1
|
Kadam RV, Rani V, Padmavathy P, Shalini R, Selvi MJT, Narsale SA. Assessment of heavy metals and environmental stress conditions on the production potential of polyunsaturated fatty acids (PUFAs) in indigenous microalgae isolated from the Gulf of Mannar coastal waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:301. [PMID: 38400851 DOI: 10.1007/s10661-024-12447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
The present study evaluated the effects of heavy metals, viz., lead, mercury, and cadmium, on growth, chlorophyll a, b, c, carotenoids, and PUFA content of marine microalgae Chlorella sp. and Cylindrotheca fusiformis. At 96-h exposure, the IC50 values for Hg2+, Pb2+, and Cd2+ were 0.85 mg/L, 2.4 mg/L, and 5.3 mg/L respectively, in Chlorella sp. In C. fusiformis, IC50 values for Hg2+, Pb2+, and Cd2+ were 0.5 mg/L, 1.2 mg/L, and 3 mg/L respectively. The pigment contents of both microalgae were significantly affected upon heavy metal exposure. In Chlorella sp. and C. fusiformis, the exposed concentrations of Hg2+ averagely decreased the PUFA content by 76.34% and 78.68%, respectively. Similarly, Pb2+-exposed concentrations resulted in 54.50% and 82.64% average reductions in PUFA content of Chlorella sp. and C. fusiformis, respectively. Cd2+-exposed concentrations showed 32.58% and 40.54% average reduction in PUFA content of Chlorella sp. and C. fusiformis, respectively. Among the environmental stress conditions, the dark treatment has increased total PUFA content by 6.63% in Chlorella sp. and 3.92% in C. fusiformis. It was observed that the 50% nitrogen starvation (two-stage) significantly improved the PUFA production from 26.47 ± 6.55% to 40.92 ± 10.74% in Chlorella sp. and from 11.23 ± 5.01 to 32.8 ± 14.17% in C. fusiformis. The toxicity for both microalgae was followed in the order Hg2+ > Pb2+ > Cd2+. Among the two species, Chlorella sp. has shown a high tolerance to heavy metals and can be effectively utilized in PUFA production.
Collapse
Affiliation(s)
- Rishikesh Venkatrao Kadam
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - V Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India.
| | - P Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - R Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - M J Thamarai Selvi
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| | - Swapnil Ananda Narsale
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, 628 008, Tamil Nadu, India
| |
Collapse
|
2
|
Xiao X, Li W, Jin M, Zhang L, Qin L, Geng W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105805. [PMID: 36375224 DOI: 10.1016/j.marenvres.2022.105805] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgae, the primary producers in water ecosystems, are the main food of fish and shrimp. Microalgae have a great capacity to absorb heavy metals, and low concentrations of heavy metals can promote the growth of them. But high concentrations have a strong influence on the physiological and biochemical processes in algae, such as growth, photosynthesis, cell ultrastructure, protein content and fatty acid composition. Heavy metals may also induce the formation of reactive oxygen species (ROS), which causes the oxidation damage of protein, lipid and thiol peptides, and activates the antioxidant system. Heavy metals can be removed or converted into another state by biosorption of cell surface, accumulation in cells, combining with antioxidant enzymes and so on. This review summarized the responses of microalgae to heavy metals and comprehensively described the removal and tolerance mechanisms by extracellular adsorption and intracellular accumulation, which are helpful to treat pollution and improve the culture of microalgae.
