1
|
Liu Y, Yang X, Zhou J, Yang H, Yang R, Zhu P, Zhou R, Wu T, Gao Y, Ye Z, Li X, Liu R, Zhang W, Zhou H, Li Q. OSGEP regulates islet β-cell function by modulating proinsulin translation and maintaining ER stress homeostasis in mice. Nat Commun 2024; 15:10479. [PMID: 39622811 PMCID: PMC11612026 DOI: 10.1038/s41467-024-54905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Proinsulin translation and folding is crucial for glucose homeostasis. However, islet β-cell control of Proinsulin translation remains incompletely understood. Here, we identify OSGEP, an enzyme responsible for t6A37 modification of tRNANNU that tunes glucose metabolism in β-cells. Global Osgep deletion causes glucose intolerance, while β-cell-specific deletion induces hyperglycemia and glucose intolerance due to impaired insulin activity. Transcriptomics and proteomics reveal activation of the unfolded protein response (UPR) and apoptosis signaling pathways in Osgep-deficient islets, linked to an increase in misfolded Proinsulin from reduced t6A37 modification. Osgep overexpression in pancreas rescues insulin secretion and mitigates diabetes in high-fat diet mice. Osgep enhances translational fidelity and alleviates UPR signaling, highlighting its potential as a therapeutic target for diabetes. Individuals carrying the C allele at rs74512655, which promotes OSGEP transcription, may show reduced susceptibility to T2DM. These findings show OSGEP is essential for islet β-cells and a potential diabetes therapy target.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
- Department of Pharmacy, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xuechun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Jian Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Haijun Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Ruimeng Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Peng Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Rong Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Tianyuan Wu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410078, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
| |
Collapse
|
2
|
Tian M, Feng Y, Liu Y, Wang H. Case report: A 10-year prognosis of neonatal diabetes caused by a novel INS gene mutation. Front Endocrinol (Lausanne) 2023; 13:1086785. [PMID: 36686471 PMCID: PMC9852905 DOI: 10.3389/fendo.2022.1086785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Background Neonatal diabetes mellitus (NDM) is a rare form of diabetes. We analyzed a novel insulin gene (INS) mutation of a Chinese permanent neonatal diabetes mellitus (PNDM) patient to explore the clinical and genetic characteristics and put forward some opinions on treatment and its long-term management. Case description A proband was recruited who was diagnosed with permanent neonatal diabetes on his first day after birth. His clinical and follow-up data were collected for 10 years. All of the family members were given an oral glucose tolerance test. Whole exome sequencing was performed on the proband, and the genomic DNA of family members was used for verification by first-generation Sanger sequencing technology. The pathogenic variant was screened according to the American College of Medical Genetics and Genomics classification guidelines and the clinical phenotype of the patient. Diagnostic assessment The proband was diagnosed on the first day after birth, presenting with low birth weight, progressive hyperglycemia, and insulin deficiency. His parents and grandfathers were confirmed to have normal blood sugar levels. A novel homozygous mutation of c.1T>C in the INS gene was detected in the proband, located in the initiation codon. The heterozygous mutations were found in four family members, including his mother, father, and grandfathers. With regular insulin injections, long-term regular follow-up, close monitoring of blood glucose, balanced exercise and diet, and psychological and mutual family support, the blood glucose level was well controlled; there were no acute or chronic complications during this decade. The patient's growth and nervous system development are now no different to those of the same age. Conclusion A favorable prognosis is presented for a permanent neonatal diabetes mellitus (PNDM) patient with a novel mutation in the INS gene in China. The present findings indicate that the genetic diagnosis, early use of insulin, close monitoring of blood glucose, and psychological and mutual family support for patients with INS mutation are necessary for their favorable long-term prognosis.
