of these identified QTL. Significant relationships between kernel traits and spikelet number per spike and anthesis date were detected and discussed. Conclusions Three major and stably expressed QTL associated with KL, KW, and TKW were identified. A KASP marker tightly linked to these three major QTL was integrated. These findings provide information for subsequent fine mapping and cloning the three co-localized major QTL for kernel traits.
Collapse
Affiliation(s)
- Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Han Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuiqin Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaya Zou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiajun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Puyang Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Mu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,China State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
29
|
Yang M, Li G, Wan H, Li L, Li J, Yang W, Pu Z, Yang Z, Yang E. Identification of QTLs for Stripe Rust Resistance in a Recombinant Inbred Line Population. Int J Mol Sci 2019; 20:ijms20143410. [PMID: 31336736 PMCID: PMC6678735 DOI: 10.3390/ijms20143410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/02/2022] Open
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating fungal diseases of wheat worldwide. It is essential to discover more sources of stripe rust resistance genes for wheat breeding programs. Specific locus amplified fragment sequencing (SLAF-seq) is a powerful tool for the construction of high-density genetic maps. In this study, a set of 200 recombinant inbred lines (RILs) derived from a cross between wheat cultivars Chuanmai 42 (CH42) and Chuanmai 55 (CH55) was used to construct a high-density genetic map and to identify quantitative trait loci (QTLs) for stripe rust resistance using SLAF-seq technology. A genetic map of 2828.51 cM, including 21 linkage groups, contained 6732 single nucleotide polymorphism markers (SNP). Resistance QTLs were identified on chromosomes 1B, 2A, and 7B; Qyr.saas-7B was derived from CH42, whereas Qyr.saas-1B and Qyr.saas-2A were from CH55. The physical location of Qyr.saas-1B, which explained 6.24–34.22% of the phenotypic variation, overlapped with the resistance gene Yr29. Qyr.saas-7B accounted for up to 20.64% of the phenotypic variation. Qyr.saas-2A, a minor QTL, was found to be a likely new stripe rust resistance locus. A significant additive effect was observed when all three QTLs were combined. The combined resistance genes could be of value in breeding wheat for stripe rust resistance.
Collapse
Affiliation(s)
- Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Liping Li
- Chengdu Academy of Agricultural and Forestry Sciences, Wenjiang, Chengdu 611130, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|