Collapse
Affiliation(s)
- Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Wenfang Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Meng Jin
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Liguo Qin
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Weiwei Geng
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| |
Collapse
|
3
|
Andrade LM, Tito CA, Mascarenhas C, Lima FA, Dias M, Andrade CJ, Mendes MA, Nascimento CAO. Chlorella vulgaris phycoremediation at low Cu +2 contents: Proteomic profiling of microalgal metabolism related to fatty acids and CO 2 fixation. CHEMOSPHERE 2021; 284:131272. [PMID: 34323785 DOI: 10.1016/j.chemosphere.2021.131272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to correlate metabolic changes with copper ions (Cu+2) bioremediation by microalgae C. vulgaris 097 CCMA-UFSCar at low Cu+2 content. The metabolic effects include proteome changes related to fatty acid biosynthesis (value-added product) and carbon fixation (climate change mitigation). Cu+2, even at low concentration, showed a significant negative impact on C. vulgaris growth. The microalgal bioremediation reached 100, 74, 38 and 26% for Cu+2 content at 0.1; 0.3; 0.6 and 0.9 mg L-1, respectively. Regarding proteomics, the numbers of proteins reduced (≈37%) from 581 proteins (control) to 369 proteins (0.9 mg of Cu+2 L-1) compared to control. The microalgal CO2 fixation is strictly related to the Calvin cycle, particularly phase 1, in which ribulose bisphosphate carboxylase large chain (RuBisCO) produces two phosphoglycerate molecules from CO2 and ribulose 1,5-bisphosphate. Then, phosphoglycerate can be metabolically reduced into glucose. When compared to control, the RuBisCO was underexpressed (≈50%). Similar changes in proteomic profiling of metabolism-related to fatty acid biosynthesis was observed. Nevertheless, no protein was found for the cultivation at 0.9 mg of Cu+2 L-1. Thus, the analysis of C. vulgaris proteomic data indicated that even at low concentration, Cu+2 lead to drastic metabolic changes.
Collapse
Affiliation(s)
- Lidiane Maria Andrade
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil.
| | - Caique Alves Tito
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil
| | - Camila Mascarenhas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil
| | - Fabiola Aliaga Lima
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil
| | - Meriellen Dias
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil
| | - Cristiano José Andrade
- LiEB, Integrated Laboratory of Biological Engineering, Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), R. Do Biotério Central, S/n - Córrego Grande, Florianópolis, SC, 88040-970, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil
| | - Claudio Augusto Oller Nascimento
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo (USP), R. Do Lago, 250, Butantã, São Paulo, SP, 05338-110, Brazil
| |
Collapse
|
4
|
Xing C, Li J, Lam SM, Yuan H, Shui G, Yang J. The role of glutathione-mediated triacylglycerol synthesis in the response to ultra-high cadmium stress in Auxenochlorella protothecoides. J Environ Sci (China) 2021; 108:58-69. [PMID: 34465437 DOI: 10.1016/j.jes.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 06/13/2023]
Abstract
Under ultra-high cadmium (Cd) stress, large amounts of glutathione are produced in Auxenochlorella protothecoides UTEX 2341, and the lipid content increases significantly. Glutathione is the best reductant that can effectively remove Cd, but the relationship between lipid accumulation and the cellular response to Cd stress has not been ascertained. Integrating analyses of the transcriptomes and lipidomes, the mechanism of lipid accumulation to Cd tolerance were studied from the perspectives of metabolism, transcriptional regulation and protein glutathionylation. Under Cd stress, basic metabolic pathways, such as purine metabolism, translation and pre-mRNA splicing process, were inhibited, while the lipid accumulation pathway was significantly activated. Further analysis revealed that the transcription factors (TFs) and genes related to lipid accumulation were also activated. Analysis of the TF interaction sites showed that ABI5, MYB_rel and NF-YB could further regulate the expression of diacylglycerol acyltransferase through glutathionylation/deglutathionylation, which led to increase of the triacylglycerol (TAG) content. Lipidomes analysis showed that TAG could help maintain lipid homeostasis by adjusting its saturation/unsaturation levels. This study for the first time indicated that glutathione could activate TAG synthesis in microalga A. protothecoides, leading to TAG accumulation and glutathione accumulation under Cd stress. Therefore, the accumulation of TAG and glutathione can confer resistance to high Cd stress. This study provided insights into a new operation mode of TAG accumulation under heavy metal stress.