1
|
Markich SJ, Hall JP, Dorsman JM, Brown PL. Toxicity of rare earth elements (REEs) to marine organisms: Using species sensitivity distributions to establish water quality guidelines for protecting marine life. ENVIRONMENTAL RESEARCH 2024; 261:119708. [PMID: 39089443 DOI: 10.1016/j.envres.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 μg/L for Y to 1.9 μg/L for La and Pr, and EC50s ranging from 4.3 μg/L for Y to 14.4 μg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 121 μg/L for Y to 469 μg/L for Pr, and EC50s ranging from 889 μg/L for Y to 3000 μg/L for Pr. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (μmol/L EC50) among REEs (Y ∼ Gd > Lu ∼ Nd ∼ Dy ∼ Ce > La ∼ Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 μg/L for Y to 3.0 μg/L for La, Pr or Lu).
Collapse
Affiliation(s)
- Scott J Markich
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia; School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.
| | - Jeremy P Hall
- Aquatic Solutions International, Airlie Beach, QLD, 4802, Australia
| | - Jude M Dorsman
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia
| | | |
Collapse
|
2
|
Leite C, Andrade M, Pinto J, Soares AMVM, Solé M, Pereira E, Freitas R. Complex interactions of rare earth elements in aquatic systems: Comparing observed and predicted cellular responses on Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176608. [PMID: 39349203 DOI: 10.1016/j.scitotenv.2024.176608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Recent societal and technological developments have led to new sources of contamination, particularly from electronic waste (e-waste). The rapid increase in e-waste, combined with inadequate disposal and recycling practices has resulted in rising levels of hazardous substances in aquatic systems, including rare-earth elements (REEs). However, the effects of REEs on aquatic organisms remain poorly understood. This lack of understanding is concerning since REEs can simultaneously appear in aquatic systems. Thus, this study aimed to evaluate the impacts of Yttrium (Y), Lanthanum (La), and Gadolinium (Gd), individually and as mixtures on the mussel species Mytilus galloprovincialis. Biomarkers related to metabolism, energy reserves, defence enzymes, redox balance, cellular damage, and neurotoxicity were analyzed. The results obtained showed that Y alone caused minimal stress, while Gd, La, and their mixtures induced from moderate to severe stress, increasing metabolic activity, and enzyme responses. This study highlights the ecological impacts of REEs mixtures on aquatic organisms. The complex interactions and additive effects, especially with Gd, underline the need for further research on contaminant mixtures.
Collapse
Affiliation(s)
- Carla Leite
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Madalena Andrade
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Departamento de Recursos Marinos Renovables, Instituto de Ciencias del Mar ICM-CSIC, 08003 Barcelona, Spain
| | - Eduarda Pereira
- Department of Chemistry, LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Shen L, Yu X, Zhou H, Wang J, Zhao H, Qiu G, Chen Z. Optimization and mechanism studies for the biosorption of rare earth ions by Yarrowia lipolytica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52118-52131. [PMID: 39136922 DOI: 10.1007/s11356-024-34660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024]
Abstract
Research on the recovery of rare earth elements from wastewater has attracted increasing attention. Compared with other methods, biosorption is a simple, efficient, and environmentally friendly method for rare earth wastewater treatment, which has greater prospects for development. The objective of this study was to investigate the biosorption behavior and mechanism of Yarrowia lipolytica for five rare earth ions (La3⁺, Nd3⁺, Er3⁺, Y3⁺, and Sm3⁺) with a particular focus on biosorption behavior, biosorption kinetics, and biosorption isotherm. It was demonstrated that the biosorption capacity of Y. lipolytica at optimal conditions was 76.80 mg/g. It was discovered that the biosorption process complied with the pseudo-second-order kinetic model and the Langmuir biosorption isotherm, indicating that Y. lipolytica employed a monolayer chemical biosorption process to biosorb rare earth ions. Characterization analysis demonstrated that the primary functional groups involved in rare earth ion biosorption were amino, carboxyl, and hydroxyl groups. The cooperative biosorption of rare earth ions by Y. lipolytica was facilitated by means of surface complexation, ion exchange, and electrostatic interactions. These findings suggest that Y. lipolytica has the potential to be an effective biosorbent for the removal of rare earth elements from wastewater.
Collapse
Affiliation(s)
- Li Shen
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Xinyi Yu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Hao Zhou
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Junjun Wang
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Hongbo Zhao
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Guanzhou Qiu
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China
| | - Zhu Chen
- School of Minerals Processing & Bioengineering, Central South University, Changsha, 410083, Hunan, China.
- Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, 410083, Hunan, China.
| |
Collapse
|
4
|
Hanana H, Auclair J, Turcotte P, Gagnon C, Gagné F. Toxicity of two heavy rare earth elements to freshwater mussels Dreissena polymorpha. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37125-37135. [PMID: 38760608 PMCID: PMC11182804 DOI: 10.1007/s11356-024-33633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Rare earth elements (REE) are essential components of many electronic devices that could end-up in solid waste disposal sites and inadvertently released in the environment. The purpose of this study was to examine the toxicity of two heavy REEs, erbium (Er) and lutetium (Lu), in freshwater mussels Dreissena polymorpha. Mussels were exposed to 14 days to increasing concentration (10, 50, 250, and 1250 µg/L) of either Er and Lu at 15 °C and analyzed for gene expression in catalase (CAT), superoxide dismutase (SOD), metallothionein (MT), cytochrome c oxidase (CO1), and cyclin D for cell cycle. In addition, lipid peroxidation (LPO), DNA damage (DNAd), and arachidonate cyclooxygenase were also determined. The data revealed that mussels accumulated Er and Lu similarly and both REEs induced changes in mitochondrial COI activity. Er increased cell division, MT, and LPO, while Lu increased DNAd and decreased cell division. Tissue levels of Er were related to changes in MT (r = 0.7), LPO (r = 0.42), CO1 (r = 0.69), and CycD (r = 0.31). Lu tissue levels were related to changes in CO1 (r = 0.73), CycD (r = - 0.61), CAT (r = 0.31), DNAd (r = 0.43), and SOD (r = 0.34). Although the lethal threshold was similar between Er and Lu, the threshold response for LPO revealed that Er produced toxicity at concentrations 25 times lower than Lu suggesting that Er was more harmful than Lu in mussels. In conclusions, the data supports that the toxicity pattern differed between Er and Lu although they are accumulated in the same fashion.
Collapse
Affiliation(s)
- Houda Hanana
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Joëlle Auclair
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Patrice Turcotte
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - Christian Gagnon
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada
| | - François Gagné
- Environment and Climate Change Canada, 105 McGill, Montréal, Québec, H2Y 2E7, Canada.
| |
Collapse
|
5
|
Rétif J, Zalouk-Vergnoux A, Kamari A, Briant N, Poirier L. Trophic transfer of rare earth elements in the food web of the Loire estuary (France). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169652. [PMID: 38159776 DOI: 10.1016/j.scitotenv.2023.169652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The increasing use of rare earth elements (REEs) in many industrial sectors and in medecine, causes discharges into the environment and particularly in estuarine areas subjected to strong anthropogenic pressures. Here, we assessed the distribution of REEs along the food web of the Loire estuary. Several species representative of different trophic levels were sampled: 8 vertebrates, 3 crustaceans, 2 mollusks, 3 annelids and 4 algae, as well as Haploops sp. tubes rather related to sediment. The total REE concentrations measured by ICP-MS were the highest in Haploops sp. tubes (141.1 ± 4.7 μg/g dw), algae (1.5 to 34.5 μg/g dw), mollusks (9.9 to 12.0 μg/g dw), annelids (0.7 to 19.9 μg/g dw) and crustaceans (1.4 to 6.3 μg/g dw) and the lowest in vetebrates (0.1 to 1.6 μg/g dw). The individual contribution of REEs was, however, similar between most studied species with a higher contribution of light REEs (76.7 ± 7.6 %) compared to heavy REEs (14.1 ± 3.7 %) or medium REEs (9.2 ± 5.8 %). Trophic relations were estimated by stable isotope analysis of C and N and the linear regression of δ15N with total REE concentrations highlighted a trophic dilution with a corresponding TMS of -2.0. The tissue-specific bioaccumulation investigated for vertebrates demonstrated a slightly higher REE accumulation in gonads than in the muscle. Finally, positive Eu, Gd, Tb and Lu anomalies were highlighted in the normalized REE patterns of most studied species (especially in fish and crustaceans), which is consistent with results in the dissolved phase for Eu and Gd. These anomalies could either be due to anthropogenic inputs or to various bioaccumulation/elimination processes according to the specific species physiology. This study, including most of the trophic levels of the Loire estuary food web provides new insights on the bioaccumulation and trophic transfer of REEs in natural ecosystems.
Collapse
Affiliation(s)
- Julie Rétif
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Aurore Zalouk-Vergnoux
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Abderrahmane Kamari
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| | - Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000 Nantes, France.
| | - Laurence Poirier
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France.
