1
|
Hitsuda Y, Koto Y, Kawahara H, Kurata K, Yoshikiyo K, Nishimura K, Hashiguchi A, Maseda H, Okano K, Sugiura N, Shimizu K, Shimizu H. Increased Prorenin Expression in the Kidneys May Be Involved in the Abnormal Renal Function Caused by Prolonged Environmental Exposure to Microcystin-LR. TOXICS 2024; 12:547. [PMID: 39195649 PMCID: PMC11360727 DOI: 10.3390/toxics12080547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Toxic algae in eutrophic lakes produce cyanotoxic microcystins. Prior research on the effect of microcystin-LR in the kidney utilized intraperitoneal injections, which did not reflect natural exposure. Oral microcystin-LR research has focused on renal function and histopathology without examining the molecular mechanisms. The present study aimed to evaluate the mechanism of microcystin-LR in the kidneys via oral administration in WKAH/HkmSlc rats over 7 weeks, alongside stimulation of the proximal tubular cells. Although there were no differences in the concentrations of plasma albumin, blood urea nitrogen, and creatinine, which are parameters of renal function, between the control and microcystin-LR-administrated rats, prorenin expression was significantly increased in the renal cortex of the rats administered microcystin-LR and the microcystin-LR-treated proximal tubular cells. The expression levels of (pro)renin receptor (PRR), transforming growth factor-β1 (TGFβ1), and α-smooth muscle actin (α-SMA) in the renal cortex did not differ significantly between the control and microcystin-LR-administered rats. However, the expression levels of prorenin were significantly positively correlated with those of PRR, TGFβ1, and α-SMA in the renal cortex of rats administered microcystin-LR. Additionally, a significant positive correlation was observed between the expression levels of TGFβ1 and α-SMA. Collectively, increased prorenin expression caused by the long-term consumption of microcystin-LR may initiate a process that influences renal fibrosis and abnormal renal function by regulating the expression levels of PRR, TGFβ1, and α-SMA.
Collapse
Affiliation(s)
- Yuuka Hitsuda
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Yoshihito Koto
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Hideaki Kawahara
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Koichi Kurata
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Keisuke Yoshikiyo
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Kohji Nishimura
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| | - Ayumi Hashiguchi
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama-shi 700-8530, Japan
| | - Hideaki Maseda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Osaka 563-8577, Japan
| | - Kunihiro Okano
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Norio Sugiura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life Sciences, Toyo University, Gunma 374-0193, Japan
| | - Hidehisa Shimizu
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Graduate School of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
- Interdisciplinary Center for Science Research, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
- Estuary Research Center, Shimane University, 1060 Nishikawatsu-Cho, Matsue 690-8504, Japan
| |
Collapse
|
2
|
Iacobini C, Vitale M, Sentinelli F, Haxhi J, Pugliese G, Menini S. Renal Expression and Localization of the Receptor for (Pro)renin and Its Ligands in Rodent Models of Diabetes, Metabolic Syndrome, and Age-Dependent Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2024; 25:2217. [PMID: 38396894 PMCID: PMC10888662 DOI: 10.3390/ijms25042217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/27/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The (pro)renin receptor ((P)RR), a versatile protein found in various organs, including the kidney, is implicated in cardiometabolic conditions like diabetes, hypertension, and dyslipidemia, potentially contributing to organ damage. Importantly, changes in (pro)renin/(P)RR system localization during renal injury, a critical information base, remain unexplored. This study investigates the expression and topographic localization of the full length (FL)-(P)RR, its ligands (renin and prorenin), and its target cyclooxygenase-2 and found that they are upregulated in three distinct animal models of renal injury. The protein expression of these targets, initially confined to specific tubular renal cell types in control animals, increases in renal injury models, extending to glomerular cells. (P)RR gene expression correlates with protein changes in a genetic model of focal and segmental glomerulosclerosis. However, in diabetic and high-fat-fed mice, (P)RR mRNA levels contradict FL-(P)RR immunoreactivity. Research on diabetic mice kidneys and human podocytes exposed to diabetic glucose levels suggests that this inconsistency may result from disrupted intracellular (P)RR processing, likely due to increased Munc18-1 interacting protein 3. It follows that changes in FL-(P)RR cellular content mechanisms are specific to renal disease etiology, emphasizing the need for consideration in future studies exploring this receptor's involvement in renal damage of different origins.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Federica Sentinelli
- Department of Public Health and Infectious Diseases, “La Sapienza” University, 00189 Rome, Italy;
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (J.H.); (S.M.)
| |
Collapse
|
3
|
Visniauskas B, Reverte V, Abshire CM, Ogola BO, Rosales CB, Galeas-Pena M, Sure VN, Sakamuri SSVP, Harris NR, Kilanowski-Doroh I, Mcnally AB, Horton AC, Zimmerman M, Katakam PVG, Lindsey SH, Prieto MC. High-plasma soluble prorenin receptor is associated with vascular damage in male, but not female, mice fed a high-fat diet. Am J Physiol Heart Circ Physiol 2023; 324:H762-H775. [PMID: 36930656 PMCID: PMC10151046 DOI: 10.1152/ajpheart.00638.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Plasma soluble prorenin receptor (sPRR) displays sexual dimorphism and is higher in women with type 2 diabetes mellitus (T2DM). However, the contribution of plasma sPRR to the development of vascular complications in T2DM remains unclear. We investigated if plasma sPRR contributes to sex differences in the activation of the systemic renin-angiotensin-aldosterone system (RAAS) and vascular damage in a model of high-fat diet (HFD)-induced T2DM. Male and female C57BL/6J mice were fed either a normal fat diet (NFD) or an HFD for 28 wk to assess changes in blood pressure, cardiometabolic phenotype, plasma prorenin/renin, sPRR, and ANG II. After completing dietary protocols, tissues were collected from males to assess vascular reactivity and aortic reactive oxygen species (ROS). A cohort of male mice was used to determine the direct contribution of increased systemic sPRR by infusion. To investigate the role of ovarian hormones, ovariectomy (OVX) was performed at 32 wk in females fed either an NFD or HFD. Significant sex differences were found after 28 wk of HFD, where only males developed T2DM and increased plasma prorenin/renin, sPRR, and ANG II. T2DM in males was accompanied by nondipping hypertension, carotid artery stiffening, and aortic ROS. sPRR infusion in males induced vascular thickening instead of material stiffening caused by HFD-induced T2DM. While intact females were less prone to T2DM, OVX increased plasma prorenin/renin, sPRR, and systolic blood pressure. These data suggest that sPRR is a novel indicator of systemic RAAS activation and reflects the onset of vascular complications during T2DM regulated by sex.NEW & NOTEWORTHY High-fat diet (HFD) for 28 wk leads to type 2 diabetes mellitus (T2DM) phenotype, concomitant with increased plasma soluble prorenin receptor (sPRR), nondipping blood pressure, and vascular stiffness in male mice. HFD-fed female mice exhibiting a preserved cardiometabolic phenotype until ovariectomy revealed increased plasma sPRR and blood pressure. Plasma sPRR may indicate the status of systemic renin-angiotensin-aldosterone system (RAAS) activation and the onset of vascular complications during T2DM in a sex-dependent manner.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
| | - Virginia Reverte
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Carla B Rosales
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Michelle Galeas-Pena
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Venkata N Sure
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Siva S V P Sakamuri
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Nicholas R Harris
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Isabella Kilanowski-Doroh
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Margaret Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
- Tulane Hypertension and Renal Center of Excellence, New Orleans, Louisiana, United States
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana, United States
- Tulane Center for Sex-Based Biology and Medicine, New Orleans, Louisiana, United States
- Tulane Hypertension and Renal Center of Excellence, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Kuma K, Tsuda S, Fukui A, Yoshitomi R, Haruyama N, Nakayama M. Low plasma renin activity is independently associated with kidney disease progression in patients with type 2 diabetes and overt nephropathy, including those with impaired kidney function: a 2-year prospective study. Endocr J 2022; 69:547-557. [PMID: 34897193 DOI: 10.1507/endocrj.ej21-0608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma renin activity (PRA) is lower in patients with diabetic nephropathy (DN) than in healthy individuals. However, the association, if any, between PRA and renal outcomes in patients with DN remains uncertain. In a 2-year prospective observational study, we aimed to investigate the association of PRA with the decline in kidney function in patients with DN. We studied 97 patients with DN who were categorized according to tertile (T1-T3) of PRA. The annual changes in estimated glomerular filtration rate (eGFR) (mL/min/1.73 m2/year) were determined from the slope of the linear regression curve for eGFR. The secondary endpoint was defined as a composite of the doubling of serum creatinine or end-stage renal disease. Results showed that kidney function rapidly declined with lower tertiles of PRA (median value [interquartile range] of the annual eGFR changes: -8.8 [-18.5 to -4.2] for T1, -8.0 [-14.3 to -3.2] for T2, and -3.1 [-6.3 to -2.0] for T3; p for trend <0.01). Multivariable linear regression analyses showed that, compared with T3, T1 was associated with a larger annual change in eGFR (coefficient, -4.410; 95% confidence interval [CI], -7.910 to -0.909 for T1). Composite renal events occurred in 46 participants. In multivariable Cox analysis, the lower tertiles of PRA (T1 and T2) were associated with higher incidences of the composite renal outcome (T2: hazard ratio [HR], 4.78; 95% CI, 1.64-13.89; T1: HR, 4.85; 95% CI 1.61-14.65) than T3. In conclusion, low PRA is independently associated with poor renal outcomes in patients with DN.