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinyu Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou 213022, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Fathollahi A, Coupe SJ, El-Sheikh AH, Nnadi EO. Cu(II) biosorption by living biofilms: Isothermal, chemical, physical and biological evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111950. [PMID: 33465714 DOI: 10.1016/j.jenvman.2021.111950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Dissolved copper in stormwater runoff is a significant environmental problem. Biosorption of dissolved metals using microorganisms is known as a green, low-cost and efficient method. However, the role of live biological agents in the remediation of dissolved copper in Sustainable Drainage (SuDS) has not been reported. In this study, the effect of pH, initial concentration and temperature, on bacteria in different stages of biofilm development on a geotextile, along with Cu(II) removal efficiencies, were evaluated. Maximum Cu(II) removal efficiency (92%) was observed at pH 6. By decreasing the pH from 6 to 2, a log 5 reduction in bacteria was observed and Carboxyl groups transformed from -COO- to -COOH. The maximum biosorption capacity (119 mg g-1) was detected on day 1 of biofilm development, however, maximum removal efficiency (97%) was measured on day 21 of biofilm incubation. Exteracellular Polymeric Substance (EPS) showed a better protection of CFUs in more mature biofilms (day 21) with less than 0.1 log decrease when exposed to 200 mL-1 Cu(II), whereas, biofilm on day 1 of incubation showed a 2 log reduction in CFUs number. Thermodynamic studies showed that the maximum Cu(II) biosorption capacity of biofilms, incubated for 7 days (117 mg g-1) occurred at 35 °C. Thermodynamic and kinetic modelling of data revealed that a physical, feasible, spontaneous and exothermic process controlled the biosorption, with a diffusion process observed in external layers of the biofilm, fitting a pseudo-second order model. Equilibrium data modelling and high R2 values of Langmuir model indicated that the biosorption took place by a monolayer on the living biofilm surface in all stages of biofilm development.
Collapse
Affiliation(s)
- Alireza Fathollahi
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| | - Stephen J Coupe
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Amjad H El-Sheikh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Ernest O Nnadi
- School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, M13 9PL, Manchester, UK
| |
Collapse
|
6
|
Jin M, Xiao X, Qin L, Geng W, Gao Y, Li L, Xue J. Physiological and morphological responses and tolerance mechanisms of Isochrysis galbana to Cr(VI) stress. BIORESOURCE TECHNOLOGY 2020; 302:122860. [PMID: 32007851 DOI: 10.1016/j.biortech.2020.122860] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The effects of the initial concentrations of Cr(VI) on chlorophyll-a (Chl-a), soluble protein and ultrastructure were investigated. Results showed that <0.5 and >1.0 mg L-1 Cr(VI) stimulated and inhibited the growth of Isochrysis galbana, respectively. The tolerance mechanisms of I. galbana to Cr(VI) included the following: (1) increased activities of superoxide dismutase (SOD) and peroxidase (POX) for peroxidative damage resistance, (2) accumulation of Cr(VI) on the cell surface and inside the cell for detoxification and (3) conversion of intracellular Cr(VI) to less toxic Cr(III) as indicated by X-ray photoelectron spectroscopy (XPS) results. Cr(VI) enrichment by I. galbana may cause damage to marine ecology and human bodies through the food chain. The tolerance mechanisms of I. galbana to Cr(VI) may be potentially used to treat low-concentration Cr(VI) wastewater. Therefore, the responses and tolerance mechanisms of I. galbana to Cr(VI) must be further studied.
Collapse
Affiliation(s)
- Meng Jin
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Xinfeng Xiao
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Liguo Qin
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Weiwei Geng
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Yu Gao
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Lin Li
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Jianliang Xue
- College of Chemistry and Environment Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| |
Collapse
|
7
|
Hosseini Tafreshi SA, Aghaie P, Toghyani MA, Ramazani-Moghaddam-Arani A. Improvement of ionizing gamma irradiation tolerance of Chlorella vulgaris by pretreatment with polyethylene glycol. Int J Radiat Biol 2020; 96:919-928. [PMID: 32159411 DOI: 10.1080/09553002.2020.1741717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To evaluate the effects of polyethylene glycol (PEG) 6000 pretreatment on growth and physiological responses of eukaryotic microalga Chlorella vulgaris exposed to ionizing irradiation.Materials and methods: The microalgal cells pretreated with different PEG concentrations (0, 5, 10 and 20%) and then exposed to 300 Gray gamma irradiation at a dose rate of 0.5 Gy s-1. The various growth and physiological parameters including algal growth, cell size, the degree of electrolyte leakage (EL) and lipid peroxidation, the