1
|
Ebert MBB, Mentzel CMJ, Brunse A, Krych L, Hansen CHF. Delayed Gut Colonization Changes Future Insulin Resistance and Hepatic Gene Expression but Not Adiposity in Obese Mice. J Obes 2024; 2024:5846674. [PMID: 39360185 PMCID: PMC11446614 DOI: 10.1155/2024/5846674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Objective The importance of early microbial dysbiosis in later development of obesity and metabolic disorders has been a subject of debate. Here we tested cause and effect in mice. Methods Germ-free male Swiss Webster mice were colonized in a specific-pathogen-free (SPF) facility at 1 week (1W) and 3 weeks (3W) of age. They were challenged with a high-fat diet and their responses were compared with SPF mice. Gut microbiota was analyzed by 16S rRNA gene sequencing. Moreover, RNA sequencing of the liver was performed on additional 3W and SPF mice on a regular chow diet. Results There were no significant differences in weight, food consumption, epididymal fat weight, HbA1c levels, and serum insulin and leptin, whereas the early germ-free period resulted in mice with impaired glucose tolerance. Both the 1W and 3W group peaked 56% (p < 0.05) and 66% (p < 0.01) higher in blood glucose than the SPF control group, respectively. This was accompanied by a 45% reduction in the level of the anti-inflammatory cytokine IL-10 in the 1W mice (p < 0.05). There were no differences in the gut microbiota between the groups, indicating that all mice colonized fully after the germ-free period. Marked effects on hepatic gene expression (728 differentially expressed genes with adjusted p < 0.05 and a fold change ± 1.5) suggested a potential predisposition to a higher risk of developing insulin resistance in the 3W group. Conclusions Lack of microbes early in life had no impact on adiposity but led to insulin resistance and altered liver gene expression related to glucose metabolism in mice. The study strongly supports the notion that microbial signaling to the liver in the beginning of life can alter the host's risk of developing metabolic disorder later in life.
Collapse
Affiliation(s)
- Maria B B Ebert
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Caroline M J Mentzel
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science Faculty of Science University of Copenhagen, Frederiksberg, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
2
|
Christensen IB, Wu Q, Bohlbro AS, Skals MG, Damkier HH, Hübner CA, Fenton RA, Praetorius J. Genetic disruption of slc4a10 alters the capacity for cellular metabolism and vectorial ion transport in the choroid plexus epithelium. Fluids Barriers CNS 2020; 17:2. [PMID: 31906971 PMCID: PMC6945596 DOI: 10.1186/s12987-019-0162-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023] Open
Abstract
Background Genetic disruption of slc4a10, which encodes the sodium-dependent chloride/bicarbonate exchanger Ncbe, leads to a major decrease in Na+-dependent HCO3− import into choroid plexus epithelial cells in mice and to a marked reduction in brain intraventricular fluid volume. This suggests that Ncbe functionally is a key element in vectorial Na+ transport and thereby for cerebrospinal fluid secretion in the choroid plexus. However, slc4a10 disruption results in severe changes in expression of Na+,K+-ATPase complexes and other major transport proteins, indicating that profound cellular changes accompany the genetic manipulation. Methods A tandem mass tag labeling strategy was chosen for quantitative mass spectrometry. Alterations in the broader patterns of protein expression in the choroid plexus in response to genetic disruption of Ncbe was validated by semi-quantitative immunoblotting, immunohistochemistry and morphometry. Results The abundance of 601 proteins were found significantly altered in the choroid plexus from Ncbe ko mice relative to Ncbe wt. In addition to a variety of transport proteins, particularly large changes in the abundance of proteins involved in cellular energy metabolism were detected in the Ncbe ko mice. In general, the abundance of rate limiting glycolytic enzymes and several mitochondrial enzymes were reduced following slc4a10 disruption. Surprisingly, this was accompanied by increased ATP levels in choroid plexus cells, indicating that the reduction in capacity for energy metabolism was adaptive to high ATP rather than causal for a decreased capacity for ion and water transport. Ncbe-deficient cells also had a reduced cell area and decreased K+ content. Conclusion Our findings suggest that the lack of effective Na+-entry into the epithelial cells of the choroid plexus leads to a profound change in the cellular phenotype, shifting from a high-rate secretory function towards a more dormant state; similar to what is observed during ageing or Alzheimer’s disease.