Collapse
Affiliation(s)
- Kazuyoshi Kuma
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Susumu Tsuda
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Akiko Fukui
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Ryota Yoshitomi
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Naoki Haruyama
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| | - Masaru Nakayama
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, Fukuoka 810-8563, Japan
| |
Collapse
|
5
|
Visniauskas B, Arita DY, Rosales CB, Feroz MA, Luffman C, Accavitti MJ, Dawkins G, Hong J, Curnow AC, Thethi TK, Lefante JJ, Jaimes EA, Mauvais-Jarvis F, Fonseca VA, Prieto MC. Sex differences in soluble prorenin receptor in patients with type 2 diabetes. Biol Sex Differ 2021; 12:33. [PMID: 33933156 PMCID: PMC8088668 DOI: 10.1186/s13293-021-00374-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/07/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The soluble prorenin receptor (sPRR), a member of the renin-angiotensin system (RAS), is elevated in plasma of patients with preeclampsia, hypertension, chronic kidney disease (CKD), and type 2 diabetes. Our goal was to examine the relationship between sPRR and RAS activation to define whether sexual dimorphisms in sPRR might explain sex disparities in renal outcomes in patients with type 2 diabetes. METHODS Two hundred sixty-nine participants were included in the study (mean age, 48 ± 16 years; 42% men, 58% women), including 173 controls and 96 subjects with type 2 diabetes. In plasma and urine, we measured sPRR, plasma renin activity (PRA), and prorenin. In the urine, we also measured angiotensinogen along with other biomarkers of renal dysfunction. RESULTS Plasma sPRR and PRA were significantly higher in women with type 2 diabetes compared to men. In these women, plasma sPRR was positively correlated with PRA, age, and body mass index (BMI). In contrast, in men the sPRR in urine but not in plasma positively correlated with eGFR in urine, but negatively correlated with urine renin activity, plasma glucose, age, and BMI. CONCLUSIONS In patients with type 2 diabetes, sPRR contributes to RAS stimulation in a sex-dependent fashion. In diabetic women, increased plasma sPRR parallels the activation of systemic RAS; while in diabetic men, decreased sPRR in urine matches intrarenal RAS stimulation. sPRR might be a potential indicator of intrarenal RAS activation and renal dysfunction in men and women with type 2 diabetes.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Danielle Y. Arita
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Carla B. Rosales
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Mohammed A. Feroz
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Christina Luffman
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Michael J. Accavitti
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Gabrielle Dawkins
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Jennifer Hong
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Andrew C. Curnow
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
| | - Tina K. Thethi
- Department of Medicine, Endocrinology Division, Tulane University School of Medicine, New Orleans, LA USA
- AdventHealth, Translational Research Institute, Orlando, FL USA
| | - John J. Lefante
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Edgar A. Jaimes
- Renal Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Endocrinology Division, Tulane University School of Medicine, New Orleans, LA USA
- Southeast Louisiana Veterans Healthcare System, New Orleans, LA USA
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA USA
| | - Vivian A. Fonseca
- Department of Medicine, Endocrinology Division, Tulane University School of Medicine, New Orleans, LA USA
- Southeast Louisiana Veterans Healthcare System, New Orleans, LA USA
| | - Minolfa C. Prieto
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, SL39, New Orleans, LA 70112 USA
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA USA
| |
Collapse
|
6
|
Zhang L, An XF, Ruan X, Huang DD, Zhou L, Xue H, Lu LM, He M. Inhibition of (pro)renin Receptor Contributes to Renoprotective Effects of Angiotensin II Type 1 Receptor Blockade in Diabetic Nephropathy. Front Physiol 2017; 8:758. [PMID: 29056916 PMCID: PMC5635681 DOI: 10.3389/fphys.2017.00758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Aims: Renal renin-angiotensin system (RAS) plays a pivotal role in the development of diabetic nephropathy (DN). Angiotensin II (Ang II) type 1 receptor (AT1R) blockade elevates (pro)renin, which may bind to (pro)renin receptor (PRR) and exert receptor-mediated, angiotensin-independent profibrotic effects. We therefore investigated whether PRR activation leads to the limited anti-fibrotic effects of AT1R blockade on DN, and whether PRR inhibition might ameliorate progression of DN. Methods: To address the issue, the expression of RAS components was tested in different stages of streptozotocin (STZ)-induced diabetic rats (6, 12, and 24 weeks) and 6-week AT1R blockade (losartan) treated diabetic rats. Using the blocker for PRR, the handle region peptide (HRP) of prorenin, the effects of PRR on high glucose or Ang II-induced proliferative and profibrotic actions were evaluated by measurement of cell proliferation, matrix metalloproteinase-2 (MMP-2) activity, activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β1 (TGF-β1) expression in rat mesangial cells (MCs). Results: PRR was downregulated in the kidneys of different stages of diabetic rats (6, 12, and 24 weeks). Moreover, 6-week losartan treatment further suppressed PRR expression via upregulating AT2R, and ameliorated diabetic renal injury. HRP inhibited high glucose and Ang II-induced proliferative and profibrotic effects in MCs through suppressing TGF-β1 expression and activating MMP-2. Meanwhile, HRP enhanced losartan's anti-fibrotic effects through further inhibiting phosphorylation of ERK1/2 and TGF-β1 expression. Moreover, the inhibitive effect of HRP on Ang II-induced TGF-β1 expression depended on the regulation of PRR expression by AT2R. Conclusions: Our findings suggest that inhibition of PRR contributes to renoprotection against diabetic nephropathy by AT1R blockade.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Fei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Ruan
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Hong Xue
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li-Min Lu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Ming He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Gonzalez AA, Zamora L, Reyes-Martinez C, Salinas-Parra N, Roldan N, Cuevas CA, Figueroa S, Gonzalez-Vergara A, Prieto MC. (Pro)renin receptor activation increases profibrotic markers and fibroblast-like phenotype through MAPK-dependent ROS formation in mouse renal collecting duct cells. Clin Exp Pharmacol Physiol 2017; 44:1134-1144. [PMID: 28696542 DOI: 10.1111/1440-1681.12813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 01/06/2023]
Abstract
Recent studies suggested that activation of the PRR upregulates profibrotic markers through reactive oxygen species (ROS) formation; however, the exact mechanisms have not been investigated in CD cells. We hypothesized that activation of the PRR increases the expression of profibrotic markers through MAPK-dependent ROS formation in CD cells. Mouse renal CD cell line (M-1) was treated with recombinant prorenin plus ROS or MAPK inhibitors and PRR-shRNA to evaluate their effect on the expression of profibrotic markers. PRR immunostaining revealed plasma membrane and intracellular localization. Recombinant prorenin increases ROS formation (6.0 ± 0.5 vs 3.9 ± 0.1 nmol/L DCF/μg total protein, P < .05) and expression of profibrotic markers CTGF (149 ± 12%, P < .05), α-SMA (160 ± 20%, P < .05), and PAI-I (153 ± 13%, P < .05) at 10-8 mol/L. Recombinant prorenin-induced phospho ERK 1/2 (p44 and p42) at 10-8 and 10-6 mol/L after 20 minutes. Prorenin-dependent ROS formation and augmentation of profibrotic factors were blunted by ROS scavengers (trolox, p-coumaric acid, ascorbic acid), the MEK inhibitor PD98059 and PRR transfections with PRR-shRNA. No effects were observed in the presence of antioxidants alone. Prorenin-induced upregulation of collagen I and fibronectin was blunted by ROS scavenging or MEK inhibition independently. PRR-shRNA partially prevented this induction. After 24 hours prorenin treatment M-1 cells undergo to epithelial-mesenchymal transition phenotype, however MEK inhibitor PD98059 and PRR knockdown prevented this effect. These results suggest that PRR might have a significant role in tubular damage during conditions of high prorenin-renin secretion in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | | | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Nicole Roldan
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Catherina A Cuevas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Stefanny Figueroa
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
8
|
|
9
|
Kökény G, Fang L, Révész C, Mózes M, Vörös P, Szénási G, Rosivall L. The Effect of Combined Treatment with the (Pro)Renin Receptor Blocker HRP and Quinapril in Type 1 Diabetic Rats. Kidney Blood Press Res 2017; 42:109-122. [DOI: 10.1159/000471915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/17/2017] [Indexed: 11/19/2022] Open
|
10
|
Bernardi S, Michelli A, Zuolo G, Candido R, Fabris B. Update on RAAS Modulation for the Treatment of Diabetic Cardiovascular Disease. J Diabetes Res 2016; 2016:8917578. [PMID: 27652272 PMCID: PMC5019930 DOI: 10.1155/2016/8917578] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Since the advent of insulin, the improvements in diabetes detection and the therapies to treat hyperglycemia have reduced the mortality of acute metabolic emergencies, such that today chronic complications are the major cause of morbidity and mortality among diabetic patients. More than half of the mortality that is seen in the diabetic population can be ascribed to cardiovascular disease (CVD), which includes not only myocardial infarction due to premature atherosclerosis but also diabetic cardiomyopathy. The importance of renin-angiotensin-aldosterone system (RAAS) antagonism in the prevention of diabetic CVD has demonstrated the key role that the RAAS plays in diabetic CVD onset and development. Today, ACE inhibitors and angiotensin II receptor blockers represent the first line therapy for primary and secondary CVD prevention in patients with diabetes. Recent research has uncovered new dimensions of the RAAS and, therefore, new potential therapeutic targets against diabetic CVD. Here we describe the timeline of paradigm shifts in RAAS understanding, how diabetes modifies the RAAS, and what new parts of the RAAS pathway could be targeted in order to achieve RAAS modulation against diabetic CVD.
