1
|
Hierons SJ, Marsh JS, Wu D, Blindauer CA, Stewart AJ. The Interplay between Non-Esterified Fatty Acids and Plasma Zinc and Its Influence on Thrombotic Risk in Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms221810140. [PMID: 34576303 PMCID: PMC8471329 DOI: 10.3390/ijms221810140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/29/2022] Open
Abstract
Thrombosis is a major comorbidity of obesity and type-2 diabetes mellitus (T2DM). Despite the development of numerous effective treatments and preventative strategies to address thrombotic disease in such individuals, the incidence of thrombotic complications remains high. This suggests that not all the pathophysiological mechanisms underlying these events have been identified or targeted. Non-esterified fatty acids (NEFAs) are increasingly regarded as a nexus between obesity, insulin resistance, and vascular disease. Notably, plasma NEFA levels are consistently elevated in obesity and T2DM and may impact hemostasis in several ways. A potentially unrecognized route of NEFA-mediated thrombotic activity is their ability to disturb Zn2+ speciation in the plasma. Zn2+ is a potent regulator of coagulation and its availability in the plasma is monitored carefully through buffering by human serum albumin (HSA). The binding of long-chain NEFAs such as palmitate and stearate, however, trigger a conformational change in HSA that reduces its ability to bind Zn2+, thus increasing the ion’s availability to bind and activate coagulation proteins. NEFA-mediated perturbation of HSA-Zn2+ binding is thus predicted to contribute to the prothrombotic milieu in obesity and T2DM, representing a novel targetable disease mechanism in these disorders.
Collapse
Affiliation(s)
- Stephen J. Hierons
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Jordan S. Marsh
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | - Dongmei Wu
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
| | | | - Alan J. Stewart
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, Fife, UK; (S.J.H.); (J.S.M.); (D.W.)
- Correspondence: ; Tel.: +44-(0)-1334-463546; Fax: +44-(0)-1334-463482
| |
Collapse
|
2
|
Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9570616. [PMID: 31885827 PMCID: PMC6925928 DOI: 10.1155/2019/9570616] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
The occurrence and development of cardiovascular complications are predominantly responsible for the increased morbidity and mortality observed in patients with diabetes. Oxidative stress under hyperglycemia is currently considered the initial link to diabetic cardiovascular complications and a key node for the prevention and treatment of diabetes-related fatal cardiovascular events. Numerous studies have indicated that the common upstream pathway in the context of oxidative stress in the cardiovascular system under diabetic conditions is the interaction of advanced glycation end products (AGEs) with their receptors (RAGEs). Therefore, a further understanding of the relationship between oxidative stress and AGEs is of great significance for the prevention and treatment of cardiovascular complications in patients with diabetes. In this review, we will briefly summarize the recent research advances in diabetes with an emphasis on oxidative stress and its association with AGEs in diabetic cardiovascular complications.
Collapse
|
3
|
Calderon Moreno R, Navas-Acien A, Escolar E, Nathan DM, Newman J, Schmedtje JF, Diaz D, Lamas GA, Fonseca V. Potential Role of Metal Chelation to Prevent the Cardiovascular Complications of Diabetes. J Clin Endocrinol Metab 2019; 104:2931-2941. [PMID: 30869793 PMCID: PMC9136707 DOI: 10.1210/jc.2018-01484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/07/2019] [Indexed: 02/12/2023]
Abstract
CONTEXT For decades, there has been epidemiologic evidence linking chronic toxic metal exposure with cardiovascular disease, suggesting a therapeutic role for metal chelation. Given the lack of compelling scientific evidence, however, the indications for metal chelation were never clearly defined. To determine the safety and efficacy of chelation therapy, the National Institutes of Health funded the Trial to Assess Chelation Therapy (TACT). TACT was the first double-blind, randomized, controlled trial to demonstrate an improvement in cardiovascular outcomes with edetate disodium therapy in patients with prior myocardial infarction. The therapeutic benefit was striking among the prespecified subgroup of patients with diabetes. DESIGN We review the published literature focusing on the atherogenic nature of diabetes, as well as available evidence from clinical trials, complete and in progress, of metal chelation with edetate disodium therapy in patients with diabetes. RESULTS The TACT results support the concept that ubiquitous toxic metals such as lead and cadmium may be modifiable risk factors for cardiovascular disease, particularly in patients with diabetes. CONCLUSIONS The purpose of this review is to discuss the potential mechanisms unifying the pathogenesis of atherogenic factors in diabetes with toxic metal exposure, and the potential role of metal chelation.
Collapse
Affiliation(s)
| | - Ana Navas-Acien
- Columbia University Mailman School of Public Health, New York, New York
| | - Esteban Escolar
- Department of Medicine, Columbia University Division of Cardiology at Mount Sinai Medical Center, Miami Beach, Florida
| | - David M Nathan
- Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jonathan Newman
- Department of Medicine, New York University School of Medicine, New York, New York
| | | | - Denisse Diaz
- Department of Medicine, Columbia University Division of Cardiology at Mount Sinai Medical Center, Miami Beach, Florida
- Correspondence and Reprint Requests: Denisse Diaz, MD, Mount Sinai Medical Center, 4300 Alton Road, Miami Beach, Florida 33140. E-mail:
| | - Gervasio A Lamas
- Department of Medicine, Columbia University Division of Cardiology at Mount Sinai Medical Center, Miami Beach, Florida
| | - Vivian Fonseca
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
4
|
A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin Sci (Lond) 2018; 132:1811-1836. [PMID: 30166499 DOI: 10.1042/cs20171459] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/14/2022]
Abstract
Chronic renal and vascular oxidative stress in association with an enhanced inflammatory burden are determinant processes in the development and progression of diabetic complications including cardiovascular disease (CVD), atherosclerosis and diabetic kidney disease (DKD). Persistent hyperglycaemia in diabetes mellitus increases the production of reactive oxygen species (ROS) and activates mediators of inflammation as well as suppresses antioxidant defence mechanisms ultimately contributing to oxidative stress which leads to vascular and renal injury in diabetes. Furthermore, there is increasing evidence that ROS, inflammation and fibrosis promote each other and are part of a vicious connection leading to development and progression of CVD and kidney disease in diabetes.