Collapse
Affiliation(s)
- Inga Baasch Christensen
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Qi Wu
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Anders Solitander Bohlbro
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Marianne Gerberg Skals
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Helle Hasager Damkier
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Christian Andreas Hübner
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Robert Andrew Fenton
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark
| | - Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Wilhelm Meyers Allé 3, r. 219, 8000, Aarhus C, Denmark.
| |
Collapse
|
3
|
Chronic disturbance in the thalamus following cranial irradiation to the developing mouse brain. Sci Rep 2019; 9:9588. [PMID: 31270437 PMCID: PMC6610082 DOI: 10.1038/s41598-019-45973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Better survival rates among pediatric brain tumor patients have resulted in an increased awareness of late side effects that commonly appear following cancer treatment. Radiation-induced changes in hippocampus and white matter are well described, but do not explain the full range of neurological late effects in childhood cancer survivors. The aim of this study was to investigate thalamus following cranial irradiation (CIR) to the developing brain. At postnatal day 14, male mice pups received a single dose of 8 Gy CIR. Cellular effects in thalamus were assessed using immunohistochemistry 4 months after CIR. Interestingly, the density of neurons decreased with 35% (p = 0.0431) and the density of astrocytes increased with 44% (p = 0.011). To investigate thalamic astrocytes, S100β+ cells were isolated by fluorescence-activated cell sorting and genetically profiled using next-generation sequencing. The phenotypical characterization indicated a disrupted function, such as downregulated microtubules’ function, higher metabolic activity, immature phenotype and degraded ECM. The current study provides novel insight into that thalamus, just like hippocampus and white matter, is severely affected by CIR. This knowledge is of importance to understand the late effects seen in pediatric brain tumor survivors and can be used to give them the best suitable care.
Collapse
|
4
|
Carcinoembryonic Cell Adhesion-Related Molecule 2 Regulates Insulin Secretion and Energy Balance. Int J Mol Sci 2019; 20:ijms20133231. [PMID: 31266142 PMCID: PMC6651791 DOI: 10.3390/ijms20133231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule (CEACAM) family of proteins plays a significant role in regulating peripheral insulin action by participating in the regulation of insulin metabolism and energy balance. In light of their differential expression, CEACAM1 regulates chiefly insulin extraction, whereas CEACAM2 appears to play a more important role in regulating insulin secretion and overall energy balance, including food intake, energy expenditure and spontaneous physical activity. We will focus this review on the role of CEACAM2 in regulating insulin metabolism and energy balance with an overarching goal to emphasize the importance of the coordinated regulatory effect of these related plasma membrane glycoproteins on insulin metabolism and action.
Collapse
|
5
|
Ghadieh HE, Russo L, Muturi HT, Ghanem SS, Manaserh IH, Noh HL, Suk S, Kim JK, Hill JW, Najjar SM. Hyperinsulinemia drives hepatic insulin resistance in male mice with liver-specific Ceacam1 deletion independently of lipolysis. Metabolism 2019; 93:33-43. [PMID: 30664851 PMCID: PMC6401268 DOI: 10.1016/j.metabol.2019.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND CEACAM1 regulates insulin sensitivity by promoting insulin clearance. Accordingly, global C57BL/6J.Cc1-/- null mice display hyperinsulinemia due to impaired insulin clearance at 2 months of age, followed by insulin resistance, steatohepatitis, visceral obesity and leptin resistance at 6 months. The study aimed at investigating the primary role of hepatic CEACAM1 in insulin and lipid homeostasis independently of its metabolic effect in extra-hepatic tissues. METHODS Liver-specific C57BL/6J.AlbCre+Cc1fl/fl mice were generated and their metabolic phenotype was characterized by comparison to that of their littermate controls at 2-9 months of age, using hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry. The effect of hyperphagia on insulin resistance was assessed by pair-feeding experiments. RESULTS Liver-specific AlbCre+Cc1fl/fl mutants exhibited impaired insulin clearance and hyperinsulinemia at 2 months, followed by hepatic insulin resistance (assessed by hyperinsulinemic-euglycemic clamp analysis) and steatohepatitis at ~ 7 months of age, at which point visceral obesity