Collapse
Affiliation(s)
- Mengting Tian
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University) Ministry of Education, Sichuan University, Chengdu, China
| | - Yi Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University) Ministry of Education, Sichuan University, Chengdu, China
| | - Yanyan Liu
- Prenatal Diagnosis Center, Department of Obstetrics & Gynecologic, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Disease of Women and Children (Sichuan University) Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Sachse G, Haythorne E, Proks P, Stewart M, Cater H, Ellard S, Davies B, Ashcroft FM. Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Res 2021; 5:15. [PMID: 34368464 PMCID: PMC8323074 DOI: 10.12688/wellcomeopenres.15529.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 01/12/2023] Open
Abstract
Background: The K ATP channel plays a key role in glucose homeostasis by coupling metabolically generated changes in ATP to insulin secretion from pancreatic beta-cells. Gain-of-function mutations in either the pore-forming (Kir6.2) or regulatory (SUR1) subunit of this channel are a common cause of transient neonatal diabetes mellitus (TNDM), in which diabetes presents shortly after birth but remits within the first few years of life, only to return in later life. The reasons behind this time dependence are unclear. Methods: In an attempt to understand the mechanism behind diabetes remission and relapse, we generated mice expressing the common TNDM mutation SUR1-R1183W. We employed Cre/LoxP technology for both inducible and constitutive expression of SUR1-R1183W specifically in mouse beta-cells, followed by investigation of their phenotype using glucose tolerance tests and insulin secretion from isolated islets. Results: We found that the R1183W mutation impaired inhibition of K ATP channels by ATP when heterologously expressed in human embryonic kidney cells. However, neither induced nor constitutive expression of SUR1-R1183W in mice resulted in changes in blood glucose homeostasis, compared to littermate controls. When challenged with a high fat diet, female mice expressing SUR1-R1183W showed increased weight gain, elevated blood glucose and impaired glycaemic control, but glucose-stimulated insulin secretion from pancreatic islets appeared unchanged. Conclusions: The mouse model of TNDM did not recapitulate the human phenotype. We discuss multiple potential reasons why this might be the case. Based on our findings, we recommend future TNDM mouse models employing a gain-of-function SUR1 mutation should be created using the minimally invasive CRISPR/Cas technology, which avoids many potential pitfalls associated with the Cre/LoxP system.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Department of Physics, University of Oxford, Oxford, OX1 3PJ, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Barrack Road, Exeter, EX2 5DW, UK
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
4
|
Austin ALF, Daniels Gatward LF, Cnop M, Santos G, Andersson D, Sharp S, Gentry C, Bevan S, Jones PM, King AJF. The KINGS Ins2 +/G32S Mouse: A Novel Model of β-Cell Endoplasmic Reticulum Stress and Human Diabetes. Diabetes 2020; 69:2667-2677. [PMID: 32994272 PMCID: PMC7679781 DOI: 10.2337/db20-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Animal models are important tools in diabetes research because ethical and logistical constraints limit access to human tissue. β-Cell dysfunction is a common contributor to the pathogenesis of most types of diabetes. Spontaneous hyperglycemia was developed in a colony of C57BL/6J mice at King's College London (KCL). Sequencing identified a mutation in the Ins2 gene, causing a glycine-to-serine substitution at position 32 on the B chain of the preproinsulin 2 molecule. Mice with the Ins2 +/G32S mutation were named KCL Ins2 G32S (KINGS) mice. The same mutation in humans (rs80356664) causes dominantly inherited neonatal diabetes. Mice were characterized, and β-cell function was investigated. Male mice became overtly diabetic at ∼5 weeks of age, whereas female mice had only slightly elevated nonfasting glycemia. Islets showed decreased insulin content and impaired glucose-induced insulin secretion, which was more severe in males. Transmission electron microscopy and studies of gene and protein expression showed β-cell endoplasmic reticulum (ER) stress in both sexes. Despite this, β-cell numbers were only slightly reduced in older animals. In conclusion, the KINGS mouse is a novel model of a human form of diabetes that may be useful to study β-cell responses to ER stress.