| |
Collapse
|
6
|
Luís R, José R, Castro J, Andrade C. Advances in Aquaculture Hatchery Techniques of Sea Urchin Sphaerechinus granularis (Lamarck, 1816) (Echinoidea: Toxopneustidae): Broodstock Conditioning and Spawning Induction. Life (Basel) 2023; 13:2233. [PMID: 38004372 PMCID: PMC10672395 DOI: 10.3390/life13112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
In response to the growing demand for sea urchin gonads (roe or uni) in Asian and European markets and the concerns regarding the overexploitation of wild populations, this preliminary study addresses the need for cost-effective protocols in echinoculture. The primary focus of this research was to evaluate the gonadosomatic index (GI) in captive-conditioned Sphaerechinus granularis over a five-month period and compare it with that of their wild-caught conspecifics. Additionally, two different spawning induction methods were assessed: potassium chloride (KCl) injection and agitation. Results indicate that captive-conditioned sea urchins exhibit significantly higher GI values when compared to their wild-caught counterparts. Furthermore, it was observed that the agitation method is equally effective as the KCl injection in triggering a positive response, i.e., gamete ejection, while maintaining lower mortality rates among the subjected S. granularis. In conclusion, this preliminary study underscores the pivotal role of broodstock conditioning in supporting the sustainability of sea urchin aquaculture. Moreover, the spawning induction method through agitation emerges as a viable alternative to the traditional intracelomic KCl injection, offering comparable efficacy without compromising the survival of the broodstock. These findings have significant implications for the development of sustainable sea urchin farming practices.
Collapse
Affiliation(s)
- Ricardo Luís
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), 9020-105 Funchal, Portugal; (R.J.); (C.A.)
| | - Ricardo José
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), 9020-105 Funchal, Portugal; (R.J.); (C.A.)
| | - João Castro
- Regional Agency for the Development of Research, Technology and Innovation (ARDITI), Madeira Tecnopolo, 9020-105 Funchal, Portugal;
| | - Carlos Andrade
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Regional Agency for the Development of Research, Technology and Innovation (ARDITI), 9020-105 Funchal, Portugal; (R.J.); (C.A.)
| |
Collapse
|
7
|
Pagano G, Brouziotis AA, Lyons D, Čarapar I, Oral R, Tez S, Thomas PJ, Tommasi F, Libralato G, Guida M, Trifuoggi M. Hormetic Effects of Cerium, Lanthanum and Their Combination at Sub-micromolar Concentrations in Sea Urchin Sperm. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:65. [PMID: 36922429 PMCID: PMC10017572 DOI: 10.1007/s00128-023-03701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Rare earth elements (REEs) cerium (Ce) and lanthanum (La) and their combination were tested across a concentration range, from toxic (10-4 to 10-5 M) to lower concentrations (10-6 to 10-8 M) for their effects on sea urchin (Sphaerechinus granularis) sperm. A significantly decreased fertilization rate (FR) was found for sperm exposed to 10-5 M Ce, La and their combination, opposed to a significant increase of FR following 10-7 and 10-8 M REE sperm exposure. The offspring of REE-exposed sperm showed significantly increased developmental defects following sperm exposure to 10-5 M REEs vs. untreated controls, while exposure to 10-7 and 10-8 M REEs resulted in significantly decreased rates of developmental defects. Both of observed effects-on sperm fertilization success and on offspring quality-were closely exerted by Ce or La or their combination.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Antonios Apostolos Brouziotis
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
- Department of Biology, Federico II Naples University, I-80126, Naples, Italy
| | - Daniel Lyons
- Center for Marine Research, Ruđer Bošković Institute, HR-52210, Rovinj, Croatia
| | - Ivana Čarapar
- Center for Marine Research, Ruđer Bošković Institute, HR-52210, Rovinj, Croatia
| | - Rahime Oral
- Faculty of Fisheries, Ege University, Bornova, TR-35100, İzmir, Turkey
| | - Serkan Tez
- Faculty of Fisheries, Ege University, Bornova, TR-35100, İzmir, Turkey
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center, Carleton University, K1A 0H3, Ottawa, ON, Canada
| | - Franca Tommasi
- Department of Biology, "Aldo Moro" Bari University, I-70125, Bari, Italy
| | - Giovanni Libralato
- Department of Biology, Federico II Naples University, I-80126, Naples, Italy
| | - Marco Guida
- Department of Biology, Federico II Naples University, I-80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
8
|
Martino C, Chianese T, Chiarelli R, Roccheri MC, Scudiero R. Toxicological Impact of Rare Earth Elements (REEs) on the Reproduction and Development of Aquatic Organisms Using Sea Urchins as Biological Models. Int J Mol Sci 2022; 23:ijms23052876. [PMID: 35270017 PMCID: PMC8911218 DOI: 10.3390/ijms23052876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level. This review focused on the impact of lanthanides in marine organisms on reproductive fitness, fertilization and embryonic development, using the sea urchin as a biological model system. Scientific evidence shows that exposure to lanthanides triggers a wide variety of toxic insults, including reproductive performance, fertilization, redox metabolism, embryogenesis, and regulation of embryonic gene expression. This was thoroughly demonstrated for gadolinium, the most widely used lanthanide in diagnostic medicine, whose uptake in sea urchin embryos occurs in a time- and concentration-dependent manner, correlates with decreased calcium absorption and primarily affects skeletal growth, with incorrect regulation of the skeletal gene regulatory network. The results collected on sea urchin embryos demonstrate a variable sensitivity of the early life stages of different species, highlighting the importance of testing the effects of pollution in different species. The accumulation of lanthanides and their emerging negative effects make risk assessment and consequent legislative intervention on their disposal mandatory.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Teresa Chianese
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Maria Carmela Roccheri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Building 16, 90128 Palermo, Italy; (C.M.); (R.C.); (M.C.R.)