and hyperphagia developed, in parallel to hyperleptinemia and blunted hypothalamic STAT3 phosphorylation in response to an intraperitoneal injection of leptin. Hyperinsulinemia caused hypothalamic insulin resistance, followed by increased fatty acid synthase activity, which together with defective hypothalamic leptin signaling contributed to hyperphagia and reduced physical activity. Pair-feeding experiment showed that hyperphagia caused systemic insulin resistance, including blunted insulin signaling in white adipose tissue and lipolysis, at 8-9 months of age. CONCLUSION AlbCre+Cc1fl/fl mutants provide an in vivo demonstration of the key role of impaired hepatic insulin clearance and hyperinsulinemia in the pathogenesis of secondary hepatic insulin resistance independently of lipolysis. They also reveal an important role for the liver-hypothalamic axis in the regulation of energy balance and subsequently, systemic insulin sensitivity.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Iyad H Manaserh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer W Hill
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
6
|
Ghanem SS, Muturi HT, DeAngelis AM, Hu J, Kulkarni RN, Heinrich G, Najjar SM. Age-dependent insulin resistance in male mice with null deletion of the carcinoembryonic antigen-related cell adhesion molecule 2 gene. Diabetologia 2017; 60:1751-1760. [PMID: 28567513 PMCID: PMC5709176 DOI: 10.1007/s00125-017-4307-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Cc2 -/- mice lacking the gene encoding the carcinoembryonic-antigen-related cell adhesion molecule 2 (Cc2 [also known as Ceacam2]) exhibit hyperphagia that leads to obesity and insulin resistance. This starts at 2 months of age in female mice. Male mutants maintain normal body weight and insulin sensitivity until the last age previously examined (7-8 months), owing to increased sympathetic tone to white adipose tissue and energy expenditure. The current study investigates whether insulin resistance develops in mutant male mice at a later age and whether this is accompanied by changes in insulin homeostasis. METHODS Insulin response was assessed by insulin and glucose tolerance tests. Energy balance was analysed by indirect calorimetry. RESULTS Male Cc2 -/- mice developed overt metabolic abnormalities at about 9 months of age. These include elevated global fat mass, hyperinsulinaemia and insulin resistance (as determined by glucose and insulin intolerance, fed hyperglycaemia and decreased insulin signalling pathways). Pair-feeding experiments showed that insulin resistance resulted from hyperphagia. Indirect calorimetry demonstrated that older mutant male mice had compromised energy expenditure. Despite increased insulin secretion caused by Cc2 deletion, chronic hyperinsulinaemia did not develop in mutant male mice until about 9 months of age, at which point insulin clearance began to decline substantially. This was probably mediated by a marked decrease in hepatic CEACAM1 expression. CONCLUSIONS/INTERPRETATION The data demonstrate that at about 9 months of age, Cc2 -/- male mice develop a reduction in energy expenditure and energy imbalance which, combined with a progressive decrease in CEACAM1-dependent hepatic insulin clearance, causes chronic hyperinsulinaemia and sustained age-dependent insulin resistance. This represents a novel mechanistic underpinning of age-related impairment of hepatic insulin clearance.
Collapse
Affiliation(s)
- Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Anthony M DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701-2979, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701-2979, USA.
| |
Collapse
|
7
|
Zinn K, Özkan E. Neural immunoglobulin superfamily interaction networks. Curr Opin Neurobiol 2017; 45:99-105. [PMID: 28558267 DOI: 10.1016/j.conb.2017.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
Abstract
The immunoglobulin superfamily (IgSF) encompasses hundreds of cell surface proteins containing multiple immunoglobulin-like (Ig) domains. Among these are neural IgCAMs, which are cell adhesion molecules that mediate interactions between cells in the nervous system. IgCAMs in some vertebrate IgSF subfamilies bind to each other homophilically and heterophilically, forming small interaction networks. In Drosophila, a global 'interactome' screen identified two larger networks in which proteins in one IgSF subfamily selectively interact with proteins in a different subfamily. One of these networks, the 'Dpr-ome', includes 30 IgSF proteins, each of which is expressed in a unique subset of neurons. Recent evidence shows that one interacting protein pair within the Dpr-ome network is required for development of the brain and neuromuscular system.