Collapse
|
5
|
Campbell GM, Tiwari S, Hofbauer C, Picke AK, Rauner M, Huber G, Peña JA, Damm T, Barkmann R, Morlock MM, Hofbauer LC, Glüer CC. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus. Bone 2016; 82:116-21. [PMID: 25952971 DOI: 10.1016/j.bone.2015.04.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/08/2015] [Accepted: 04/29/2015] [Indexed: 01/22/2023]
Abstract
Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, p<0.05) but had no effect on NEG. PTH therapy reduced vertebral NEG in the ND animals only (-73% vs untreated group, p<0.05), and increased femoral NEG in the DB vs. ND groups (+63%, p<0.05). PTH therapy had no effect on Ct.Po. Diabetes negatively affected bone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (p<0.05). PTH improved maximum strain in the vertebra of the ND animals (+21%, p<0.05) but did not have an effect in the DB group. PTH increased femoral maximum strain (+21%) and toughness (+28%) in ND and decreased femoral maximum stress (-13%) and toughness (-27%) in the DB animals (treated vs. untreated, p<0.05). Ct.Po correlated negatively with maximum stress (fem: R=-0.35, p<0.05, vert: R=-0.57, p<0.01), maximum strain (fem: R=-0.35, p<0.05, vert: R=-0.43, p<0.05) and toughness (fem: R=-0.34, p<0.05, vert: R=-0.55, p<0.01), and NEG correlated negatively with toughness at the femur (R=-0.34, p<0.05) and maximum strain at the vertebra (R=-0.49, p<0.05). Diabetes increased cortical porosity and reduced bone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes".
Collapse
Affiliation(s)
- G M Campbell
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany; Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany.
| | - S Tiwari
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - C Hofbauer
- Department of Orthopedics, Technische Universität Dresden Medical Center, Dresden, Germany
| | - A-K Picke
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
| | - M Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany
| | - G Huber
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - J A Peña
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - T Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - R Barkmann
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - M M Morlock
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - L C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Regenerative Therapies Dresden, Germany
| | - C-C Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
6
|
Yorek MA. Vascular Impairment of Epineurial Arterioles of the Sciatic Nerve: Implications for Diabetic Peripheral Neuropathy. Rev Diabet Stud 2015; 12:13-28. [PMID: 26676659 PMCID: PMC5397981 DOI: 10.1900/rds.2015.12.13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
This article reviews the impact of diabetes and its treatment on vascular function with a focus on the reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve. Another focus is the relationship between the dysregulation of neurovascular function and diabetic peripheral neuropathy. Diabetic peripheral neuropathy is a debilitating disorder that occurs in more than 50 percent of patients with diabetes. The etiology involves metabolic, vascular, and immunologic pathways besides neurohormonal growth factor deficiency and extracellular matrix remodeling. In the light of this complex etiology, an effective treatment for diabetic peripheral neuropathy has not yet been identified. Current opinion postulates that any effective treatment for diabetic peripheral neuropathy will require a combination of life style and therapeutic interventions. However, a more comprehensive understanding of the factors contributing to neurovascular and neural dysfunction in diabetes is needed before such a treatment strategy can be developed. After reading this review, the reader should have gained insight into the complex regulation of vascular function and blood flow to the sciatic nerve, and the impact of diabetes on numerous elements of vascular reactivity of epineurial arterioles of the sciatic nerve.
Collapse
Affiliation(s)
- Mark A Yorek
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| |
Collapse
|
7
|
Gugliucci A, Menini T. The axis AGE-RAGE-soluble RAGE and oxidative stress in chronic kidney disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:191-208. [PMID: 25039001 DOI: 10.1007/978-3-319-07320-0_14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic kidney disease (CKD) has been shown to be associated with high oxidative stress and cardiovascular disease. In this chapter our focus will be on the role of advanced glycation end products (AGE) and their receptor, RAGE in CKD progression and their role on cardiovascular complications. We provide a succinct, yet comprehensive summary of the current knowledge, the challenges and the future therapeutic avenues that are stemming out from novel recent findings. We first briefly review glycation and AGE formation and the role of the kidney in their metabolism. Next, we focus on the RAGE, its signaling and role in oxidative stress. We address the possible role of soluble RAGEs as decoys and the controversy regarding this issue. We then provide the latest information on the specific role of both AGE and RAGE in inflammation and perpetuation of kidney damage in diabetes and in CKD without diabetes, which is the main purpose of the review. Finally, we offer an update on new avenues to target the AGE-RAGE axis in CKD.
Collapse
Affiliation(s)
- Alejandro Gugliucci
- Glycation, Oxidation and Disease Laboratory, Department of Research, College of Osteopathic Medicine, Touro University-California, 1310 Club Drive, 94592, Vallejo, CA, USA,
| | | |
Collapse
|
8
|
Liu SH, Sheu WHH, Lee MR, Lee WJ, Yi YC, Yang TJ, Jen JF, Pan HC, Shen CC, Chen WB, Tien HR, Sheu ML. Advanced glycation end product Nε-carboxymethyllysine induces endothelial cell injury: the involvement of SHP-1-regulated VEGFR-2 dephosphorylation. J Pathol 2013; 230:215-27. [PMID: 22553146 DOI: 10.1002/path.4045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/27/2012] [Accepted: 04/22/2012] [Indexed: 12/30/2022]
Abstract
N(ε)-carboxymethyllysine (CML), a major advanced glycation end product, plays a crucial role in diabetes-induced vascular injury. The roles of protein tyrosine phosphatases and vascular endothelial growth factor (VEGF) receptors in CML-related endothelial cell injury are still unclear. Human umbilical vein endothelial cells (HUVECs) are a commonly used human EC type. Here, we tested the hypothesis that NADPH oxidase/reactive oxygen species (ROS)-mediated SH2 domain-containing tyrosine phosphatase-1 (SHP-1) activation by CML inhibits the VEGF receptor-2 (VEGFR-2, KDR/Flk-1) activation, resulting in HUVEC injury. CML significantly inhibited cell proliferation and induced apoptosis and reduced VEGFR-2 activation in parallel with the increased SHP-1 protein expression and activity in HUVECs. Adding recombinant VEGF increased forward biological effects, which were attenuated by CML. The effects of CML on HUVECs were abolished by SHP-1 siRNA transfection. Exposure of HUVECs to CML also remarkably escalated the integration of SHP-1 with VEGFR-2. Consistently, SHP-1 siRNA transfection and pharmacological inhibitors could block this interaction and elevating [(3)H]thymidine incorporation. CML also markedly activated the NADPH oxidase and ROS production. The CML-increased SHP-1 activity in HUVECs was effectively attenuated by antioxidants. Moreover, the immunohistochemical staining of SHP-1 and CML was increased, but phospho-VEGFR-2 staining was decreased in the aortic endothelium of streptozotocin-induced and high-fat diet-induced diabetic mice. We conclude that a pathway of tyrosine phosphatase SHP-1-regulated VEGFR-2 dephosphorylation through NADPH oxidase-derived ROS is involved in the CML-triggered endothelial cell dysfunction/injury. These findings suggest new insights into the development of therapeutic approaches to reduce diabetic vascular complications.