Collapse
Affiliation(s)
- Stella Bernardi
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- *Stella Bernardi:
| | - Andrea Michelli
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Giulia Zuolo
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| | - Riccardo Candido
- Diabetes Centre, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Via Puccini, 34100 Trieste, Italy
| | - Bruno Fabris
- Department of Medical Sciences, University of Trieste, Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
- Division of Medicina Clinica, Azienda Sanitaria Universitaria Integrata di Trieste (ASUITS), Cattinara Teaching Hospital, Strada di Fiume, 34100 Trieste, Italy
| |
Collapse
|
11
|
Tojo A, Kinugasa S, Fujita T, Wilcox CS. A local renal renin-angiotensin system activation via renal uptake of prorenin and angiotensinogen in diabetic rats. Diabetes Metab Syndr Obes 2016; 9:1-10. [PMID: 26848273 PMCID: PMC4723098 DOI: 10.2147/dmso.s91245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanism of activation of local renal renin-angiotensin system (RAS) has not been clarified in diabetes mellitus (DM). We hypothesized that the local renal RAS will be activated via increased glomerular filtration and tubular uptake of prorenin and angiotensinogen in diabetic kidney with microalbuminuria. Streptozotocin (STZ)-induced DM and control rats were injected with human prorenin and subsequently with human angiotensinogen. Human prorenin uptake was increased in podocytes, proximal tubules, macula densa, and cortical collecting ducts of DM rats where prorenin receptor (PRR) was expressed. Co-immunoprecipitation of kidney homogenates in DM rats revealed binding of human prorenin to the PRR and to megalin. The renal uptake of human angiotensinogen was increased in DM rats at the same nephron sites as prorenin. Angiotensin-converting enzyme was increased in podocytes, but decreased in the proximal tubules in DM rats, which may have contributed to unchanged renal levels of angiotensin despite increased angiotensinogen. The systolic blood pressure increased more after the injection of 20 μg of angiotensinogen in DM rats than in controls, accompanied by an increased uptake of human angiotensinogen in the vascular endothelium. In conclusion, endocytic uptake of prorenin and angiotensinogen in the kidney and vasculature in DM rats was contributed to increased tissue RAS and their pressor response to angiotensinogen.
Collapse
Affiliation(s)
- Akihiro Tojo
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
- Correspondence: Akihiro Tojo, Division of Nephrology and Endocrinology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan, Tel +81 3 3815 5411 ext 37219, Fax +81 3 3814 0021, Email
| | - Satoshi Kinugasa
- Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Center for Hypertension, Kidney and Vascular Research, Georgetown University, Washington, DC, USA
| |
Collapse
|
12
|
Gonzalez AA, Prieto MC. Renin and the (pro)renin receptor in the renal collecting duct: Role in the pathogenesis of hypertension. Clin Exp Pharmacol Physiol 2015; 42:14-21. [PMID: 25371190 DOI: 10.1111/1440-1681.12319] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/14/2022]
Abstract
The intrarenal renin-angiotensin system (RAS) plays a critical role in the pathogenesis and progression of hypertension and kidney disease. In angiotensin (Ang) II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by the AngII type I receptor (AT1 R), independent of blood pressure. Although the regulation of JG renin has been extensively studied, the mechanisms by which renin is regulated in the collecting duct remain unclear. The augmentation of renin synthesis and activity in the collecting duct may provide a pathway for additional generation of intrarenal and intratubular AngII formation due to the presence of angiotensinogen substrate and angiotensin-converting enzyme in the nephron. The recently described (pro)renin receptor ((P)RR) binds renin or prorenin, enhancing renin activity and fully activating the biologically inactive prorenin peptide. Stimulation of (P)RR also activates intracellular pathways related to fibrosis. Renin and the (P)RR are augmented in renal tissues of AngII-dependent hypertensive rats. However, the functional contribution of the (P)RR to enhanced renin activity in the collecting duct and its contribution to the development of hypertension and kidney disease have not been well elucidated. This review focuses on recent evidence demonstrating the mechanism of renin regulation in the collecting ducts and its interaction with the (P)RR. The data suggest that renin-(P)RR interactions may induce stimulation of intracellular pathways associated with the development of hypertension and kidney disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Institute of Chemistry, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | |
Collapse
|
13
|
Gonzalez AA, Prieto MC. Roles of collecting duct renin and (pro)renin receptor in hypertension: mini review. Ther Adv Cardiovasc Dis 2015; 9:191-200. [PMID: 25780059 PMCID: PMC4560657 DOI: 10.1177/1753944715574817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In angiotensin (Ang)-II-dependent hypertension, collecting duct renin synthesis and secretion are stimulated despite suppression of juxtaglomerular (JG) renin. This effect is mediated by Ang II type 1 (AT1) receptor independent of blood pressure. Although the regulation of JG renin is known, the mechanisms by which renin is regulated in the collecting duct are not completely understood. The presence of renin activity in the collecting duct may provide a pathway for intratubular Ang II formation since angiotensinogen substrate and angiotensin converting enzyme are present in the distal nephron. The recently named new member of the renin-angiotensin system (RAS), the (pro)renin receptor [(P)RR], is able to bind renin and the inactive prorenin, thus enhancing renin activity and fully activating prorenin. We have demonstrated that renin and (P)RR are augmented in renal tissues from rats infused with Ang II and during sodium depletion, suggesting a physiological role in intrarenal RAS activation. Importantly, (P)RR activation also causes activation of intracellular pathways associated with increased cyclooxygenase 2 expression and induction of profibrotic genes. In addition, renin and (P)RR are upregulated by Ang II in collecting duct cells. Although the mechanisms involved in their regulation are still under study, they seem to be dependent on the intrarenal RAS activation. The complexities of the mechanisms of stimulation also depend on cyclooxygenase 2 and sodium depletion. Our data suggest that renin and (P)RR can interact to increase intratubular Ang II formation and the activation of profibrotic genes in renal collecting duct cells. Both pathways may have a critical role in the development of hypertension and renal disease.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Minolfa C Prieto
- Department of Physiology, Rm 4061, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Abstract
The renin-angiotensin system (RAS) plays a fundamental role in preserving the circulation and yet, it may be injurious to heart and blood vessels and may also allow, and sometimes hasten, kidney disease progression. Thus, effective RAS inhibition may be a major pharmacologic necessity to control hypertension, to decrease cardiovascular complication, and to inhibit kidney disease progression. Unfortunately, the beneficial effects attained in the management of renal disease sometimes are incomplete. The reasons for these inadequate outcomes may include angiotensin escape or excessive local angiotensin production. Two pharmacologic strategies have been proposed to overcome this drawback including higher than recommended doses of RAS inhibitors and the combination of two different RAS inhibitors. However, three large studies have shown that these more intensive pharmacologic approaches should be treated with caution when applied to high-risk patients, as organ perfusion may fall to critical levels that may cause severe complications. Nevertheless, intensive RAS inhibition (including combination therapy) may be the sole alternative in patients with chronic kidney disease (CKD) in whom other therapeutics options have failed. In these cases, adequate precautions including close clinical and laboratory follow up should prevent major complications.
Collapse
Affiliation(s)
- Luis I Juncos
- J Robert Cade Foundation, Pedro de Oñate 253 Cordoba, Cordoba 5003, Argentina
| | | |
Collapse
|
15
|
Estacio RO. Renin-Angiotensin-Aldosterone System Blockade in Diabetes: Role of Direct Renin Inhibitors. Postgrad Med 2015; 121:33-44. [DOI: 10.3810/pgm.2009.05.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
|
17
|
Li W, Sullivan MN, Zhang S, Worker CJ, Xiong Z, Speth RC, Feng Y. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension. Hypertension 2014; 65:352-61. [PMID: 25421983 DOI: 10.1161/hypertensionaha.114.04458] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension.