Collapse
Affiliation(s)
- Amazon L F Austin
- Department of Diabetes, School of Life Course Sciences, King's College London, London, U.K
| | | | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, ULB Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Gabriel Santos
- Department of Diabetes, School of Life Course Sciences, King's College London, London, U.K
| | - David Andersson
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K
| | - Sally Sharp
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K
| | - Clive Gentry
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K
| | - Stuart Bevan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, U.K
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, London, U.K
| | - Aileen J F King
- Department of Diabetes, School of Life Course Sciences, King's College London, London, U.K.
| |
Collapse
|
5
|
Sakano D, Inoue A, Enomoto T, Imasaka M, Okada S, Yokota M, Koike M, Araki K, Kume S. Insulin2 Q104del (Kuma) mutant mice develop diabetes with dominant inheritance. Sci Rep 2020; 10:12187. [PMID: 32699230 PMCID: PMC7376009 DOI: 10.1038/s41598-020-68987-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2020] [Indexed: 11/18/2022] Open
Abstract
Insulin gene mutations have been identified to cause monogenic diabetes, and most of which developed permanent neonatal diabetes at young ages before 6 months of age in humans. To establish an animal model of permanent diabetes, we performed genome editing using the CRISPR/Cas9 system. We generated a novel Kuma mutant mice with p.Q104del in the Insulin2 (Ins2) gene in a BRJ background that exhibits a severe immune deficiency. Kuma mutant mice are non-obese and developed hyperglycemia from 3 weeks after birth in both males and females, which are inherited in a dominant mode. Kuma mutant mice displayed reduced insulin protein levels from 3-weeks-old, which seem to be caused by the low stability of the mutant insulin protein. Kuma mutant showed a reduction in islet size and islet mass. Electron microscopic analysis revealed a marked decrease in the number and size of insulin granules in the beta-cells of the mutant mice. Hyperglycemia of the mutant can be rescued by insulin administration. Our results present a novel insulin mutation that causes permanent early-onset diabetes, which provides a model useful for islet transplantation studies.
Collapse
Affiliation(s)
- Daisuke Sakano
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Airi Inoue
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Takayuki Enomoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Mai Imasaka
- Laboratory of Developmental Genetics, Institute of Resource Development and Analysis, Chuo-Ku, Honjo 2-2-1, Kumamoto, 860-0811, Japan.,Department of Genetics, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kimi Araki
- Laboratory of Developmental Genetics, Institute of Resource Development and Analysis, Chuo-Ku, Honjo 2-2-1, Kumamoto, 860-0811, Japan.
| | - Shoen Kume
- School of Life Science and Technology, Tokyo Institute of Technology, 4259-B-25 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan.
| |
Collapse
|
6
|
Sachse G, Haythorne E, Proks P, Stewart M, Cater H, Ellard S, Davies B, Ashcroft FM. Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Res 2020; 5:15. [PMID: 34368464 PMCID: PMC8323074 DOI: 10.12688/wellcomeopenres.15529.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The K ATP channel plays a key role in glucose homeostasis by coupling metabolically generated changes in ATP to insulin secretion from pancreatic beta-cells. Gain-of-function mutations in either the pore-forming (Kir6.2) or regulatory (SUR1) subunit of this channel are a common cause of transient neonatal diabetes mellitus (TNDM), in which diabetes presents shortly after birth but remits within the first few years of life, only to return in later life. The reasons behind this time dependence are unclear. Methods: In an attempt to understand the mechanism behind diabetes remission and relapse, we generated mice expressing the common TNDM mutation SUR1-R1183W. We employed Cre/LoxP technology for both inducible and constitutive expression of SUR1-R1183W specifically in mouse beta-cells, followed by investigation of their phenotype using glucose tolerance tests and insulin secretion from isolated islets. Results: We found that the R1183W mutation impaired inhibition of K ATP channels by ATP when heterologously expressed in human embryonic kidney cells. However, neither induced nor constitutive expression of SUR1-R1183W in mice resulted in changes in blood glucose homeostasis, compared to littermate controls. When challenged with a high fat diet, female mice expressing SUR1-R1183W showed increased weight gain, elevated blood glucose and impaired glycaemic control, but glucose-stimulated insulin secretion from pancreatic islets appeared unchanged. Conclusions: The mouse model of TNDM did not recapitulate the human phenotype. We discuss multiple potential reasons why this might be the case. Based on our findings, we recommend future TNDM mouse models employing a gain-of-function SUR1 mutation should be created using the minimally invasive CRISPR/Cas technology, which avoids many potential pitfalls associated with the Cre/LoxP system.