Collapse
Affiliation(s)
- Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Adam J. Rosenberg
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| | - Daniel A. Clark
- Department of Chemistry, 1-014 Center for Science and Technology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Nagai R, Murray DB, Metz TO, Baynes JW. Chelation: a fundamental mechanism of action of AGE inhibitors, AGE breakers, and other inhibitors of diabetes complications. Diabetes 2012; 61:549-59. [PMID: 22354928 PMCID: PMC3282805 DOI: 10.2337/db11-1120] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article outlines evidence that advanced glycation end product (AGE) inhibitors and breakers act primarily as chelators, inhibiting metal-catalyzed oxidation reactions that catalyze AGE formation. We then present evidence that chelation is the most likely mechanism by which ACE inhibitors, angiotensin receptor blockers, and aldose reductase inhibitors inhibit AGE formation in diabetes. Finally, we note several recent studies demonstrating therapeutic benefits of chelators for diabetic cardiovascular and renal disease. We conclude that chronic, low-dose chelation therapy deserves serious consideration as a clinical tool for prevention and treatment of diabetes complications.
Collapse
Affiliation(s)
- Ryoji Nagai
- Department of Food and Nutrition, Japan Women’s University, Tokyo, Japan
| | - David B. Murray
- Department of Pharmacology, University of Mississippi, Oxford, Mississippi
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - John W. Baynes
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
- Corresponding author: John W. Baynes,
| |
Collapse
|
11
|
Mishra BB, Tiwari VK. Natural products: An evolving role in future drug discovery. Eur J Med Chem 2011; 46:4769-807. [DOI: 10.1016/j.ejmech.2011.07.057] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 11/16/2022]
|
12
|
Schmaderer C, Xing CJ, Anderson G, Hermans R, Lutz J, Heemann U, Baumann M. AGE formation blockade with aminoguanidine does not ameliorate chronic allograft nephropathy. Life Sci 2011; 89:349-54. [PMID: 21763321 DOI: 10.1016/j.lfs.2011.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 06/15/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
AIMS Advanced glycation end products (AGEs) are produced by glycoxidation and lipid peroxidation. AGEs induce oxidative stress and inflammation, and accumulate in tubular cells after kidney transplantation. We hypothesize that the AGE formation blocker aminoguanidine (AG) reduces AGE formation and improves renal transplant function. MAIN METHODS Fisher 344 kidneys were orthotopically transplanted into Lewis recipients. Recipients were treated with AG (100 mg/kg/day), candesartan (CAND; 5mg/kg/day), or vehicle (VEH) for 24 weeks. The major non-cross linking AGE N(ε)-carboxymethyllysine (CML) was measured post-transplantation with gas chromatography-tandem mass spectrometry or immunohistochemistry. As a marker of systemic lipid peroxidation 8-isoprostane was measured by ELISA. We determined intra-arterial blood pressure, heart weight/body weight ratio, size of cardiomyocytes and cardiac hypertrophy as assessed by echocardiography. For biochemical evaluation of cardiac and renal fibrosis we measured hydroxyproline content. KEY FINDINGS AG significantly reduced serum CML and 8-isoprostane, but did not reduce signs of chronic allograft nephropathy (CAN) or blood pressure. AG did not alter tubular AGE accumulation. AG reduced heart weight/body weight ratio (AG: 2.7 ± 0.1g/kg; CAND: 2.2 ± 0.1, VEH: 3.0 ± 0.4 g/kg), size of cardiomyocytes (P < 0.05) and showed a tendency to reduce cardiac hypertrophy (wall volume average radial AG 7.072 ± 0.83 cm(3) vs. CAND 6.841 ± 0.66 cm(3) vs. VEH 7.839 ± 0.74 cm(3)). SIGNIFICANCE Despite effective reduction of serum CML and 8-isoprostane, AG did not ameliorate CAN or reduce renal AGE accumulation. On the other hand AG reduced cardiac size suggesting a supportive cardio-protective action which is blood pressure independent.
Collapse
Affiliation(s)
- Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Role of the effect of inhibition of neutral endopeptidase on vascular and neural complications in streptozotocin-induced diabetic rats. Eur J Pharmacol 2010; 650:556-62. [PMID: 21040718 DOI: 10.1016/j.ejphar.2010.10.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/30/2010] [Accepted: 10/12/2010] [Indexed: 12/13/2022]
Abstract
We have previously shown that treating streptozotocin-induced diabetic rats, an animal model of type 1 diabetes, with Ilepatril (an inhibitor of neutral endopeptidase and angiotensin converting enzyme (ACE)) improves vascular and neural function. In this study we sought to determine the individual effect of inhibition of neutral endopeptidase and ACE on diabetes-induced vascular and neural dysfunction. After 4 weeks of untreated diabetes, rats were treated for 12 weeks with Ilepatril, Enalapril (ACE inhibitor) or Candoxatril (neutral endopeptidase inhibitor) followed by analysis of neural and vascular function. Diabetes caused slowing of motor and sensory nerve conduction, thermal hypoalgesia, reduction in intraepidermal nerve fiber density in the hindpaw and impairment in vascular relaxation to acetylcholine and calcitonin gene-related peptide in epineural arterioles of the sciatic nerve and to atrial natriuretic peptide and calcitonin gene-related peptide in renal arteries. Inhibition of neutral endopeptidase or ACE improved neural function; however, dual inhibition of neutral endopeptidase and ACE with Ilepatril tended to have the greatest efficacy. Ilepatril and Candoxatril treatment of diabetic rats was more efficacious in improving vascular responsiveness in epineurial arterioles than treatment with Enalapril. Ilepatril, Enalapril or Candoxatril treatment of diabetic rats were all efficacious in renal arteries. These studies suggest that combination therapy may be the most effective approach for treatment of diabetic neural and vascular complications.