Collapse
Affiliation(s)
- Wencheng Li
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.)
| | - Michelle N Sullivan
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.)
| | - Sheng Zhang
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.)
| | - Caleb J Worker
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.)
| | - Zhenggang Xiong
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.)
| | - Robert C Speth
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.)
| | - Yumei Feng
- From the Department of Biomedical Sciences, Center for Cardiovascular Research, Colorado State University, Fort Collins (W.L., M.N.S., C.J.W., Y.F.); Department of Physiology, Tulane Hypertension and Renal Center of Excellence (S.Z.), and Department of Pathology and Laboratory Medicine (Z.X.), Tulane University School of Medicine, New Orleans, LA; and Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL (R.C.S.).
| |
Collapse
|
18
|
Oshima Y, Morimoto S, Ichihara A. Roles of the (pro)renin receptor in the kidney. World J Nephrol 2014; 3:302-307. [PMID: 25374826 PMCID: PMC4220365 DOI: 10.5527/wjn.v3.i4.302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/14/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Prorenin receptor (PRR) is a multi-functioning protein possessing at least four different roles: (1) working as a receptor for renin and prorenin producing angiotensin I from angiotensinogen thus enhancing the tissue renin-angiotensin system; (2) inducing intracellular signals when a ligand binds to PRR; (3) participating in the functions of vacuolar proton ATPase; and (4) constituting the Wnt signaling receptor complex. Here, the roles of PRR in kidney physiology and diabetic conditions as well as recent findings regarding a soluble form of PRR are discussed. We also propose the possible mechanism concerning diabetic nephropathy as “trade-off hypothesis” from a PRR point of view. In brief, under hyperglycemic conditions, injured podocytes degrade degenerated proteins and intracellular organelles which require V-ATPase and PRR for vesicle internal acidification. Sustained hyperglycemia overproduces PRR molecules, which are transported to the transmembrane and bind to increased serum prorenin in the diabetic condition. This enhances tissue renin-angiotensin system and PRR-mediated mitogen-activated protein kinase signals, resulting in increased injurious molecules such as transforming growth factor-β, cyclooxygenase2, interleukin-1β, and tumor necrosis factor-α ending in diabetic nephropathy progression. Although many findings led us to better PRR understanding, future works should elucidate which PRR functions, of the four discussed here, are dominant in each cell and kidney disease context.
Collapse
|
19
|
Balakumar P, Jagadeesh G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology. Cell Signal 2014; 26:2147-60. [PMID: 25007996 DOI: 10.1016/j.cellsig.2014.06.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/27/2014] [Indexed: 12/25/2022]
Abstract
Ang II, the primary effector pleiotropic hormone of the renin-angiotensin system (RAS) cascade, mediates physiological control of blood pressure and electrolyte balance through its action on vascular tone, aldosterone secretion, renal sodium absorption, water intake, sympathetic activity and vasopressin release. It affects the function of most of the organs far beyond blood pressure control including heart, blood vessels, kidney and brain, thus, causing both beneficial and deleterious effects. However, the protective axis of the RAS composed of ACE2, Ang (1-7), alamandine, and Mas and MargD receptors might oppose some harmful effects of Ang II and might promote beneficial cardiovascular effects. Newly identified RAS family peptides, Ang A and angioprotectin, further extend the complexities in understanding the cardiovascular physiopathology of RAS. Most of the diverse actions of Ang II are mediated by AT1 receptors, which couple to classical Gq/11 protein and activate multiple downstream signals, including PKC, ERK1/2, Raf, tyrosine kinases, receptor tyrosine kinases (EGFR, PDGF, insulin receptor), nuclear factor κB and reactive oxygen species (ROS). Receptor activation via G12/13 stimulates Rho-kinase, which causes vascular contraction and hypertrophy. The AT1 receptor activation also stimulates G protein-independent signaling pathways such as β-arrestin-mediated MAPK activation and Src-JAK/STAT. AT1 receptor-mediated activation of NADPH oxidase releases ROS, resulting in the activation of pro-inflammatory transcription factors and stimulation of small G proteins such as Ras, Rac and RhoA. The components of the RAS and the major Ang II-induced signaling cascades of AT1 receptors are reviewed.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| | - Gowraganahalli Jagadeesh
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
20
|
Chandel N, Ayasolla K, Lan X, Rai P, Mikulak J, Husain M, Malhotra A, McGowan J, Singhal PC. Renin modulates HIV replication in T cells. J Leukoc Biol 2014; 96:601-9. [PMID: 24970860 DOI: 10.1189/jlb.2a0414-192r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV is known to subvert cellular machinery to enhance its replication. Recently, HIV has been reported to enhance TC renin expression. We hypothesized that HIV induces and maintains high renin expression to promote its own replication in TCs. Renin enhanced HIV replication in TCs in a dose-dependent manner. (P)RR-deficient TCs, as well as those lacking renin, displayed attenuated NF-κB activity and HIV replication. TCs treated with renin and Hpr displayed activation of the (P)RR-PLZF protein signaling cascade. Renin, HIV, and Hpr activated the PI3K pathway. Both renin and Hpr cleaved Agt (a renin substrate) to Ang I and also cleaved Gag polyproteins (protease substrate) to p24. Furthermore, aliskiren, a renin inhibitor, reduced renin- and Hpr-induced cleavage of Agt and Gag polyproteins. These findings indicate that renin contributes to HIV replication in TCs via the (P)RR-PLZF signaling cascade and through cleavage of the Gag polyproteins.
Collapse
Affiliation(s)
- Nirupama Chandel
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Kamesh Ayasolla
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Xiqian Lan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Partab Rai
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Mohammad Husain
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Ashwani Malhotra
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Joseph McGowan
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| | - Pravin C Singhal
- Center of Immunology and Inflammation, Feinstein Institute for Medical Research, North Shore LIJ Hofstra Medical School, Manhasset, New York, USA; and
| |
Collapse
|
21
|
te Riet L, van den Heuvel M, Peutz-Kootstra CJ, van Esch JHM, van Veghel R, Garrelds IM, Musterd-Bhaggoe U, Bouhuizen AM, Leijten FPJ, Danser AHJ, Batenburg WW. Deterioration of kidney function by the (pro)renin receptor blocker handle region peptide in aliskiren-treated diabetic transgenic (mRen2)27 rats. Am J Physiol Renal Physiol 2014; 306:F1179-89. [PMID: 24694588 DOI: 10.1152/ajprenal.00010.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dual renin-angiotensin system (RAS) blockade in diabetic nephropathy is no longer feasible because of the profit/side effect imbalance. (Pro)renin receptor [(P)RR] blockade with handle region peptide (HRP) has been reported to exert beneficial effects in various diabetic models in a RAS-independent manner. To what degree (P)RR blockade adds benefits on top of RAS blockade is still unknown. In the present study, we treated diabetic TGR(mREN2)27 rats, a well-established nephropathy model with high prorenin levels [allowing continuous (P)RR stimulation in vivo], with HRP on top of renin inhibition with aliskiren. Aliskiren alone lowered blood pressure and exerted renoprotective effects, as evidenced by reduced glomerulosclerosis, diuresis, proteinuria, albuminuria, and urinary aldosterone levels as well as diminished renal (P)RR and ANG II type 1 receptor expression. It also suppressed plasma and tissue RAS activity and suppressed cardiac atrial natriuretic peptide and brain natriuretic peptide expression. HRP, when given on top of aliskiren, did not alter the effects of renin inhibition on blood pressure, RAS activity, or aldosterone. However, it counteracted the beneficial effects of aliskiren in the kidney, induced hyperkalemia, and increased plasma plasminogen activator-inhibitor 1, renal cyclooxygenase-2, and cardiac collagen content. All these effects have been linked to (P)RR stimulation, suggesting that HRP might, in fact, act as a partial agonist. Therefore, the use of HRP on top of RAS blockade in diabetic nephropathy is not advisable.
Collapse
Affiliation(s)
- Luuk te Riet
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Mieke van den Heuvel
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | | | - Joep H M van Esch
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Richard van Veghel
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Ingrid M Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Usha Musterd-Bhaggoe
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Angelique M Bouhuizen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Frank P J Leijten
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Wendy W Batenburg
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| |
Collapse
|
22
|
Dhakarwal P, Agrawal V, Kumar A, Goli KM, Agrawal V. Update on role of direct renin inhibitor in diabetic kidney disease. Ren Fail 2014; 36:963-9. [PMID: 24678880 DOI: 10.3109/0886022x.2014.900425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease (ESRD). Renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of DKD with angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) being the mainstay of treatment. Systemic RAAS activity has been implicated in the pathogenesis of DKD, but lately interest has shifted to intrarenal RAAS effect. With the discovery of the (pro)renin receptor and ACE independent pathways of angiotensin II production, our understanding of role of renin in end organ damage has improved significantly. SUMMARY We summarize our current understanding of ACE dependent and independent pathways in the development of DKD and the preclinical models demonstrating renal effects of direct renin inhibitors (DRIs). We then review clinical studies and trials performed so far evaluating the efficacy of aliskiren on renal outcomes and safety in DKD. KEY MESSAGE At present, there is little evidence for renal benefit of aliskiren in DKD beyond that offered by ACEIs or ARBs. Combining aliskiren with ACEI or ARB in DKD did not significantly improve renal outcomes in comparison with ACEI or ARB monotherapy in clinical trials. Slightly more adverse events including hyperkalemia, acute kidney injury and hypotension were observed in the combination therapy as compared to the monotherapy. Thus, current evidence suggests that aliskiren, because of its antihypertensive and antiproteinuric effects, maybe used as monotherapy in DKD and considered an equivalent alternative to ACEIs or ARBs. Careful monitoring for renal adverse effects would allow safe clinical use of DRI.