Collapse
Affiliation(s)
- Gregor Sachse
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Elizabeth Haythorne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Peter Proks
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Department of Physics, University of Oxford, Oxford, OX1 3PJ, UK
| | - Michelle Stewart
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Heather Cater
- Mammalian Genetics Unit and Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Sian Ellard
- University of Exeter Medical School, Institute of Biomedical and Clinical Science, Barrack Road, Exeter, EX2 5DW, UK
| | - Ben Davies
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Frances M. Ashcroft
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
7
|
Arunagiri A, Haataja L, Cunningham CN, Shrestha N, Tsai B, Qi L, Liu M, Arvan P. Misfolded proinsulin in the endoplasmic reticulum during development of beta cell failure in diabetes. Ann N Y Acad Sci 2018; 1418:5-19. [PMID: 29377149 DOI: 10.1111/nyas.13531] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is broadly distributed throughout the cytoplasm of pancreatic beta cells, and this is where all proinsulin is initially made. Healthy beta cells can synthesize 6000 proinsulin molecules per second. Ordinarily, nascent proinsulin entering the ER rapidly folds via the formation of three evolutionarily conserved disulfide bonds (B7-A7, B19-A20, and A6-A11). A modest amount of proinsulin misfolding, including both intramolecular disulfide mispairing and intermolecular disulfide-linked protein complexes, is a natural by-product of proinsulin biosynthesis, as is the case for many proteins. The steady-state level of misfolded proinsulin-a potential ER stressor-is linked to (1) production rate, (2) ER environment, (3) presence or absence of naturally occurring (mutational) defects in proinsulin, and (4) clearance of misfolded proinsulin molecules. Accumulation of misfolded proinsulin beyond a certain threshold begins to interfere with the normal intracellular transport of bystander proinsulin, leading to diminished insulin production and hyperglycemia, as well as exacerbating ER stress. This is most obvious in mutant INS gene-induced Diabetes of Youth (MIDY; an autosomal dominant disease) but also likely to occur in type 2 diabetes owing to dysregulation in proinsulin synthesis, ER folding environment, or clearance.
Collapse
Affiliation(s)
- Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| | - Corey N Cunningham
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Neha Shrestha
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan.,Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
8
|
Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P. Endoplasmic reticulum stress and eIF2α phosphorylation: The Achilles heel of pancreatic β cells. Mol Metab 2017; 6:1024-1039. [PMID: 28951826 PMCID: PMC5605732 DOI: 10.1016/j.molmet.2017.06.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic β cell dysfunction and death are central in the pathogenesis of most if not all forms of diabetes. Understanding the molecular mechanisms underlying β cell failure is important to develop β cell protective approaches. SCOPE OF REVIEW Here we review the role of endoplasmic reticulum stress and dysregulated endoplasmic reticulum stress signaling in β cell failure in monogenic and polygenic forms of diabetes. There is substantial evidence for the presence of endoplasmic reticulum stress in β cells in type 1 and type 2 diabetes. Direct evidence for the importance of this stress response is provided by an increasing number of monogenic forms of diabetes. In particular, mutations in the PERK branch of the unfolded protein response provide insight into its importance for human β cell function and survival. The knowledge gained from different rodent models is reviewed. More disease- and patient-relevant models, using human induced pluripotent stem cells differentiated into β cells, will further advance our understanding of pathogenic mechanisms. Finally, we review the therapeutic modulation of endoplasmic reticulum stress and signaling in β cells. MAJOR CONCLUSIONS Pancreatic β cells are sensitive to excessive endoplasmic reticulum stress and dysregulated eIF2α phosphorylation, as indicated by transcriptome data, monogenic forms of diabetes and pharmacological studies. This should be taken into consideration when devising new therapeutic approaches for diabetes.