Collapse
|
15
|
Coppey L, Davidson E, Lu B, Gerard C, Yorek M. Vasopeptidase inhibitor ilepatril (AVE7688) prevents obesity- and diabetes-induced neuropathy in C57Bl/6J mice. Neuropharmacology 2010; 60:259-66. [PMID: 20849865 DOI: 10.1016/j.neuropharm.2010.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/26/2010] [Accepted: 09/08/2010] [Indexed: 01/30/2023]
Abstract
Previously we demonstrated that inhibition of neutral endopeptidase (NEP), a protease that degrades vaso- and neuro-active peptides, and angiotensin converting enzyme (ACE) with a vasopeptidase inhibitor improves vascular and neural function in diabetic rat models. The purpose of this study was to determine whether inhibition of NEP and ACE or deletion of NEP provides protection from nerve impairment caused by diabetes or diet induced obesity (DIO). To determine the role of NEP and ACE inhibition in neuropathy related to insulin-deficient diabetes or DIO we used C57Bl/6J mice treated with AVE7688, a vasopeptidase inhibitor, or NEP deficient (-/-) mice. Mice at 12 weeks of age were fed a high fat diet for 12 weeks or were diabetic for duration of 12 weeks following a single injection of high dose streptozotocin. Both a prevention and intervention protocol was used for AVE7688 treatment. Glucose utilization was impaired in DIO C57Bl/6J and NEP -/- mice. However, treating DIO C57Bl/6J or NEP -/- mice with AVE7688 improved glucose tolerance. Thermal hypoalgesia and nerve conduction slowing were present in both streptozotocin-diabetic and DIO C57Bl/6J mice but not in AVE7688 treated C57Bl/6J mice or NEP -/- mice exposed to either streptozotocin-induced diabetes or a high fat diet. Intraepidermal nerve fiber (IENF) profiles were decreased in the hindpaw of C57Bl/6J diabetic or DIO mice and this improved when the mice were treated with AVE7688. IENF profiles were not decreased in diabetic or DIO NEP (-/-) mice. These studies suggest that NEP plays a role in regulating nerve function in insulin-deficient diabetes and DIO.
Collapse
Affiliation(s)
- Lawrence Coppey
- Department of Veterans Affairs Iowa City Health Care System, University of Iowa, Iowa City, IA 52246, USA
| | | | | | | | | |
Collapse
|
16
|
Rosenthal T, Younis F, Alter A. Combating Combination of Hypertension and Diabetes in Different Rat Models. Pharmaceuticals (Basel) 2010; 3:916-939. [PMID: 27713282 PMCID: PMC4034014 DOI: 10.3390/ph3040916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/04/2010] [Accepted: 03/18/2010] [Indexed: 12/18/2022] Open
Abstract
Rat experimental models are used extensively for studying physiological mechanisms and treatments of hypertension and diabetes co-existence. Each one of these conditions is a major risk factor for cardiovascular disease (CVD), and the combination of the two conditions is a potent enhancer of CVD. Five major animal models that advanced our understanding of the mechanisms and therapeutic approaches in humans are discussed in this review: Zucker, Goto-Kakizaki, SHROB, SHR/NDmcr-cp and Cohen Rosenthal diabetic hypertensive (CRDH) rats. The use of various drugs, such as angiotensin-converting enzyme (ACE) inhibitors (ACEIs), various angiotensin receptor blockers (ARBs), and calcium channel blockers (CCBs), to combat the effects of concomitant pathologies on the combination of diabetes and hypertension, as well as the non-pharmacological approach are reviewed in detail for each rat model. Results from experiments on these models indicate that classical factors contributing to the pathology of hypertension and diabetes combination—Including hypertension, hyperglycemia, hyperinsulinemia and hyperlipidemia—can now be treated, although these treatments do not completely prevent renal complications. Animal studies have focused on several mechanisms involved in hypertension/diabetes that remain to be translated into clinical medicine, including hypoxia, oxidative stress, and advanced glycation. Several target molecules have been identified that need to be incorporated into a treatment modality. The challenge continues to be the identification and interpretation of the clinical evidence from the animal models and their application to human treatment.
Collapse
Affiliation(s)
- Talma Rosenthal
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Firas Younis
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| | - Ariela Alter
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
17
|
The roles of streptozotocin neurotoxicity and neutral endopeptidase in murine experimental diabetic neuropathy. EXPERIMENTAL DIABETES RESEARCH 2010; 2009:431980. [PMID: 20148083 PMCID: PMC2817866 DOI: 10.1155/2009/431980] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/18/2009] [Indexed: 01/02/2023]
Abstract
We demonstrated that inhibition of neutral endopeptidase (NEP), a protease that degrades vaso- and neuroactive peptides, improves vascular and neural function in diabetic animal models. In this study we explored the role of NEP in neuropathy related to either insulin-deficient diabetes or diet-induced obesity using NEP deficient (−/−) mice. Initial studies showed that streptozotocin, in the absence of subsequent hyperglycemia, did not induce nerve conduction slowing or paw thermal hypoalgesia. Glucose disposal was impaired in both C57Bl/6 and NEP −/− mice fed a high fat diet. Thermal hypoalgesia and nerve conduction slowing were present in both streptozotocin-diabetic and high fat fed C57Bl/6 mice but not in NEP −/− mice exposed to either streptozotocin-induced diabetes or a high fat diet. These studies suggest that streptozotocin does not induce neurotoxicity in mice and that NEP plays a role in regulating nerve function in insulin-deficient diabetes and diet-induced obesity.