Collapse
Affiliation(s)
- Pradeep Dhakarwal
- Division of Nephrology, Lehigh Valley Health Network , Allentown, PA , USA
| | | | | | | | | |
Collapse
|
23
|
Liu FY, Liu XY, Zhang LJ, Cheng YP, Jiang YN. Binding of prorenin to (pro)renin receptor induces the proliferation of human umbilical artery smooth muscle cells via ROS generation and ERK1/2 activation. J Renin Angiotensin Aldosterone Syst 2014; 15:99-108. [PMID: 24591529 DOI: 10.1177/1470320314525215] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Since the discovery of the (pro)renin receptor (PRR), it has been considered as a novel bioactive molecule of the renin-angiotensin system (RAS). The activation of PRR can elicit a series of angiotensin II (AngII)-independent effects. MATERIALS AND METHODS In this study, we investigated the effects of prorenin and PRR on the proliferation of human umbilical artery smooth muscle (HUASM) cells and explored the possible mechanisms underlying these effects. RESULTS The binding of prorenin to PRR can promote proliferation and upregulate the anti-apoptotic protein Bcl-2 and downregulate the pro-apoptotic protein Bax independently of AngII in HUASM cells. In addition, the binding of prorenin to PRR can also increase the production of reactive oxygen species (ROS) and the phosphorylation of extracellular signal-regulated kinase (ERK1/2) independently of AngII. The pretreatment of HUASM cells with an NADPH oxidase inhibitor DPI decreased the production of ROS and also decreased the phosphorylation of ERK1/2. Furthermore, pretreatment of HUASM cells with DPI and the ERK1/2 inhibitor PD98059 significantly attenuated the prorenin-induced proliferation and regulation of apoptosis factors. CONCLUSION Binding of prorenin to PRR can induce HUASM cell proliferation via the ROS generation and ERK1/2 activation.
Collapse
Affiliation(s)
- Feng Y Liu
- Dalian Medical University, Dalian, PR China
| | - Xiao Y Liu
- Dalian Medical University, Dalian, PR China
| | - Li J Zhang
- Dalian Medical University, Dalian, PR China
| | - Yun P Cheng
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yi N Jiang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
24
|
Nguyen G, Blanchard A, Curis E, Bergerot D, Chambon Y, Hirose T, Caumont-Prim A, Tabard SB, Baron S, Frank M, Totsune K, Azizi M. Plasma soluble (pro)renin receptor is independent of plasma renin, prorenin, and aldosterone concentrations but is affected by ethnicity. Hypertension 2013; 63:297-302. [PMID: 24218434 DOI: 10.1161/hypertensionaha.113.02217] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A soluble (pro)renin receptor (sPRR) circulates in plasma and is able to bind renin and prorenin. It is not known whether plasma sPRR concentrations vary with the activity of the renin-angiotensin system. We measured plasma sPRR, renin, prorenin, and aldosterone concentrations in 121 white and 9 black healthy subjects, 40 patients with diabetes mellitus, 41 hypertensive patients with or without renin-angiotensin system blockers, 9 patients with primary aldosteronism, and 10 patients with Gitelman syndrome. Median physiological plasma sPRR concentration was 23.5 ng/mL (interquartile range, 20.9-26.5) under usual uncontrolled sodium diet. sPRR concentration in healthy subjects, unlike renin and prorenin, did not display circadian variation or dependence on age, sex, posture, or hormonal status. sPRR concentrations were ≈25% lower in black than in white subjects, whereas renin concentrations were ≈40% lower. Patients with diabetes mellitus (average renin-high prorenin levels) and with hypertension only (average renin-average prorenin levels) had sPRR concentrations similar to healthy subjects. Renin-angiotensin system blockade was associated with increase of sPRR concentration by ≈12%. sPRR in patients with primary aldosteronism (low renin-low prorenin) and Gitelman syndrome (high renin-high prorenin) were similar and ≈10% higher than in healthy subjects. There was no correlation between sPRR and renin or prorenin. In conclusion, our results show that plasma sPRR concentrations are dependent on ethnicity and independent of renin, prorenin, and aldosterone concentrations in healthy subjects and in patients with contrasted degrees of renin-angiotensin system activity.
Collapse
Affiliation(s)
- Geneviève Nguyen
- Centre for Interdisciplinary Research in Biology, UMR INSERM U1050/CNRS 7241, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lu X, Garrelds IM, Wagner CA, Danser AHJ, Meima ME. (Pro)renin receptor is required for prorenin-dependent and -independent regulation of vacuolar H+-ATPase activity in MDCK.C11 collecting duct cells. Am J Physiol Renal Physiol 2013; 305:F417-25. [DOI: 10.1152/ajprenal.00037.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prorenin binding to the prorenin receptor [(P)RR] results in nonproteolytic activation of prorenin but also directly (i.e., independent of angiotensin generation) activates signal transduction cascades that can lead to the upregulation of profibrotic factors. The (P)RR is an accessory protein of vacuolar-type H+-ATPase (V-ATPase) and is required for V-ATPase integrity. In addition, in collecting duct cells, prorenin-induced activation of Erk depends on V-ATPase activity. However, whether prorenin binding to the (P)RR directly regulates V-ATPase activity is as yet unknown. Here, we studied the effect of prorenin on plasma membrane V-ATPase activity in Madin-Darby canine kidney clone 11 (MDCK.C11) cells, which resemble intercalated cells of the collecting duct. Prorenin increased V-ATPase activity at low nanomolar concentrations, and the V-ATPase inhibitor bafilomycin A1, but not the angiotensin II type 1 and 2 receptor blockers irbesartan and PD-123319, prevented this. Increased, but not basal, V-ATPase activity was abolished by small interfering RNA depletion of the (P)RR. Unexpectedly, the putative peptidic (P)RR blocker handle region peptide also increasedV-ATPase activity in a (P)RR-dependent manner. Finally, [Arg8]-vasopressin-stimulated V-ATPase activity and cAMP production were also abolished by (P)RR depletion. Our results show that in MDCK.C11 cells, the (P)RR is required for prorenin-dependent and -independent regulation of V-ATPase activity.
Collapse
Affiliation(s)
- Xifeng Lu
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Ingrid M. Garrelds
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | | | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| | - Marcel E. Meima
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands; and
| |
Collapse
|
26
|
Lu X, Roksnoer LCW, Danser AHJ. The intrarenal renin-angiotensin system: does it exist? Implications from a recent study in renal angiotensin-converting enzyme knockout mice. Nephrol Dial Transplant 2013; 28:2977-82. [PMID: 23901049 DOI: 10.1093/ndt/gft333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A large body of evidence supports the presence of local production of angiotensins in the kidney. It is widely believed that renin-angiotensin system (RAS) blockers, through interference with such production and/or the local effects of angiotensin (Ang) II, exert protective renal effects. Yet, whether such production affects blood pressure independently from the circulating RAS is still a matter of debate. To investigate this, a recent study by Gonzalez-Villalobos et al. (J Clin Invest 2013; 123: 2011-2023) has studied the consequences of infusing Ang II or the nitric oxide synthase inhibitor l-NAME in mice lacking renal angiotensin-converting enzyme (ACE). They observed blunted blood pressure and renal responses in the renal ACE knockout mice versus wild-type controls. This review discusses to what degree these findings can be considered as unequivocal evidence for ACE-mediated Ang II formation in the kidney as an independent determinant of hypertension.
Collapse
Affiliation(s)
- Xifeng Lu
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
27
|
The (pro)renin receptor blocker handle region peptide upregulates endothelium-derived contractile factors in aliskiren-treated diabetic transgenic (mREN2)27 rats. J Hypertens 2013; 31:292-302. [PMID: 23303354 DOI: 10.1097/hjh.0b013e32835c1789] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Elevated prorenin levels associate with microvascular complications in patients with diabetes mellitus, possibly because prorenin affects vascular function in diabetes mellitus, for example by generating angiotensins following its binding to the (pro)renin receptor [(P)RR]. Here we evaluated whether the renin inhibitor aliskiren, with or without the putative (P)RR antagonist handle region peptide (HRP) improved the disturbed vascular function in diabetic TGR(mREN2)27 rats, a high-prorenin, high-(P)RR hypertensive model. METHODS Telemetry transmitters were implanted to monitor blood pressure. After 3 weeks of treatment, rats were sacrificed, and iliac and mesenteric arteries were removed to evaluate vascular reactivity. RESULTS Diabetes mellitus enhanced the contractile response to nitric oxide synthase (NOS) blockade, potentiated the response to phenylephrine, diminished the effectiveness of endothelin type A (ETA) receptor blockade and allowed acetylcholine to display constrictor, cyclo-oxygenase-2 mediated, endothelium-dependent responses in the presence of NOS inhibition and blockers of endothelium-derived hyperpolarizing factors. Aliskiren normalized blood pressure, suppressed renin activity, and reversed the above vascular effects, with the exception of the altered effectiveness of ETA receptor blockade. Remarkably, when adding HRP on top of aliskiren, its beneficial vascular effects either disappeared or were greatly diminished, although HRP did not alter the effect of aliskiren on blood pressure and renin activity. CONCLUSIONS Renin inhibition improves vascular dysfunction in diabetic hypertensive rats, and HRP counteracts this effect independently of blood pressure and angiotensin. (P)RR blockade therefore is unlikely to be a new tool to further suppress the renin-angiotensin system (RAS) on top of existing RAS blockers.
Collapse
|
28
|
Lizakowski S, Tylicki L, Rutkowski B. Direct renin inhibition--a promising strategy for renal protection? Med Sci Monit 2013; 19:451-7. [PMID: 23756824 PMCID: PMC3684114 DOI: 10.12659/msm.883949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Activation of the renin–angiotensin–aldosterone system (RAAS) plays a key role in the progression of chronic kidney disease (CKD). RAAS inhibitors, such as angiotensin converting enzyme inhibitors (ACEis) and angiotensin II receptor blockers (ARBs), decrease the rate of progression of diabetic and non-diabetic nephropathies and are first-line therapies for CKD. Although these agents are highly effective, current therapeutic strategies are unable to sufficiently suppress the RAAS and stop CKD progression. Aliskiren, the first in a new class of RAAS-inhibiting agents (direct renin inhibitors) has been approved to treat hypertension. Aliskiren exerts renoprotective, cardioprotective, and anti-atherosclerotic effects in animal models that appear to be independent of its blood pressure lowering activity. Early clinical studies using urinary protein excretion as a marker of renal involvement suggest a possibly novel role for aliskiren in treating CKD. This review discusses the antiproteinuric efficacy and safety of aliskiren and considers the evidence for its potential renoprotection.
