2
|
Washburn JD, Varela JI, Xavier A, Chen Q, Ertl D, Gage JL, Holland JB, Lima DC, Romay MC, Lopez-Cruz M, de los Campos G, Barber W, Zimmer C, Silva IT, Rocha F, Rincent R, Ali B, Hu H, Runcie DE, Gusev K, Slabodkin A, Bax P, Aubert J, Gangloff H, Mary-Huard T, Vanrenterghem T, Quesada-Traver C, Yates S, Ariza-Suárez D, Ulrich A, Wyler M, Kick DR, Bellis ES, Causey JL, Chavez ES, Wang Y, Piyush V, Fernando GD, Hu RK, Kumar R, Timon AJ, Venkatesh R, Abá KS, Chen H, Ranaweera T, Shiu SH, Wang P, Gordon MJ, Amos BK, Busato S, Perondi D, Gogna A, Psaroudakis D, Chen CPJ, Al-Mamun HA, Danilevicz MF, Upadhyaya SR, Edwards D, de Leon N. Global Genotype by Environment Prediction Competition Reveals That Diverse Modeling Strategies Can Deliver Satisfactory Maize Yield Estimates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612969. [PMID: 39345633 PMCID: PMC11429743 DOI: 10.1101/2024.09.13.612969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years. The competition attracted registrants from around the world with representation from academic, government, industry, and non-profit institutions as well as unaffiliated. These participants came from diverse disciplines include plant science, animal science, breeding, statistics, computational biology and others. Some participants had no formal genetics or plant-related training, and some were just beginning their graduate education. The teams applied varied methods and strategies, providing a wealth of modeling knowledge based on a common dataset. The winner's strategy involved two models combining machine learning and traditional breeding tools: one model emphasized environment using features extracted by Random Forest, Ridge Regression and Least-squares, and one focused on genetics. Other high-performing teams' methods included quantitative genetics, classical machine learning/deep learning, mechanistic models, and model ensembles. The dataset factors used, such as genetics; weather; and management data, were also diverse, demonstrating that no single model or strategy is far superior to all others within the context of this competition.
Collapse
Affiliation(s)
- Jacob D. Washburn
- USDA-ARS-MWA-PGRU, 302-A Curtis Hall, U. of MO., Columbia, MO, 65211, USA
| | - José Ignacio Varela
- Department of Plant and Agroecosystem Sciences, University of Wisconsin - Madison, 1575 Linden Drive, Madison, WI, 53706, USA
- Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Alencar Xavier
- Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA, 50131, USA
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, United States
| | - Qiuyue Chen
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - David Ertl
- Iowa Corn Promotion Board, Johnston, IA, 50131, USA
| | - Joseph L. Gage
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - James B. Holland
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- USDA-ARS Plant Science Research Unit, Raleigh, NC, 27695, USA
| | - Dayane Cristina Lima
- Department of Plant and Agroecosystem Sciences, University of Wisconsin - Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Maria Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Marco Lopez-Cruz
- Departments of Epidemiology & Biostatistics and Statistics & Probability, and Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, MI, 48823, USA
| | - Gustavo de los Campos
- Departments of Epidemiology & Biostatistics and Statistics & Probability, and Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Dr., East Lansing, MI, 48823, USA
| | - Wesley Barber
- Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Cristiano Zimmer
- Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA, 50131, USA
| | | | - Fabiani Rocha
- Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Renaud Rincent
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France
| | - Baber Ali
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France
| | - Haixiao Hu
- Department of Plant Sciences, University of California Davis, One Shield Drive, Davis, CA, 95616, USA
| | - Daniel E Runcie
- Department of Plant Sciences, University of California Davis, One Shield Drive, Davis, CA, 95616, USA
| | - Kirill Gusev
- Smart Agri Labs, 2055 Limestone Rd STE 200-C, Wilmington, DE, 19808, USA
| | - Andrei Slabodkin
- Smart Agri Labs, 2055 Limestone Rd STE 200-C, Wilmington, DE, 19808, USA
| | - Phillip Bax
- Smart Agri Labs, 2055 Limestone Rd STE 200-C, Wilmington, DE, 19808, USA
| | - Julie Aubert
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Hugo Gangloff
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Theodore Vanrenterghem
- Université Paris-Saclay, AgroParisTech, INRAE, UMR MIA Paris-Saclay, 91120, Palaiseau, France
| | - Carles Quesada-Traver
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland
| | - Steven Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland
| | - Daniel Ariza-Suárez
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zurich, Switzerland
| | - Argeo Ulrich
- Puregene AG, Etzmatt 273, CH-4314 Zeiningen, Switzerland
- Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, CH-8092 Zürich, Switzerland
| | - Michele Wyler