Collapse
Affiliation(s)
- Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
8
|
Alshahrani MM, Kyriacou RP, O'Malley CJ, Heinrich G, Najjar SM, Jackson DE. CEACAM2 positively regulates integrin α IIbβ 3-mediated platelet functions. Platelets 2016; 27:743-750. [PMID: 27161904 DOI: 10.3109/09537104.2016.1171834] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/22/2016] [Indexed: 11/13/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is an Ig-ITIM superfamily member that regulates integrin αIIbβ3 function. We hypothesized that its twin protein, CEACAM2, exerts a similar physiologic role in murine platelets. CEACAM2-deficient mice (Cc2-/-) displayed prolonged tail bleeding times and increased volume of blood loss. Cc2-/- platelets have moderate integrin αIIbβ3-mediated functional defects with impaired kinetics of platelet spreading on fibrinogen and type I collagen and delayed kinetics in the retraction of fibrin clots in vitro. This functional integrin αIIbβ3 defect could not be attributed to altered integrin αIIbβ3 expression. Cc2-/- platelets displayed normal 'inside-out' signaling properties as demonstrated by normal agonist-induced binding of soluble fluorescein isothiocyanate (FITC)-fibrinogen and JON/A antibody binding. This data provides direct evidence that disruption of CEACAM2 induces a moderate integrin αIIbβ3-mediated platelet function defect, and that CEACAM2 is essential to maintain a normal integrin αIIbβ3-mediated platelet function.
Collapse
Affiliation(s)
- Musaed M Alshahrani
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| | - Roula P Kyriacou
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| | - Cindy J O'Malley
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| | - Garrett Heinrich
- b Department of Physiology , Center for Diabetes and Endocrine Research, University of Toledo , Toledo , OH , USA
- c Department of Pharmacology , College of Medicine and Life Sciences, University of Toledo , Toledo , OH , USA
| | - Sonia M Najjar
- b Department of Physiology , Center for Diabetes and Endocrine Research, University of Toledo , Toledo , OH , USA
- c Department of Pharmacology , College of Medicine and Life Sciences, University of Toledo , Toledo , OH , USA
| | - Denise E Jackson
- a Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University , Bundoora , Australia
| |
Collapse
|
9
|
Heinrich G, Russo L, Castaneda TR, Pfeiffer V, Ghadieh HE, Ghanem SS, Wu J, Faulkner LD, Ergün S, McInerney MF, Hill JW, Najjar SM. Leptin Resistance Contributes to Obesity in Mice with Null Mutation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1. J Biol Chem 2016; 291:11124-32. [PMID: 27002145 DOI: 10.1074/jbc.m116.716431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/28/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.
Collapse
Affiliation(s)
| | - Lucia Russo
- From the Center for Diabetes and Endocrine Research and
| | - Tamara R Castaneda
- From the Center for Diabetes and Endocrine Research and Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio 43614
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, 97070 Würzburg, Germany, and
| | | | | | - Jieshen Wu
- From the Center for Diabetes and Endocrine Research and
| | | | - Süleyman Ergün
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, 97070 Würzburg, Germany, and
| | - Marcia F McInerney
- From the Center for Diabetes and Endocrine Research and Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio 43614
| | | | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
10
|
Ghanem SS, Heinrich G, Lester SG, Pfeiffer V, Bhattacharya S, Patel PR, DeAngelis AM, Dai T, Ramakrishnan SK, Smiley ZN, Jung DY, Lee Y, Kitamura T, Ergun S, Kulkarni RN, Kim JK, Giovannucci DR, Najjar SM. Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). J Biol Chem 2015; 291:980-8. [PMID: 26586918 DOI: 10.1074/jbc.m115.692582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/11/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors.
Collapse
Affiliation(s)
- Simona S Ghanem
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Garrett Heinrich
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sumona G Lester
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Sumit Bhattacharya
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Anthony M DeAngelis
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Tong Dai
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Zachary N Smiley
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Dae Y Jung
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yongjin Lee
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tadahiro Kitamura
- the Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan, and
| | - Suleyman Ergun
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Rohit N Kulkarni
- the Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Jason K Kim
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David R Giovannucci
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| |
Collapse
|
11
|
Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model. J Toxicol 2015; 2015:739746. [PMID: 26604922 PMCID: PMC4641925 DOI: 10.1155/2015/739746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an “excitotoxin,” and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups.