Collapse
Key Words
- ATF, activating transcription factor
- CHOP, C/EBP homologous protein
- CRISPR, clustered regularly interspaced short palindromic repeats
- CReP, constitutive repressor of eIF2α phosphorylation
- Diabetes
- ER, endoplasmic reticulum
- ERAD, ER-associated degradation
- Endoplasmic reticulum stress
- GCN2, general control non-derepressible-2
- GIP, glucose-dependent insulinotropic polypeptide
- GLP-1, glucagon-like peptide 1
- GWAS, genome-wide association study
- HNF1A, hepatocyte nuclear factor 1-α
- HRI, heme-regulated inhibitor kinase
- IAPP, islet amyloid polypeptide
- IER3IP1, immediate early response-3 interacting protein-1
- IRE1, inositol-requiring protein-1
- ISR, integrated stress response
- Insulin
- Islet
- MEHMO, mental retardation, epilepsy, hypogonadism and -genitalism, microcephaly and obesity
- MODY, maturity-onset diabetes of the young
- NRF2, nuclear factor, erythroid 2 like 2
- PBA, 4-phenyl butyric acid
- PERK, PKR-like ER kinase
- PKR, protein kinase RNA
- PP1, protein phosphatase 1
- PPA, phenylpropenoic acid glucoside
- Pancreatic β cell
- Pdx1, pancreatic duodenal homeobox 1
- RIDD, regulated IRE1-dependent decay
- RyR2, type 2 ryanodine receptor/Ca2+ release channel
- SERCA, sarcoendoplasmic reticulum Ca2+ ATPase
- TUDCA, taurine-conjugated ursodeoxycholic acid derivative
- UPR, unfolded protein response
- WFS, Wolfram syndrome
- XBP1, X-box binding protein 1
- eIF2, eukaryotic translation initiation factor 2
- eIF2α
- hESC, human embryonic stem cell
- hPSC, human pluripotent stem cell
- hiPSC, human induced pluripotent stem cell
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Miriam Cnop
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sanna Toivonen
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Paraskevi Salpea
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Herbach N. [Pathogenesis of diabetes mellitus and diabetic complications. Studies on diabetic mouse models]. DER PATHOLOGE 2013; 33 Suppl 2:318-24. [PMID: 23052340 DOI: 10.1007/s00292-012-1637-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diabetic mouse models created via random mutagenesis or genetic modification are essential tools to unravel the mechanisms involved in the development of diabetes mellitus and associated diseases. Three diabetic mutant mouse lines derived from the Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project and one transgenic mouse line were analyzed with respect to diabetes-relevant clinical, pathomorphological and therapeutic aspects. An Ins2 mutation and two Gck mutations were identified as the cause of diabetes mellitus in the mutant lines. Heterozygous Ins2 and homozygous Gck mutants serve as model for permanent neonatal diabetes mellitus (PNDM) and heterozygous Gck mutants develop maturity onset diabetes of the young type 2. Dominant-negative glucose-dependent insulinotropic polypeptide receptor (GIPR(dn)) transgenic mice exhibit defective postnatal islet growth, develop PNDM and progressive diabetes-associated kidney lesions. The mutant and transgenic diabetic mouse models analyzed in the study were shown to represent valuable models to study the pathogenesis of monogenic diabetes and to establish novel treatment strategies.