Collapse
|
18
|
Nagai R, Nagai M, Shimasaki S, Baynes JW, Fujiwara Y. Citric acid inhibits development of cataracts, proteinuria and ketosis in streptozotocin (type 1) diabetic rats. Biochem Biophys Res Commun 2010; 393:118-22. [PMID: 20117096 DOI: 10.1016/j.bbrc.2010.01.095] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 01/25/2010] [Indexed: 02/04/2023]
Abstract
Although many fruits such as lemon and orange contain citric acid, little is known about beneficial effects of citric acid on health. Here we measured the effect of citric acid on the pathogenesis of diabetic complications in streptozotocin-induced diabetic rats. Although oral administration of citric acid to diabetic rats did not affect blood glucose concentration, it delayed the development of cataracts, inhibited accumulation of advanced glycation end-products (AGEs) such as N(epsilon)-(carboxyethyl)lysine (CEL) and N(epsilon)-(carboxymethyl)lysine (CML) in lens proteins, and protected against albuminuria and ketosis. We also show that incubation of protein with acetol, a metabolite formed from acetone by acetone monooxygenase, generate CEL, suggesting that inhibition of ketosis by citric acid may lead to the decrease in CEL in lens proteins. These results demonstrate that the oral administration of citric acid ameliorates ketosis and protects against the development of diabetic complications in an animal model of type 1 diabetes.
Collapse
Affiliation(s)
- Ryoji Nagai
- Department of Food and Nutrition, Laboratory of Biochemistry & Nutritional Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan.
| | | | | | | | | |
Collapse
|
19
|
Vascular and neural dysfunctions in obese Zucker rats: effect of AVE7688. EXPERIMENTAL DIABETES RESEARCH 2009; 2009:912327. [PMID: 19536347 PMCID: PMC2695958 DOI: 10.1155/2009/912327] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/12/2009] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to determine whether AVE7688 a drug that inhibits both angiotensin converting enzyme and neutral endopeptidase activity protects vascular and nerve functions in an animal model of metabolic syndrome. Obese Zucker rats at 20 weeks of age were treated for 12 weeks with AVE7688. Vasodilation in epineurial arterioles was measured by videomicroscopy and nerve conduction velocity was measured following electrical stimulation. Treatment with AVE7688 improved vascular relaxation in response to acetylcholine and motor and sensory nerve conduction velocity. In obese Zucker rats superoxide levels and nitrotyrosine staining were elevated in the aorta and treatment corrected both conditions. Obese Zucker rats were hypoalgesic in response to a thermal stimulus and demonstrated signs of impaired tactile response and both conditions were significantly improved with treatment. Even though obese Zucker rats are normoglycemic vascular and neural dysfunctions develop with age and can be improved by treatment with AVE7688.
Collapse
|
20
|
Oltman CL, Davidson EP, Coppey LJ, Kleinschmidt TL, Yorek MA. Treatment of Zucker diabetic fatty rats with AVE7688 improves vascular and neural dysfunction. Diabetes Obes Metab 2009; 11:223-33. [PMID: 18564175 PMCID: PMC2667677 DOI: 10.1111/j.1463-1326.2008.00924.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Vasopeptidase inhibitors are drugs that inhibit angiotensin-converting enzyme and neutral endopeptidase (NEP). The latter is a protease that degrades vasoactive peptides and is increased in diabetes. We have previously shown that treating streptozotocin-induced diabetic rats, an animal model of type 1 diabetes, with AVE7688, a vasopeptidase inhibitor, improves neurovascular and neural function. In this study, we determined the effect of treating Zucker diabetic fatty (ZDF) rats, an animal model of type 2 diabetes, with AVE7688 on vascular and neural function. METHODS ZDF rats at 12 weeks of age were treated for 12 weeks with AVE7688 (500 mg/kg diet). Afterwards, vascular reactivity of epineurial arterioles of the sciatic nerve and nerve conduction velocity and blood flow was determined. RESULTS Vascular and neural function was significantly impaired in ZDF rats compared with age-matched lean (control) rats. Treating ZDF rats with AVE7688 improved vascular relaxation to acetylcholine and calcitonin gene-related peptide in epineurial arterioles. Motor and sensory nerve conduction velocity, endoneurial blood flow and thermal nociception end-points were also improved by treatment compared with untreated ZDF rats. Superoxide and expression of NEP were increased in epineurial arterioles from ZDF rats and attenuated by treatment with AVE7688. CONCLUSIONS AVE7688 is an effective treatment for microvascular and neural disease in ZDF rats. Thus, vasopeptidase inhibitors may be an effective treatment for diabetic microvascular and neural complication in type 2 diabetes.
Collapse
Affiliation(s)
- C L Oltman
- Veteran Affairs Medical Center, Iowa City, IA 52246, USA
| | | | | | | | | |
Collapse
|
21
|
Frey SK, Nagl B, Henze A, Raila J, Schlosser B, Berg T, Tepel M, Zidek W, Weickert MO, Pfeiffer AFH, Schweigert FJ. Isoforms of retinol binding protein 4 (RBP4) are increased in chronic diseases of the kidney but not of the liver. Lipids Health Dis 2008; 7:29. [PMID: 18752671 PMCID: PMC2533662 DOI: 10.1186/1476-511x-7-29] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Accepted: 08/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background The levels of retinol-binding protein 4 (RBP4) – the carrier protein for Vitamin A in plasma – are tightly regulated under healthy circumstances. The kidney, the main site of RBP4 catabolism, contributes to an elevation of RBP4 levels during chronic kidney disease (CKD) whereas during chronic liver disease (CLD) RBP4 levels decrease. Little is known about RBP4 isoforms including apo-RBP4, holo-RBP4 as well as RBP4 truncated at the C-terminus (RBP4-L and RBP4-LL) except that RBP4 isoforms have been reported to be increased in hemodialysis patients. Since it is not known whether CLD influence RBP4 isoforms, we investigated RBP4 levels, apo- and holo-RBP4 as well as RBP4-L and RBP4-LL in plasma of 36 patients suffering from CKD, in 55 CLD patients and in 50 control subjects. RBP4 was determined by ELISA and apo- and holo-RBP4 by native polyacrylamide gel electrophoresis (PAGE). RBP4-L and RBP4-LL were analyzed after immunoprecipitation by mass spectrometry (MALDI-TOF-MS). Results RBP4 isoforms and levels were highly increased in CKD patients compared to controls (P < 0.05) whereas in CLD patients RBP4 isoforms were not different from controls. In addition, in hepatic dysfunction RBP4 levels were decreased whereas the amount of isoforms was not affected. Conclusion The occurrence of RBP4 isoforms is not influenced by liver function but seems to be strongly related to kidney function and may therefore be important in investigating kidney function and related disorders.