- MWSchmid GmbH, Hauptstrasse 34, CH-8750 Glarus, Switzerland
| | - Daniel R. Kick
- USDA-ARS-MWA-PGRU, 302-A Curtis Hall, U. of MO., Columbia, MO, 65211, USA
| | - Emily S. Bellis
- Department of Computer Science, Arkansas State University, 2105 E. Aggie Rd., Jonesboro, AR, 72401, USA
| | - Jason L. Causey
- Department of Computer Science, Arkansas State University, 2105 E. Aggie Rd., Jonesboro, AR, 72401, USA
| | - Emilio Soriano Chavez
- Department of Computer Science, Arkansas State University, 2105 E. Aggie Rd., Jonesboro, AR, 72401, USA
| | - Yixing Wang
- Department of Computer Science, Arkansas State University, 2105 E. Aggie Rd., Jonesboro, AR, 72401, USA
| | - Ved Piyush
- Department of Statistics, University of Nebraska - Lincoln, 340 Hardin Hall North Wing, Lincoln, NE, 68583, USA
| | - Gayara D. Fernando
- Department of Statistics, University of Nebraska - Lincoln, 340 Hardin Hall North Wing, Lincoln, NE, 68583, USA
| | - Robert K Hu
- Genomics and Computational Biology, Perelman School of Medicine at the University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Rachit Kumar
- Genomics and Computational Biology, Perelman School of Medicine at the University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
- Medical Scientist Training Program, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA, 19104, USA
| | - Annan J. Timon
- Genomics and Computational Biology, Perelman School of Medicine at the University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Rasika Venkatesh
- Genomics and Computational Biology, Perelman School of Medicine at the University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Kenia Segura Abá
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Graduate Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Huan Chen
- Genetics and Genome Sciences Graduate Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Thilanka Ranaweera
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Peiran Wang
- NC Plant Science Initiative, North Carolina State University, 840 Oval Drive, Raleigh, NC, 27606, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC, 27606, USA
| | - Max J. Gordon
- NC Plant Science Initiative, North Carolina State University, 840 Oval Drive, Raleigh, NC, 27606, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC, 27606, USA
| | - B K. Amos
- NC Plant Science Initiative, North Carolina State University, 840 Oval Drive, Raleigh, NC, 27606, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC, 27606, USA
| | - Sebastiano Busato
- NC Plant Science Initiative, North Carolina State University, 840 Oval Drive, Raleigh, NC, 27606, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC, 27606, USA
| | - Daniel Perondi
- NC Plant Science Initiative, North Carolina State University, 840 Oval Drive, Raleigh, NC, 27606, USA
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC, 27606, USA
| | - Abhishek Gogna
- Department of Breeding Research, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstraße 3, Gatersleben, 6466, Germany
| | - Dennis Psaroudakis
- Department of Molecular Genetics, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstraße 3, Gatersleben, 6466, Germany
| | - C. P. James Chen
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hawlader A. Al-Mamun
- School of Biological Sciences and Centre of Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Monica F. Danilevicz
- School of Biological Sciences and Centre of Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Shriprabha R. Upadhyaya
- School of Biological Sciences and Centre of Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences and Centre of Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Natalia de Leon
- Department of Plant and Agroecosystem Sciences, University of Wisconsin - Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Lopez-Cruz M, Aguate FM, Washburn JD, de Leon N, Kaeppler SM, Lima DC, Tan R, Thompson A, De La Bretonne LW, de Los Campos G. Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America. Nat Commun 2023; 14:6904. [PMID: 37903778 PMCID: PMC10616096 DOI: 10.1038/s41467-023-42687-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Genotype-by-environment (G×E) interactions can significantly affect crop performance and stability. Investigating G×E requires extensive data sets with diverse cultivars tested over multiple locations and years. The Genomes-to-Fields (G2F) Initiative has tested maize hybrids in more than 130 year-locations in North America since 2014. Here, we curate and expand this data set by generating environmental covariates (using a crop model) for each of the trials. The resulting data set includes DNA genotypes and environmental data linked to more than 70,000 phenotypic records of grain yield and flowering traits for more than 4000 hybrids. We show how this valuable data set can serve as a benchmark in agricultural modeling and prediction, paving the way for countless G×E investigations in maize. We use multivariate analyses to characterize the data set's genetic and environmental structure, study the association of key environmental factors with traits, and provide benchmarks using genomic prediction models.