Collapse
Affiliation(s)
- N Herbach
- Institut für Tierpathologie, Zentrum für klinische Tiermedizin, LMU München, Veterinärstr. 13, 80539 München.
| |
Collapse
|
10
|
Absood A, Gandomani B, Zaki A, Nasta V, Michail A, Habib PMW, Hodish I. Insulin therapy for pre-hyperglycemic beta-cell endoplasmic reticulum crowding. PLoS One 2013; 8:e54351. [PMID: 23408938 PMCID: PMC3567120 DOI: 10.1371/journal.pone.0054351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023] Open
Abstract
Insulin therapy improves β-cell function in early stages of diabetes by mechanisms that may exceed alleviation of glucotoxicity. In advance type 2 diabetes, hyperglycemia causes β-cell damage and ultimately β-cell loss. At such an advanced stage, therapeutic modalities are often inadequate. Growing evidence indicates that in early stages of type-2 diabetes and some types of monogenic diabetes linked with malfunctioning endoplasmic-reticulum (ER), the β-cell ER fails to process sufficient proinsulin once it becomes overloaded. These changes manifest with ER distention (ER-crowding) and deficiency of secretory granules. We hypothesize that insulin therapy may improves β-cell function by alleviating ER-crowding. To support this hypothesis, we investigated pre-diabetic β-cell changes in hProC(A7)Y-CpepGFP transgenic mice that develop prolonged pre-diabetes due to proinsulin dysmaturation and ER-crowding. We attenuated the β-cell ER proinsulin synthesis with a treat-to-target insulin therapy while avoiding hypoglycemia and weight gain. Alleviation of ER-crowding resulted in temporary improvement in proinsulin maturation, insulin secretion and glucose tolerance. Our observations suggest that alleviation of pre-diabetic ER-crowding using a treat-to-target insulin therapy may improve β-cell function and may prevent further metabolic deterioration.
Collapse
Affiliation(s)
- Afaf Absood
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Benjamin Gandomani
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Anthony Zaki
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Vlad Nasta
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Andrew Michail
- Wayne State University, Detroit, Michigan, United States of America
| | | | - Israel Hodish
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
11
|
Di Benedetto M, Richard O, Pélissier P, Darteyre S, Cavé H, Stéphan JL. Diabète néonatal permanent par mutation récessive du gène de l’insuline : une observation familiale. Arch Pediatr 2013; 20:199-202. [DOI: 10.1016/j.arcped.2012.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/08/2012] [Accepted: 11/13/2012] [Indexed: 11/27/2022]
|
12
|
Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 2012; 364:1-27. [PMID: 22885162 DOI: 10.1016/j.mce.2012.08.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
It is well established that regular physiological stimulation by glucose plays a crucial role in the maintenance of the β-cell differentiated phenotype. In contrast, prolonged or repeated exposure to elevated glucose concentrations both in vitro and in vivo exerts deleterious or toxic effects on the β-cell phenotype, a concept termed as glucotoxicity. Evidence indicates that the latter may greatly contribute to the pathogenesis of type 2 diabetes. Through the activation of several mechanisms and signaling pathways, high glucose levels exert deleterious effects on β-cell function and survival and thereby, lead to the worsening of the disease over time. While the role of high glucose-induced β-cell overstimulation, oxidative stress, excessive Unfolded Protein Response (UPR) activation, and loss of differentiation in the alteration of the β-cell phenotype is well ascertained, at least in vitro and in animal models of type 2 diabetes, the role of other mechanisms such as inflammation, O-GlcNacylation, PKC activation, and amyloidogenesis requires further confirmation. On the other hand, protein glycation is an emerging mechanism that may play an important role in the glucotoxic deterioration of the β-cell phenotype. Finally, our recent evidence suggests that hypoxia may also be a new mechanism of β-cell glucotoxicity. Deciphering these molecular mechanisms of β-cell glucotoxicity is a mandatory first step toward the development of therapeutic strategies to protect β-cells and improve the functional β-cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | | | | |
Collapse
|