Collapse
Affiliation(s)
- Sławomir Lizakowski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | | | | |
Collapse
|
29
|
Abstract
The renin–angiotensin system (RAS) affects vascular tone, cardiac output and kidney function. By these means the RAS plays a key role in the pathogenesis of arterial hypertension. As a result, RAS inhibition is highly effective not only in lowering blood pressure but also in reducing kidney disease progression (particularly when associated with proteinuria) and cardiovascular events. Among RAS blocking agents, direct renin inhibitors have shown not only excellent efficacy in hypertension control but also pharmacologic tolerance that is comparable with other renin–angiotensin suppressors. Indeed, aliskiren, the only direct renin inhibitor available is effective in controlling blood pressure as monotherapy or in combination with other antihypertensive drugs, irrespective of patient’s age, ethnicity or sex. It is also effective in patients with metabolic syndrome, obesity and diabetes. Long-term studies comparing ‘hard endpoints’ of aliskiren therapy versus treatment with other RAS inhibitors, including cardiac and kidney protection, are currently ongoing. Combined with other antihypertensive agents, aliskiren not only improves their hypotensive response but may also lessen the adverse effects of other drugs. In high-risk patients, however, precautions should be taken when combining two or more renin–angiotensin inhibiting agents, as tissue perfusion may be highly renin-dependent in these patients and serious adverse side effects could take place.
Collapse
Affiliation(s)
- Luis Juncos
- Fundación Robert Cade, Pedro de Oñate 253, Cordoba 5003, Argentina
| |
Collapse
|
30
|
Abstract
The (pro)renin receptor [(P)RR] is a molecule that binds prorenin and renin in tissues, leading not only to their activation, but also carrying out intracellular signaling. As a key player in the tissue renin-angiotensin system, (P)RR activation plays an important role in the development of end-organ damage in hypertension and diabetes. One fragment of (P)RR is also known as ATP6AP2 because it is associated with vacuolar H(+)-ATPase (V-ATPase). V-ATPase is a multi-subunit proton pump involved in diverse and fundamental aspects of cellular physiology, including receptor-mediated endocytosis and recycling, processing of proteins and signaling molecules, membrane sorting and trafficking, and activation of lysosomal/autophagosomal enzymes. The role of (P)RR in the function of V-ATPase has been investigated in recent studies using conditional knockout mice. Furthermore, the novel function of (P)RR as an adaptor protein between the Wnt receptor complex and V-ATPase has been demonstrated. Thus, (P)RR is a multi-functional molecule that has complex structure and functionality. This review focuses on current insights into the possibility of (P)RR acting as a modulator of V-ATPase and future perspectives in translational research.
Collapse
|
31
|
Abstract
Inhibition of the RAAS (renin–angiotensin–aldosterone system) plays a pivotal role in the prevention and treatment of diabetic nephropathy and a spectrum of other proteinuric kidney diseases. Despite documented beneficial effects of RAAS inhibitors in diabetic patients with nephropathy, reversal of the progressive course of this disorder or at least long-term stabilization of renal function are often difficult to achieve, and many patients still progress to end-stage renal disease. Incomplete inhibition of the RAAS has been postulated as one of reasons for unsatisfactory therapeutic responses to RAAS inhibition in some patients. Inhibition of renin, a rate-limiting step in the RAAS activation cascade, could overcome at least some of the abovementioned problems associated with the treatment with traditional RAAS inhibitors. The present review focuses on experimental and clinical studies evaluating the two principal approaches to renin inhibition, namely direct renin inhibition with aliskiren and inhibition of the (pro)renin receptor. Moreover, the possibilities of renin inhibition and nephroprotection by interventions primarily aiming at non-RAAS targets, such as vitamin D, urocortins or inhibition of the succinate receptor GPR91 and cyclo-oxygenase-2, are also discussed.
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review examines the evidence that plasma renin and/or prorenin level may be used to guide therapy in hypertension and as an independent risk factor for future cardiovascular events. RECENT FINDINGS A large number of retrospective analyses of patient populations in clinical trials, in whom 'baseline' renin measurements were available, supports that high renin, but not high prorenin levels, are indicative of future cardiovascular disease and death, particularly in patients with kidney dysfunction and/or hypertension. The relationship is not affected by the use of renin-angiotensin system (RAS) blockers. High renin levels also tend to support the use of RAS inhibitors as first-choice antihypertensive agents. However, the added value of a renin measurement on top of traditional risk factors is modest, and the pressure response to RAS blockade, even in high-renin patients, varies widely. SUMMARY Measuring 'baseline' renin as a marker of future cardiovascular events or to determine the choice of drug is of limited value in an individual patient.
Collapse
|
33
|
Li W, Peng H, Seth DM, Feng Y. The Prorenin and (Pro)renin Receptor: New Players in the Brain Renin-Angiotensin System? Int J Hypertens 2012; 2012:290635. [PMID: 23316344 PMCID: PMC3536329 DOI: 10.1155/2012/290635] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/26/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022] Open
Abstract
It is well known that the brain renin-angiotensin (RAS) system plays an essential role in the development of hypertension, mainly through the modulation of autonomic activities and vasopressin release. However, how the brain synthesizes angiotensin (Ang) II has been a debate for decades, largely due to the low renin activity. This paper first describes the expression of the vasoconstrictive arm of RAS components in the brain as well as their physiological and pathophysiological significance. It then focus on the (pro)renin receptor (PRR), a newly discovered component of the RAS which has a high level in the brain. We review the role of prorenin and PRR in peripheral organs and emphasize the involvement of brain PRR in the pathogenesis of hypertension. Some future perspectives in PRR research are heighted with respect to novel therapeutic target for the treatment of hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wencheng Li
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Hua Peng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Dale M. Seth
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| | - Yumei Feng
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue SL-39, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Ichihara A, Itoh H, Inagami T. Critical roles of (pro)renin receptor-bound prorenin in diabetes and hypertension: sallies into therapeutic approach. ACTA ACUST UNITED AC 2012; 2:15-9. [PMID: 20409880 DOI: 10.1016/j.jash.2007.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/13/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
High plasma prorenin levels in diabetic patients predict microvascular complications, but the mechanism of the connection between them has remained unclear. (Pro)renin receptors were recently found in the human kidney, and their distribution in various organs, including the heart, has been identified. Binding of prorenin to the (pro)renin receptor triggers two major pathways: the angiotensin II-dependent pathway as a result of conversion of prorenin to the active form of prorenin by a conformational change, and the angiotensin II-independent intracellular pathway via the (pro)renin receptor. To investigate whether the (pro)renin-receptor-dependent pathways contribute to the pathophysiology of the end-organ damage that occurs in diabetes and hypertension, a (pro)renin receptor blocker (PRRB), which binds to the receptor and competitively inhibits prorenin binding to the receptor, was administered to rats with streptozotocin-induced diabetes and to stroke-prone spontaneously hypertensive rats. PRRB significantly inhibited the development and progression of end-organ damage in these animal models of diabetes and hypertension, and it was of greater benefit than conventional inhibitors in relation to the renin-angiotensin system in diabetic angiotensin II-type 1a-receptor-deficient mice. The (pro)renin receptor may prove useful as an important therapeutic target for the prevention and regression of end-organ damage in diabetes and hypertension.
Collapse
|
35
|
Prieto MC, Gonzalez AA, Navar LG. Evolving concepts on regulation and function of renin in distal nephron. Pflugers Arch 2012; 465:121-32. [PMID: 22990760 DOI: 10.1007/s00424-012-1151-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/24/2012] [Accepted: 08/30/2012] [Indexed: 01/13/2023]
Abstract
Sustained stimulation of the intrarenal/intratubular renin-angiotensin system in a setting of elevated arterial pressure elicits renal vasoconstriction, increased sodium reabsorption, proliferation, fibrosis, and eventual renal injury. Activation of luminal AT(1) receptors in proximal and distal nephron segments by local Ang II formation stimulates various transport systems. Augmented angiotensinogen (AGT) production by proximal tubule cells increases AGT secretion contributing to increased proximal Ang II levels and leading to spillover of AGT into the distal nephron segments, as reflected by increased urinary AGT excretion. The increased distal delivery of AGT provides substrate for renin, which is expressed in principal cells of the collecting tubule and collecting ducts, and is also stimulated by AT(1) receptor activation. Renin and prorenin are secreted into the tubular lumen and act on the AGT delivered from the proximal tubule to form more Ang I. The catalytic actions of renin and or prorenin may be enhanced by binding to prorenin receptors on the intercalated cells or soluble prorenin receptor secreted into the tubular fluid. There is also increased luminal angiotensin converting enzyme in collecting ducts facilitating Ang II formation leading to stimulation of sodium reabsorption via sodium channel and sodium/chloride co-transporter. Thus, increased collecting duct renin contributes to Ang II-dependent hypertension by augmenting distal nephron intratubular Ang II formation leading to sustained stimulation of sodium reabsorption and progression of hypertension.