Collapse
|
12
|
Ghadieh HE, Smiley ZN, Kopfman MW, Najjar MG, Hake MJ, Najjar SM. Chlorogenic acid/chromium supplement rescues diet-induced insulin resistance and obesity in mice. Nutr Metab (Lond) 2015; 12:19. [PMID: 26045713 PMCID: PMC4455985 DOI: 10.1186/s12986-015-0014-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/08/2015] [Indexed: 12/15/2022] Open
Abstract
Abdominal obesity is a major risk factor for insulin resistance, type 2 diabetes and cardiovascular diseases. Dietary fat induces insulin resistance in humans and rodents. The current study investigates whether a Chlorogenic acid/Chromium III supplement rescues obesity and insulin resistance caused by high-fat feeding of male C57BL/6 J mice for 7 weeks. Administering an oral daily dose of this supplement in the last 3 weeks of feeding reversed diet-induced body weight gain and insulin resistance, assessed by hyperglycemia, glucose intolerance and insulin intolerance. Indirect calorimetry analysis revealed that this effect is mediated at least partly, by increasing energy expenditure and spontaneous locomoter activity. These findings underscore the important role that chlorogenic acid and chromium play in maintaining glucose metabolism and insulin response in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA
| | - Zachary N Smiley
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA
| | - Melissa W Kopfman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA
| | - Mona G Najjar
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA
| | - Michael J Hake
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614 USA ; College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail stop 1009, Toledo, OH 43614 USA
| |
Collapse
|
13
|
CEACAM2 negatively regulates hemi (ITAM-bearing) GPVI and CLEC-2 pathways and thrombus growth in vitro and in vivo. Blood 2014; 124:2431-41. [PMID: 25085348 DOI: 10.1182/blood-2014-04-569707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-2 (CEACAM2) is a cell-surface glycoprotein expressed on blood, epithelial, and vascular cells. CEACAM2 possesses adhesive and signaling properties mediated by immunoreceptor tyrosine-based inhibitory motifs. In this study, we demonstrate that CEACAM2 is expressed on the surface and in intracellular pools of platelets. Functional studies of platelets from Ceacam2(-/-)-deficient mice (Cc2(-/-)) revealed that CEACAM2 serves to negatively regulate collagen glycoprotein VI (platelet) (GPVI)-FcRγ-chain and the C-type lectinlike receptor 2 (CLEC-2) signaling. Cc2(-/-) platelets displayed enhanced GPVI and CLEC-2-selective ligands, collagen-related peptide (CRP), collagen, and rhodocytin (Rhod)-mediated platelet aggregation. They also exhibited increased adhesion on type I collagen, and hyperresponsive CRP and CLEC-2-induced α and dense granule release compared with wild-type platelets. Furthermore, using intravital microscopy to ferric chloride (FeCl3)-injured mesenteric arterioles and laser-induced injury of cremaster muscle arterioles, we herein show that thrombi formed in Cc2(-/-) mice were larger and more stable than wild-type controls in vivo. Thus, CEACAM2 is a novel platelet immunoreceptor that acts as a negative regulator of platelet GPVI-collagen interactions and of ITAM receptor CLEC-2 pathways.
Collapse
|
14
|
Salaheldeen E, Kurio H, Howida A, Iida H. Molecular cloning and localization of a CEACAM2 isoform, CEACAM2-L, expressed in spermatids in mouse testis. Mol Reprod Dev 2012; 79:843-52. [PMID: 23070997 DOI: 10.1002/mrd.22123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/06/2012] [Indexed: 11/09/2022]
Abstract
Carcinoembryonic antigen (CEA) family, a subgroup of the immunoglobulin (Ig) superfamily, is divided into two sub-families: the CEA-related cell adhesion molecules (CEACAM) and the pregnancy-specific glycoproteins. The isoform CEACAM2 is expressed in mouse testis; in this study, we identified a novel isoform of Ceacam2, Ceacam2-Long (Ceacam2-L). CEACAM2-L is different from CEACAM2 in that it has much longer cytoplasmic tail region. Ceacam2-L starts to appear faintly in mouse testis after 3 weeks of postnatal development, and its expression level increased after 5 weeks. Immunoblot analysis confirmed the expression of CEACAM2-L in the seminiferous epithelium of mouse testis. Immunohistochemical data showed that CEACAM2-L was not observed on spermatogonia, spermatocytes, round spermatids, or Sertoli cells, but was seen at the plasma membrane of elongating spermatids in contact with extended cytoplasmic processes of Sertoli cells. CEACAM2-L was not detected at the head region of elongating spermatids, where the apical ectoplasmic specialization is constructed. These data suggest that CEACAM2-L might be a novel adhesion molecule contributing to cell-to-cell adhesion between elongating spermatids and Sertoli cells within the seminiferous epithelium.
Collapse
Affiliation(s)
- Elsaid Salaheldeen
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki, Fukuoka, Japan
| | | | | | | |
Collapse
|