Collapse
Affiliation(s)
- Simone K Frey
- Institute of Nutritional Science, University of Potsdam, Potsdam-Rehbrücke, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Agrawal V, Kizilbash SH, McCullough PA. New therapeutic agents for diabetic kidney disease. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/14750708.5.4.553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep 2008; 25:475-516. [PMID: 18497896 DOI: 10.1039/b514294f] [Citation(s) in RCA: 515] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural product and natural product-derived compounds that are being evaluated in clinical trials or are in registration (as at 31st December 2007) have been reviewed, as well as natural product-derived compounds for which clinical trials have been halted or discontinued since 2005. Also discussed are natural product-derived drugs launched since 2005, new natural product templates and late-stage development candidates.
Collapse
Affiliation(s)
- Mark S Butler
- MerLion Pharmaceuticals, 1 Science Park Road, The Capricorn 05-01, Singapore Science Park II, Singapore 117528.
| |
Collapse
|
25
|
Figarola JL, Loera S, Weng Y, Shanmugam N, Natarajan R, Rahbar S. LR-90 prevents dyslipidaemia and diabetic nephropathy in the Zucker diabetic fatty rat. Diabetologia 2008; 51:882-91. [PMID: 18317729 DOI: 10.1007/s00125-008-0935-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 01/08/2008] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Previous studies have shown that LR-90, a new inhibitor of AGE formation, prevented the development of experimental type 1 diabetic nephropathy. In this study, we examined the effects of LR-90 in the Zucker diabetic fatty (ZDF) rat, a model of type 2 diabetes and metabolic syndrome, and investigated the mechanisms by which it may protect against renal injury. METHODS Male ZDF rats were treated without or with LR-90 from age 13 to 40 weeks. Metabolic and kidney functions and renal histology were evaluated. AGE accumulation and the production of the receptor for AGE (AGER) were measured. Profibrotic growth factors, extracellular matrix proteins and intracellular signalling pathways associated with glomerular and tubular damage were also analysed. RESULTS LR-90 dramatically reduced plasma lipids in ZDF rats, with only modest effects on hyperglycaemia. Renal AGE, AGER and lipid peroxidation were all attenuated by LR-90. LR-90 significantly retarded the increase in albuminuria and proteinuria. This was associated with reduction in glomerulosclerosis and tubulointerstitial fibrosis, concomitant with marked inhibition of renal overproduction of TGF-beta1, connective tissue growth factor, fibronectin and collagen IV. Additionally, LR-90 downregulated the activation of key mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kappaB) in the renal cortex. CONCLUSIONS/INTERPRETATION These results support our earlier studies on the renoprotective effects of LR-90 on type 1 diabetic nephropathy and provide further evidence that LR-90, an AGE inhibitor with pleiotrophic effects, may also be beneficial for the prevention of type 2 diabetic nephropathy, where multiple risk factors, such as hyperglycaemia, dyslipidaemia, obesity, insulin resistance and hypertension, contribute to renal injury.
Collapse
Affiliation(s)
- J L Figarola
- Department of Diabetes, Endocrinology and Metabolism, Gonda Building, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
26
|
Portero-Otín M, Pamplona R, Boada J, Jové M, Gonzalo H, Buleon M, Linz W, Schäfer S, Tack I, Girolami JP. Inhibition of renin angiotensin system decreases renal protein oxidative damage in diabetic rats. Biochem Biophys Res Commun 2008; 368:528-35. [DOI: 10.1016/j.bbrc.2008.01.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/21/2008] [Indexed: 11/26/2022]
|
27
|
Baumann M, Stehouwer C, Scheijen J, Heemann U, Struijker Boudier H, Schalkwijk C. N epsilon-(carboxymethyl)lysine during the early development of hypertension. Ann N Y Acad Sci 2007; 1126:201-4. [PMID: 18079484 DOI: 10.1196/annals.1433.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced glycation end products (AGEs) are associated with hypertension. Whether N(epsilon)-(carboxymethyl)lysine (CML) contributes to the development of hypertension in young spontaneously hypertensive rats (SHR) remains to be established compared to WKY. We determined blood pressure, renal function, marker for oxidative stress (OS), and CML in young WKY rats and SHR. We found blood pressure was increased in SHR with no difference in renal function and OS compared to WKY. CML was elevated in plasma (2.3 +/- 0.3 vs. 1.3 +/- 0.2 micromol/L) and kidney (1.0 +/- 0.1 vs. 0.5 +/- 0.1 micromol/L) compared to WKY. Early CML accumulation may contribute to the development of hypertension potentially by inducing early renal inflammation independent of glomerular dysfunction or oxidative stress.