Collapse
Affiliation(s)
- Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center of Excellence, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
36
|
Sever PS, Chang CL, Prescott MF, Gupta A, Poulter NR, Whitehouse A, Scanlon M. Is plasma renin activity a biomarker for the prediction of renal and cardiovascular outcomes in treated hypertensive patients? Observations from the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Eur Heart J 2012; 33:2970-9. [DOI: 10.1093/eurheartj/ehs241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Jagadeesh G, Balakumar P, Stockbridge N. How well do aliskiren's purported mechanisms track its effects on cardiovascular and renal disorders? Cell Signal 2012; 24:1583-91. [DOI: 10.1016/j.cellsig.2012.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/04/2012] [Indexed: 01/27/2023]
|
38
|
Inhibition of the renin-angiotensin-aldosterone system: is there room for dual blockade in the cardiorenal continuum? J Hypertens 2012; 30:647-54. [PMID: 22278139 DOI: 10.1097/hjh.0b013e32834f6e00] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antagonism of renin-angiotensin-aldosterone system is exerted through angiotensin-converting enzyme inhibitors, angiotensin receptor antagonists, renin inhibitors and mineralocorticoid receptor antagonists. These drugs have been successfully tested in numerous trials and in different clinical settings. The original indications of renin-angiotensin-aldosterone system blockers have progressively expanded from the advanced stages to the earlier stages of cardiorenal continuum. To optimize the degree of blockade of renin-angiotensin-aldosterone system, dose uptitrations of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists or the use of a dual blockade, initially identified with the combination of angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists, have been proposed. The data from the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial (ONTARGET) study do not support this specific dual blockade approach. However, the dual blockade of angiotensin-converting enzyme inhibitors/angiotensin receptor antagonists with direct renin inhibitors is currently under investigation while that based on an aldosterone blocker with any of the previous three drugs requires more evidence beyond heart failure. In this review, we revisited potential advantages of dual blockade of renin-angiotensin-aldosterone system in arterial hypertension and diabetes.
Collapse
|
39
|
Bonanni L, Dalla Vestra M. Oral renin inhibitors in clinical practice: a perspective review. Ther Adv Chronic Dis 2012; 3:173-181. [PMID: 23342233 PMCID: PMC3539287 DOI: 10.1177/2040622312446244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypertension is an important risk factor for cardiovascular morbidity and mortality. The importance of the renin-angiotensin-aldosterone system (RAAS) in cardiovascular and renal diseases has long been recognized: for this reason the conventional therapies, such as angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs), β-blockers, and aldosterone antagonists represent the backbone of current antihypertensive therapy. Aliskiren is the first direct renin inhibitor (DRI) suitable for oral administration. By achieving more complete renin-angiotensin system inhibition, direct renin inhibitors may afford greater protection from hypertensive complications. Present evidence indicates that aliskiren reduces baseline systolic and diastolic blood pressure greater than placebo and that it is as effective as other first-line antihypertensive agents. Extra advantages can be reached when it is used in combination therapy. Clinical trials and in vitro studies also suggest that aliskiren has several cardioprotective and renoprotective effects. Therapy with aliskiren is well tolerated, but recently some concerns have arisen because of the early termination of the ALTITUDE study due to an increased incidence of adverse effects.
Collapse
Affiliation(s)
- Luca Bonanni
- Department of Internal Medicine, Ospedale dell'Angelo-General Hospital, Mestre-Venezia, Italy
| | | |
Collapse
|
40
|
Krop M, Lu X, Danser AJ, Meima ME. The (pro)renin receptor. A decade of research: what have we learned? Pflugers Arch 2012; 465:87-97. [PMID: 22543358 PMCID: PMC3553411 DOI: 10.1007/s00424-012-1105-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/02/2012] [Indexed: 01/26/2023]
Abstract
The discovery of a (pro)renin receptor ((P)RR) in 2002 provided a long-sought explanation for tissue renin–angiotensin system (RAS) activity and a function for circulating prorenin, the inactive precursor of renin, in end-organ damage. Binding of renin and prorenin (referred to as (pro)renin) to the (P)RR increases angiotensin I formation and induces intracellular signalling, resulting in the production of profibrotic factors. However, the (pro)renin concentrations required for intracellular signalling in vitro are several orders of magnitude above (patho)physiological plasma levels. Moreover, the phenotype of prorenin-overexpressing animals could be completely attributed to angiotensin generation, possibly even without the need for a receptor. The efficacy of the only available putative (pro)renin receptor blocker handle region peptide remains doubtful, leading to inconclusive results. The fact that, in contrast to other RAS components, (P)RR knock-outs, even tissue-specific, are lethal, points to an important, (pro)renin-independent, function of the (P)RR. Indeed, recent research has highlighted ancillary functions of the (P)RR as an essential accessory protein of the vacuolar-type H+-ATPase (V-ATPase), and in this role, it acts as an intermediate in Wnt signalling independent of (pro)renin. In conclusion, (pro)renin-dependent signalling is unlikely in non-(pro)renin synthesizing organs, and the (P)RR role in V-ATPase integrity and Wnt signalling may explain some, if not all of the phenotypes previously associated with (pro)renin-(P)RR interaction.
Collapse
Affiliation(s)
- Manne Krop
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Xifeng Lu
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - A.H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Marcel E. Meima
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
41
|
Volpe M, Battistoni A, Chin D, Rubattu S, Tocci G. Renin as a biomarker of cardiovascular disease in clinical practice. Nutr Metab Cardiovasc Dis 2012; 22:312-317. [PMID: 22402063 DOI: 10.1016/j.numecd.2011.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/01/2011] [Accepted: 12/12/2011] [Indexed: 01/25/2023]
Abstract
The search for novel circulating blood biomarkers as predictors of cardiovascular (CV) risk and prognosis is a continuing field of interest in clinical medicine. Biomarkers from several pathophysiological pathways, including markers of organ damage, of inflammation, of the atherosclerotic process and of the coagulation pathway, have been investigated in the last decades. A particular interest has been raised for neurohormonal factors. The role of the activation of the sympathetic system and the renin-angiotensin-aldosterone system (RAAS) in the development of CV diseases has been extensively explored. Renin is the first limiting step of the RAAS and its role as a biomarker to improve CV risk stratification still remains a topic of debate. Several studies have shown that elevated plasma renin activity is associated with increased morbidity and mortality in patients with CV disease. The aim of this paper is to critically evaluate the evidence on the role of renin as a biomarker of CV risk and prognosis. With the new advances of pharmacological treatment acting on the RAAS, the effect of elevated levels of renin on the prognosis of these patients becomes even more intriguing.
Collapse
Affiliation(s)
- M Volpe
- Cardiology Department, Department of Clinical and Molecular Medicine, 2nd School of Medicine, University of Rome Sapienza, S Andrea Hospital, Rome, Italy.
| | | | | | | | | |
Collapse
|
42
|
Evaluation of a direct prorenin assay making use of a monoclonal antibody directed against residues 32-39 of the prosegment. J Hypertens 2012; 29:2138-46. [PMID: 21881521 DOI: 10.1097/hjh.0b013e32834b1978] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prorenin is an early marker of microvascular complications in diabetes. However, it can only be measured indirectly (following its conversion to renin), with a renin immunoradiometric assay (IRMA). Unfortunately, treatment with a renin inhibitor interferes with this assay, because renin inhibitors induce a conformational change in prorenin, thereby allowing its detection as renin. METHODS We evaluated Molecular Innovation's new direct prorenin ELISA, which makes use of an antibody that recognizes an epitope near prorenin's putative cleavage site (R 43 L 44), thus no longer requiring prorenin activation. Plasma samples of 41 diabetic individuals treated with aliskiren (renin inhibitor) or irbesartan were tested. Semi-purified recombinant prorenin was used as standard, because the ELISA standard yielded approximately 10-fold lower values in the renin IRMA following its conversion to renin. RESULTS The ELISA detected prorenin levels that were identical to those determined by the IRMA in untreated and irbesartan-treated individuals. Yet, it yielded higher prorenin levels in aliskiren-treated individuals. Aliskiren, at levels reached in plasma during treatment, did not interfere with the ELISA, but allowed the detection of up to 20-30% of prorenin as renin in the IRMA, thereby resulting in a significant overestimation of renin and an underestimation of prorenin. The ELISA rendered results within 2 h and did not require a pretreatment period of several days to convert prorenin to renin. CONCLUSION The new direct assay allows rapid prorenin detection, is not hampered by aliskiren when used at clinically relevant doses, and might be used to identify diabetic patients developing retinopathy and/or nephropathy.