content of pigments and proline and the activity of antioxidant enzymes under gamma-free or 300 Gray gamma irradiation conditions were examined.Results: The results showed that PEG stimulated a higher growth and cell size under both stress-free and gamma-stress conditions. The maximum growth and cell size was reported when the algae was pretreated with 10% PEG. A relative increase of catalase activity was observed in all samples after exposing to gamma irradiation. However, the highest value was recorded for the gamma-radiated algae pretreated with 10% PEG. In the absence of PEG, gamma irradiation induced a significant reduction in ascorbate peroxidase activity, but with PEG pretreatment, the enzyme activity remained constant or even increased after gamma irradiation. On the other hand, although gamma irradiation stress generally suppressed the activity of superoxide dismutase in all cells, pretreating the algae with PEG could diminish this suppressing effect at all applied concentrations. Compared to the PEG-free controls, a lower rate of chlorophylls and membrane integrity loss was shown in the PEG-treated algae when exposed to gamma stress. Total carotenoid content in PEG-treated algae was also similar under both gamma-free and gamma-radiated conditions. A PEG-independent increase in proline accumulation was reported under gamma-irradiation treatment.Conclusions: Overall, the results suggested that PEG pretreatment could improve gamma-irradiation tolerance in C. vulgaris probably by stimulating a range of enzymatic and non-enzymatic reactive oxygen species scavenging systems. The microalgae may also consume PEG to break down and use it as an alternative source of carbon during stress which should be further studied in detail.
Collapse
Affiliation(s)
- Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor University, Tehran, Iran
| | | | | |
Collapse
|
8
|
Baracho DH, Silva JC, Lombardi AT. The effects of copper on photosynthesis and biomolecules yield in Chlorolobion braunii. JOURNAL OF PHYCOLOGY 2019; 55:1335-1347. [PMID: 31408527 DOI: 10.1111/jpy.12914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Our knowledge of the effects of copper on microalgal physiology is largely based on studies conducted with high copper concentrations; much less is known when environmentally relevant copper levels come into question. Here, we evaluated the physiology of Chlorolobion braunii exposed to free copper ion concentrations between 5.7 × 10-9 and 5.0 × 10-6 mol · L-1 , thus including environmentally relevant values. Population growth and maximum photosynthetic quantum yield of PSII were determined daily during the 96 h laboratory controlled experiment. Exponentially-growing cells (48 h) were analyzed for effective quantum yield and rapid light curves (RLC), and total lipids, proteins, carbohydrates, chlorophyll a and carotenoids were determined. The results showed that growth rates and population density decreased gradually as copper increased in experiment, but the photosynthetic parameters (maximum and effective quantum yields) and photochemical quenching (qP) decreased only at the highest free copper concentration tested (5.0 × 10-6 mol · L-1 ); nonphotochemical quenching (NPQ) increased gradually with copper increase. The RLC parameters Ek and rETRmax were inversely proportional to copper concentration, while α and Im decreased only at 5.0 × 10-6 mol · L-1 . The effects of copper in biomolecules yield (mg · L-1 ) varied depending on the biomolecule. Lipid yield increased at free copper concentration as low as 2.5 × 10-8 mol · L-1 , but proteins and carbohydrates were constant throughout.
Collapse
Affiliation(s)
- Douglas H Baracho
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, São Carlos, SP, Brazil
| | - Jaqueline C Silva
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, São Carlos, SP, Brazil
| | - Ana T Lombardi
- Departamento de Botânica, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Attached culture of Chlamydomonas sp. JSC4 for biofilm production and TN/TP/Cu(II) removal. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Olsson S, Penacho V, Puente-Sánchez F, Díaz S, Gonzalez-Pastor JE, Aguilera A. Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae. MICROBIAL ECOLOGY 2017; 73:50-60. [PMID: 27592346 DOI: 10.1007/s00248-016-0848-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication.
Collapse
Affiliation(s)
- Sanna Olsson
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014, Helsinki, Finland.
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| | - Vanessa Penacho
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
- Bioarray, S.L., Parque Científico y Empresarial de la UMH. Edificio Quorum III, Avenida de la Universidad s/n, 03202, Elche, Alicante, Spain
| | - Fernando Puente-Sánchez
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Silvia Díaz
- Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense (UCM), Madrid, Spain
| | | | - Angeles Aguilera
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| |
Collapse
|