Collapse
Affiliation(s)
- Marcus Baumann
- Department of Pharmacology and Toxicology, University Maastricht, Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Orioli M, Aldini G, Benfatto MC, Facino RM, Carini M. HNE Michael adducts to histidine and histidine-containing peptides as biomarkers of lipid-derived carbonyl stress in urines: LC-MS/MS profiling in Zucker obese rats. Anal Chem 2007; 79:9174-84. [PMID: 17979257 DOI: 10.1021/ac7016184] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new liquid chromatography-tandem mass spectrometric (LC-MS/MS) approach, based on the precursor ion scanning technique using a triple-stage quadrupole, has been developed to detect free and protein-bound histidine (His) residues modified by reactive carbonyl species (RCS) generated by lipid peroxidation. This approach has been applied to urines from Zucker obese rats, a nondiabetic animal model characterized by obesity and hyperlipidemia, where RCS formation plays a key role in the development of renal and cardiac dysfunction. The immonium ion of His at m/z 110 was used as a specific product ion of His-containing peptides to generate precursor ion spectra, followed by MS2 acquisitions of each precursor ion of interest for structural characterization. By this approach, three novel adducts, which are excreted in free form only, have been identified, two of them originating from the conjugation of 4-hydroxy-trans-2-nonenal (HNE) to His, followed by reduction/oxidation of the aldehyde: His-1,4-dihydroxynonane (His-DHN), His-4-hydroxynonanoic acid (His-HNA), and carnosine-HNE, this last recognized in previous in vitro studies as a new potential biomarker of carbonyl stress. No free His-HNE was found in urines, which was detected only in protein hydrolysates. The same LC-MS/MS method, working in multiple reaction monitoring (MRM) mode, has been developed, validated, and applied to quantitatively profile in Zucker urines both conventional (1,4-dihydroxynonane mercapturic acid, DHN-MA) and the newly identified adducts, except His-HNA. The analytes were separated on a C12 reversed-phase column by gradient elution from 100% A (water containing 5 mM nonafluoropentanoic acid) to 80% B (acetonitrile) in 24 min at a flow rate of 0.2 mL/min and analyzed for quantification in MRM mode by applying the following precursor-to-product ion transitions m/z 322.2 --> 164.1 + 130.1 (DHN-MA), m/z 314.7 --> 268.2 + 110.1 (His-DHN), m/z 312.2 --> 110.1 + 156.0 (His-HNE), m/z 383.1 --> 266.2 + 110.1 (CAR-HNE), m/z 319.2 --> 301.6 + 156.5 (H-Tyr-His-OH, internal standard). Precision and accuracy data, as well as the lower limits of quantification in urine, were highly satisfactory (from 0.01 nmol/mL for CAR-HNE, His-DHN, His-HNE, to 0.075 nmol/mL for DHN-MA). The method, applied to evaluate for the first time the advanced lipoxidation end products profile in urine from obese Zucker rats, an animal model for the metabolic syndrome, has proved to be suitable and sensitive enough for testing in vivo the carbonyl quenching ability of newly developed RCS sequestering agents.
Collapse
Affiliation(s)
- Marica Orioli
- Istituto di Chimica Farmaceutica e Tossicologica "Pietro Pratesi", Faculty of Pharmacy, University of Milan, Via Mangiagalli 25, I-20133 Milan, Italy
| | | | | | | | | |
Collapse
|
29
|
Ozdemir AM, Hopfer U, Rosca MV, Fan XJ, Monnier VM, Weiss MF. Effects of advanced glycation end product modification on proximal tubule epithelial cell processing of albumin. Am J Nephrol 2007; 28:14-24. [PMID: 17890854 DOI: 10.1159/000108757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 08/05/2007] [Indexed: 01/11/2023]
Abstract
AIM The goal of this work is to understand the cellular effects of advanced glycation end product (AGE)-modified protein on renal proximal tubule cells. BACKGROUND A major function of the proximal tubule is to reabsorb and process filtered proteins. Diabetes is characterized by increased quantities of tissue and circulating proteins modified by AGEs. Therefore in diabetes, plasma proteins filtered at the glomerulus and presented to the renal proximal tubule are likely to be highly modified by AGEs. METHODS The model system was electrically resistant polarized renal proximal tubular epithelial cells in monolayer culture. The model proteins comprise a well-characterized AGE, methylglyoxal-modified bovine serum albumin (MGO-BSA), and unmodified BSA. RESULTS Renal proximal tubular cells handle MGO-BSA and native BSA in markedly disparate ways, including differences in: (1) kinetics of binding, uptake, and intracellular accumulation, (2) processing and fragmentation, and (3) patterns of electrical conductance paralleling temporal changes in binding, uptake and processing. CONCLUSION These differences support the idea that abnormal protein processing by the renal tubule can be caused by abnormal proteins, thereby forging a conceptual link between the pathogenic role of AGEs and early changes in tubular function that can lead to hypertrophy and nephropathy in diabetes.
Collapse
Affiliation(s)
- Aylin M Ozdemir
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | |
Collapse
|
30
|
Davidson EP, Kleinschmidt TL, Oltman CL, Lund DD, Yorek MA. Treatment of streptozotocin-induced diabetic rats with AVE7688, a vasopeptidase inhibitor: effect on vascular and neural disease. Diabetes 2007; 56:355-62. [PMID: 17259379 DOI: 10.2337/db06-1180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In epineurial arterioles, acetylcholine-mediated vascular relaxation is mediated by nitric oxide and endothelium-derived hyperpolarizing factor (EDHF), and both mechanisms are impaired by diabetes. The mediator responsible for the effect of EDHF is unknown. In epineurial arterioles, C-type natriuretic peptide (CNP) has properties consistent with EDHF-like activity. Epineurial arterioles express CNP, and exogenous CNP causes a concentration-dependent vascular relaxation. In streptozotocin-induced diabetic rats, CNP-mediated vascular relaxation in epineurial arterioles is decreased. Since CNP may be a regulator of vascular function, a vasopeptidase inhibitor may be an effective treatment for diabetes-induced vascular and neural disease. Vasopeptidase inhibitors inhibit ACE activity and neutral endopeptidase, which degrades natriuretic peptides. Streptozotocin-induced diabetic rats were treated with AVE7688 (450 mg/kg in the diet), a vasopeptidase inhibitor, for 8-10 weeks after 4 weeks of untreated diabetes. Treatment of diabetic rats corrected the diabetes-induced decrease in endoneurial blood flow, significantly improved motor and sensory nerve conduction velocity, prevented the development of hypoalgesia in the hind paw, and reduced superoxide and nitrotyrosine levels in epineurial arterioles. The diabetes-induced decrease in acetylcholine-mediated vascular relaxation by epineurial arterioles was significantly improved with treatment. These studies suggest that vasopeptidase inhibitors may be an effective approach for the treatment of diabetic vascular and neural dysfunction.