Collapse
|
43
|
Renal responses to three types of renin-angiotensin system blockers in patients with diabetes mellitus on a high-salt diet: a need for higher doses in diabetic patients? J Hypertens 2012; 29:2454-61. [PMID: 22002336 DOI: 10.1097/hjh.0b013e32834c627a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Activation of the renal renin-angiotensin system in patients with diabetes mellitus appears to contribute to the risk of nephropathy. Recently, it has been recognized than an elevation of prorenin in plasma also provides a strong indication of risk of nephropathy. This study was designed to examine renin-angiotensin system control mechanisms in the patient with diabetes mellitus. METHODS We enrolled 43 individuals with type 2 diabetes mellitus. All individuals were on a high-salt diet to minimize the contribution of the systemic renin-angiotensin system. After an acute exposure to captopril (25 mg), they were randomized to treatment with either irbesartan (300 mg) or aliskiren (300 mg) for 2 weeks. RESULTS All agents acutely lowered blood pressure and plasma aldosterone, and increased renal plasma flow and glomerular filtration rate. Yet, only captopril and aliskiren acutely increased plasma renin and decreased plasma angiotensin II, whereas irbesartan acutely affected neither renin nor angiotensin II. Plasma renin and angiotensin II subsequently did increase upon chronic irbesartan treatment. When given on day 14, irbesartan and aliskiren again induced the above hemodynamic, renal and adrenal effects, yet without significantly changing plasma renin. Irbesartan at that time did not affect plasma angiotensin II, whereas aliskiren lowered it to almost zero. CONCLUSION The relative resistance of the renal renin response to acute (irbesartan) and chronic (irbesartan and aliskiren) renin-angiotensin system blockade supports the concept of an activated renal renin-angiotensin system in diabetes, particularly at the level of the juxtaglomerular cell, and implies that diabetic patients might require higher doses of renin-angiotensin system blockers to fully suppress the renal renin-angiotensin system.
Collapse
|
44
|
Pyram R, Kansara A, Banerji MA, Loney-Hutchinson L. Chronic kidney disease and diabetes. Maturitas 2012; 71:94-103. [DOI: 10.1016/j.maturitas.2011.11.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 12/15/2022]
|
45
|
Cheng H, Fan X, Moeckel GW, Harris RC. Podocyte COX-2 exacerbates diabetic nephropathy by increasing podocyte (pro)renin receptor expression. J Am Soc Nephrol 2011; 22:1240-51. [PMID: 21737546 DOI: 10.1681/asn.2010111149] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) increases podocyte cyclooxygenase-2 (COX-2) expression, and COX-2 inhibition reduces proteinuria and glomerular injury in animal models of diabetes. To investigate the role of podocyte COX-2 in development of diabetic nephropathy, we employed a streptozotocin model of diabetic mellitus in wild-type and transgenic mice expressing COX-2 selectively in podocytes. Progressive albuminuria developed only in diabetic COX-2 transgenic mice despite hyperglycemia, BP, and GFR being similar to those in wild-type mice. Transgenic mice also manifested significant foot-process effacement, moderate mesangial expansion, and segmental thickening of the glomerular basement membrane. In cultured podocytes overexpressing COX-2, high glucose induced cell injury and increased both expression of the pro(renin) receptor and activation of the renin-angiotensin system. Downregulation of the (pro)renin receptor attenuated the injury induced by high glucose. In vivo, podocyte pro(renin) receptor expression increased in diabetic COX-2-transgenic mice, and treatment with a COX-2 inhibitor abrogated the upregulation of (pro)renin receptor and reduced albuminuria, foot-process effacement, and mesangial matrix expansion. In summary, these results demonstrate that increased expression of podocyte COX-2 predisposes to diabetic glomerular injury and that the (pro)renin receptor may be one mediator for this increased susceptibility to injury.
Collapse
Affiliation(s)
- Huifang Cheng
- George M. O’Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
46
|
Siragy HM. Rationale for combining a direct renin inhibitor with other renin- angiotensin system blockers. Focus on aliskiren and combinations. Cardiovasc Drugs Ther 2011; 25:87-97. [PMID: 21213120 DOI: 10.1007/s10557-010-6278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Inhibition of the renin-angiotensin system has been a highly successful therapeutic approach for the prevention of hypertension-related end organ damage. Angiotensin converting enzyme inhibitors and angiotensin II receptor blockers lower blood pressure and reduce morbidity and mortality in patients with cardiovascular and kidney disease. However, progression to end-stage disease remains common in these patient populations. A compensatory increase in plasma renin activity occurs with the use of either angiotensin converting enzyme inhibitors or angiotensin II receptor blockers, thus causing increased levels of angiotensin II, which may limit the therapeutic effectiveness of these agents. The direct renin inhibitor, aliskiren, suppresses the renin-angiotensin system by inhibiting its first and rate-limiting step. This early inhibition reduces the production of all downstream components of the system. In this review, recent clinically relevant advances in the understanding of renin-angiotensin system biology are explored as a rationale for combining aliskiren with other blockers of the renin-angiotensin system. These combinations more fully inhibit the renin-angiotensin system, with the goal of providing additional therapeutic benefits in diseases associated with chronic activation of the renin-angiotensin system.
Collapse
Affiliation(s)
- Helmy M Siragy
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, 22908, USA.
| |
Collapse
|
47
|
Ringholm L, Pedersen-Bjergaard U, Thorsteinsson B, Boomsma F, Damm P, Mathiesen ER. A high concentration of prorenin in early pregnancy is associated with development of pre-eclampsia in women with type 1 diabetes. Diabetologia 2011; 54:1615-9. [PMID: 21340620 DOI: 10.1007/s00125-011-2087-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate whether components of the renin-angiotensin system and semicarbazide-sensitive amine oxidase (SSAO) are associated with the development of pre-eclampsia in women with type 1 diabetes. METHODS This was an observational study of 107 consecutive pregnant women with type 1 diabetes (median duration 16 years [range 1-36 years], HbA(1c) 6.6% [range 4.9-10.5%]) in early pregnancy. At 8, 14, 21, 27 and 33 weeks and once within 5 days postpartum, blood was sampled for measurements of prorenin, renin, angiotensinogen, ACE and SSAO. HbA(1c), blood pressure and urinary albumin excretion were recorded. Pre-eclampsia was defined as blood pressure >140/90 mmHg and proteinuria ≥300 mg/24 h after 20 weeks. RESULTS Pre-eclampsia developed in nine women (8%) with longer diabetes duration (median 20 [range 10-32] vs 16 [range 1-36] years, p = 0.04), higher SSAO concentrations (592 [range 372-914] vs 522 [range 264-872] mU/l, p = 0.04) and a tendency towards higher prorenin levels (136 [range 50-296] vs 101 [range 21-316] ng angiotensin I ml(-1) h(-1), p = 0.06) at 8 weeks compared with women without pre-eclampsia. Levels of renin, angiotensinogen and ACE did not differ in the two groups. Throughout pregnancy, prorenin and SSAO levels were 30% (p = 0.004) and 16% (p = 0.04) higher, respectively, in women developing pre-eclampsia. Using multivariate logistic regression analysis, prorenin concentration at 8 weeks was associated with pre-eclampsia (OR 4.4 [95% CI 1.5-13.0], p = 0.007), i.e. an increase of prorenin of 100 ng angiotensin I ml(-1) h(-1) implies a 4.4 times higher risk of subsequent pre-eclampsia. CONCLUSIONS/INTERPRETATION In type 1 diabetic women with pre-eclampsia, a higher concentration of prorenin in early pregnancy and higher levels of prorenin and SSAO throughout pregnancy were seen.
Collapse
Affiliation(s)
- L Ringholm
- Center for Pregnant Women with Diabetes, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Diez-Sampedro A, Lenz O, Fornoni A. Podocytopathy in diabetes: a metabolic and endocrine disorder. Am J Kidney Dis 2011; 58:637-46. [PMID: 21719174 DOI: 10.1053/j.ajkd.2011.03.035] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/04/2011] [Indexed: 12/17/2022]
Abstract
Diabetic nephropathy (DN) represents a major public health cost. Tight glycemic and blood pressure control can dramatically slow, but not stop, the progression of the disease, and a large number of patients progress toward end-stage renal disease despite currently available interventions. An early and key event in the development of DN is loss of podocyte function (or glomerular visceral epithelial cells) from the kidney glomerulus, where they contribute to the integrity of the glomerular filtration barrier. Recent evidence suggests that podocytes can be the direct target of circulating hormones, lipids, and adipokines that are affected in diabetes. We review the clinical and experimental evidence implicating novel endocrine and metabolic pathways in the pathogenesis of podocyte dysfunction and the development of DN.
Collapse
Affiliation(s)
- Ana Diez-Sampedro
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, FL, USA
| | | | | |
Collapse
|
49
|
Intérêts et limites de l’inhibition de la rénine par l’aliskiren. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:142-50. [DOI: 10.1016/j.pharma.2011.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/08/2011] [Accepted: 02/10/2011] [Indexed: 01/03/2023]
|
50
|
Alreja G, Joseph J. Renin and cardiovascular disease: Worn-out path, or new direction. World J Cardiol 2011; 3:72-83. [PMID: 21499495 PMCID: PMC3077814 DOI: 10.4330/wjc.v3.i3.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the renin angiotensin system has beneficial effects in cardiovascular prevention and treatment. The advent of orally active direct renin inhibitors adds a novel approach to antagonism of the renin-angiotensin system. Inhibition of the first and rate-limiting step of the renin angiotensin cascade offers theoretical advantages over downstream blockade. However, the recent discovery of the (pro)renin receptor which binds both renin and prorenin, and which can not only augment catalytic activity of both renin and prorenin in converting angiotensinogen to angiotensin I, but also signal intracellularly via various pathways to modulate gene expression, adds a significant level of complexity to the field. In this review, we will examine the basic and clinical data on renin and its inhibition in the context of cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Gaurav Alreja
- Gaurav Alreja, Jacob Joseph, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | | |
Collapse
|