Collapse
Affiliation(s)
- Marco Lopez-Cruz
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - Fernando M Aguate
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Jacob D Washburn
- United States Department of Agriculture, Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, Madison, WI, 53706, USA
- Wisconsin Crop Innovation Center, University of Wisconsin, Middleton, WI, 53562, USA
| | | | - Ruijuan Tan
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Addie Thompson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Gustavo de Los Campos
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Kick DR, Wallace JG, Schnable JC, Kolkman JM, Alaca B, Beissinger TM, Edwards J, Ertl D, Flint-Garcia S, Gage JL, Hirsch CN, Knoll JE, de Leon N, Lima DC, Moreta DE, Singh MP, Thompson A, Weldekidan T, Washburn JD. Yield prediction through integration of genetic, environment, and management data through deep learning. G3 (BETHESDA, MD.) 2023; 13:jkad006. [PMID: 36625555 PMCID: PMC10085787 DOI: 10.1093/g3journal/jkad006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
Accurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management interventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 model development methods, and contextualize model performance using conventional linear and machine learning models. We examine the usefulness of incorporating interactions between disparate data types. We find deep learning and best linear unbiased predictor (BLUP) models with interactions had the best overall performance. BLUP models achieved the lowest average error, but deep learning models performed more consistently with similar average error. Optimizing deep neural network submodules for each data type improved model performance relative to optimizing the whole model for all data types at once. Examining the effect of interactions in the best-performing model revealed that including interactions altered the model's sensitivity to weather and management features, including a reduction of the importance scores for timepoints expected to have a limited physiological basis for influencing yield-those at the extreme end of the season, nearly 200 days post planting. Based on these results, deep learning provides a promising avenue for the phenotypic prediction of complex traits in complex environments and a potential mechanism to better understand the influence of environmental and genetic factors.
Collapse
Affiliation(s)
- Daniel R Kick
- United States Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jason G Wallace
- Department of Crop & Soil Science, University of Georgia, Athens, GA 30602, USA
| | - James C Schnable
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Judith M Kolkman
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Barış Alaca
- Division of Plant Breeding Methodology, Department of Crop Science, University of Goettingen, Goettingen 37073, Germany
- Center for Integrated Breeding Research, University of Goettingen, Goettingen 37073, Germany
| | - Timothy M Beissinger
- Division of Plant Breeding Methodology, Department of Crop Science, University of Goettingen, Goettingen 37073, Germany
- Center for Integrated Breeding Research, University of Goettingen, Goettingen 37073, Germany
| | - Jode Edwards
- United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
| | - David Ertl
- Research and Business Development, Iowa Corn Promotion Board, Johnston, IA 50131, USA
| | - Sherry Flint-Garcia
- United States Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Joseph L Gage
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Joseph E Knoll
- United States Department of Agriculture, Agricultural Research Service Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
| | - Dayane C Lima
- Plant Breeding and Plant Genetics Program, University of Wisconsin, Madison, WI 53706, USA
| | - Danilo E Moreta
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Maninder P Singh
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Addie Thompson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | | | - Jacob D Washburn
- United States Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|