Collapse
Affiliation(s)
- Eric P Davidson
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA 52246, USA
| | | | | | | | | |
Collapse
|
31
|
Current World Literature. Curr Opin Nephrol Hypertens 2007; 16:52-7. [PMID: 17143072 DOI: 10.1097/mnh.0b013e32801271d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 2006; 15:318-30. [DOI: 10.1016/j.carpath.2006.09.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/01/2006] [Accepted: 09/04/2006] [Indexed: 11/28/2022] Open
|
33
|
Peyroux J, Sternberg M. Advanced glycation endproducts (AGEs): pharmacological inhibition in diabetes. ACTA ACUST UNITED AC 2006; 54:405-19. [PMID: 16978799 DOI: 10.1016/j.patbio.2006.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AGE inhibitors may act by various mechanisms at different steps of advanced glycation endproduct (AGE) formation (depending on oxidative stress and/or carbonyl stress) and AGE-mediated damage: trapping of reactive dicarbonyl species; antioxidant activity by transition metal chelation; other antioxidant activity including free radical scavenging; AGE cross-link breaking; AGE receptor (RAGE) blocking; RAGE signaling blocking; glycemia reduction by anti-diabetic therapy; aldose reductase inhibition; shunting of trioses-P towards the pentose-P pathway by transketolase activation. Most of the inhibitors have several sites of action. Practically one can distinguish drugs specifically developed as AGE inhibitors or AGE breakers; RAGE and receptor signaling blockers; other therapeutic compounds which were found subsequently to possess also AGE inhibitor activity, including dietary antioxidants. Encouraging results obtained in studies of various AGE inhibitors, conducted in vitro and in diabetic animals, are summarized in this review. However most of the clinical trials have been more or less disappointing, in part because of side effects; the long-term therapeutic interest of the most recently developed AGE inhibitors or breakers remains to be demonstrated in diabetes.
Collapse
Affiliation(s)
- J Peyroux
- Equipe de recherche Protéines Modifiées, Protéases et Physiopathologie de l'Endothélium Vasculaire, laboratoire de pharmacologie, faculté de pharmacie, université Paris-V, Paris, France
| | | |
Collapse
|
34
|
Monnier VM, Sell DR. Prevention and repair of protein damage by the Maillard reaction in vivo. Rejuvenation Res 2006; 9:264-73. [PMID: 16706654 DOI: 10.1089/rej.2006.9.264] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aging human extracellular matrix (ECM) and tissues rich in long-lived proteins undergo extensive changes with age that include increased stiffening, loss of elasticity, insolubilization, and decreased proteolytic digestibility. Most if not all these changes can be duplicated by the Maillard reaction in vitro, that is, the incubation of the proteins with reducing sugars and oxoaldehydes. These carbonyls eventually form advanced glycation end products (AGEs) and crosslinks that impair proteolytic digestibility and alter protein conformation. To date, close to 20 AGEs have been found in the human skin, of which ornithine is the single major result of damage to arginine residues, and glucosepane the single major crosslink. Although redox active metals and oxoaldehydes appear to play an important role in protein damage in experimental diabetes, their role in diabetic humans is still poorly understood. Evidence for the existence of deglycating enzymes has been found in vertebrates, bacteria, and fungi. However, only the vertebrate enzymes can deglycate larger, intracellular proteins via an ATP-dependent mechanism. Protein engineering will thus be needed to adapt Amadoriase enzymes toward deglycation of ECM proteins for purpose of probing the role of advanced glycation in animal models of diabetes and age-related diseases. The blocking of the reactivity of the glucosepane precursor using potent nucleophiles may be useful in preventing age-related changes in ECM proteins. However, there currently is no evidence in support of the proposed ability of so-called "AGE breakers" to cleave existing crosslinks of the Maillard reaction in vivo, and other mechanisms of action should be sought for this class of compounds.
Collapse
Affiliation(s)
- Vincent M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
35
|
Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med 2006; 10:389-406. [PMID: 16796807 PMCID: PMC3933129 DOI: 10.1111/j.1582-4934.2006.tb00407.x] [Citation(s) in RCA: 599] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 03/27/2006] [Indexed: 12/14/2022] Open
Abstract
Carbonylation of proteins is an irreversible oxidative damage, often leading to a loss of protein function, which is considered a widespread indicator of severe oxidative damage and disease-derived protein dysfunction. Whereas moderately carbonylated proteins are degraded by the proteasomal system, heavily carbonylated proteins tend to form high-molecular-weight aggregates that are resistant to degradation and accumulate as damaged or unfolded proteins. Such aggregates of carbonylated proteins can inhibit proteasome activity. Alarge number of neurodegenerative diseases are directly associated with the accumulation of proteolysis-resistant aggregates of carbonylated proteins in tissues. Identification of specific carbonylated protein(s) functionally impaired and development of selective carbonyl blockers should lead to the definitive assessment of the causative, correlative or consequential role of protein carbonylation in disease onset and/or progression, possibly providing new therapeutic approaches.
Collapse
|
36
|
Somoza V, Wenzel E, Lindenmeier M, Grothe D, Erbersdobler HF, Hofmann T. Influence of feeding malt, bread crust, and a pronylated protein on the activity of chemopreventive enzymes and antioxidative defense parameters in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8176-82. [PMID: 16218661 DOI: 10.1021/jf0512611] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The aim of the present study was to investigate whether feeding of malt, bread crust, and a pronylated albumin modulates chemoprevention enzymes, such as glutathione-S-transferase (GST) and UDP-glucuronyl-transferase (UDP-GT), and antioxidative defense parameters in vivo and whether the intake of these foods rich in Maillard reaction compounds results in an accumulation of compounds formed in in vivo glycation reactions. After quantitation of pronylated lysine in malt and bread crust, male Wistar rats were fed a standard chow supplemented with 28% of protein containing different amounts of casein, bread crust, caraffa malt, or pronyl bovine serum albumin (BSA) for 15 days. GST activity in the kidneys was increased by 18% (p > 0.05) in animals of the bread crust group, while UDP-GT activity was elevated by 27% in the liver of animals administered pronyl-BSA. Contents of tocopherol in plasma were increased by 33, 14, and 14% in the bread crust, malt, and pronyl-BSA group compared to the control group, while the levels of thiobarbituric acid reactive substances were decreased and the total antioxidant capacity was increased. Parameters of endogenous glycation indicated a 32 and 46% higher load of advanced glycation end products in the kidneys after administration of the malt and the pronyl-BSA containing diet. However, the main systemic effects of dietary malt, bread crust, and pronyl-BSA were, for the first time, demonstrated to be the enhanced antioxidant capacity and the particulate increase in chemopreventive enzymes.
Collapse
Affiliation(s)
- Veronika Somoza
- Deutsche Forschungsanstalt für Lebensmittelchemie, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | | | | | | | | | | |
Collapse
|