| | - Rosaria Scudiero
- Department of Biology, University Federico II, Via Cintia 21, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
9
|
Siciliano A, Guida M, Serafini S, Micillo M, Galdiero E, Carfagna S, Salbitani G, Tommasi F, Lofrano G, Padilla Suarez EG, Gjata I, Brouziotis AA, Trifuoggi M, Liguori R, Race M, Fabbricino M, Libralato G. Long-term multi-endpoint exposure of the microalga Raphidocelis subcapitata to lanthanum and cerium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148229. [PMID: 34380244 DOI: 10.1016/j.scitotenv.2021.148229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Significant release of rare earth elements (REEs) into the environment is mainly due to active or abandoned mining sites, but their presence is globally increasing due to their use in several industrial sectors. The effects on primary producers as Raphidocelis subcapitata are still limited. This research focused on La and Ce as the two most widespread REEs that can be currently found up to hundreds of μg/L in water and wastewater. Microalgae were exposed to La and Ce for 3 days (pH = 7.8) (short-term exposure) to derive the effective concentrations inhibiting the growth on 10% (EC10) of the exposed population. EC10 values (0.5 mg/L of La and 0.4 mg/L of Ce) were used for the 28 days long-term exposure (renewal test) to observe after 7, 14, 21, and 28 days on a multi-endpoint basis microalgae growth inhibition (GI), biomarkers of stress (reactive oxygen species (ROS), superoxide dismutase (SOD), and catalase (CAT)), and bioconcentration. Results evidenced that La and Ce EC10 increased GI (day 28) up to 38% and 28%, respectively. ROS, CAT, and SOD activities showed differential responses from day 7 to day 14, 21, and 28, suggesting, in most of the cases, that La and Ce effects were counteracted (i.e., being the values at day 28 not significantly different, p > 0.05, from the relative negative controls), except for La-related ROS activities. La and Ce significantly bioconcentrated in microalgae populations up to 2- and 5-fold (i.e., at day 28 compared to day 7), in that order. Bioconcentrated La and Ce were up to 3157 and 1232 μg/g dry weight (day 28), respectively. These results suggested that low La and Ce concentrations can be slightly toxic to R. subcapitata having the potential to be bioaccumulated and potentially transferred along the food web.
Collapse
Affiliation(s)
- Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Sara Serafini
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Maria Micillo
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Simona Carfagna
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Giovanna Salbitani
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Franca Tommasi
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy.
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Isidora Gjata
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Marco Trifuoggi
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy
| | - Renato Liguori
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Marco Race
- Department of Civil and Mechanical Engineering, Università di Cassino e del Lazio Meridionale, Cassino, Italy
| | - Massimiliano Fabbricino
- University of Naples Federico II, Department of Civil, Architectural and Environmental Engineering, Via Claudio 21, 80125 Napoli, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 26, 80126 Naples, Italy.
| |
Collapse
|
10
|
Siciliano A, Guida M, Pagano G, Trifuoggi M, Tommasi F, Lofrano G, Padilla Suarez EG, Gjata I, Brouziotis AA, Liguori R, Libralato G. Cerium, gadolinium, lanthanum, and neodymium effects in simplified acid mine discharges to Raphidocelis subcapitata, Lepidium sativum, and Vicia faba. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147527. [PMID: 34000556 DOI: 10.1016/j.scitotenv.2021.147527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The alteration of rare earth elements (REEs) biogeochemical cycles has increased the potential effects related to their environmental exposure in a one-health perspective. Cerium (Ce), gadolinium (Gd), lanthanum (La), and neodymium (Nd) are frequently related to technological applications and their environmental concentrations are already in the μg/kg - mg/kg (i.e., or L) range depending on the considered matrices. The effect of Ce, Gd, La, and Nd was investigated in a simulated AMD (0.01-10.22 mg/L) at pH 4 and 6 considering a battery of photosynthetic organisms (Raphidocelis subcapitata, Lepidium sativum, and Vicia faba) according to a multiple-endpoint approach (growth inhibition, germination index, and mutagenicity). According to modelled chemical speciation, the considered elements were mostly in the trivalent free form (86-88%) at pH 4. Gd, La, and Nd exerted the most relevant toxic effect at pH 4. The pH 6 scenario evidenced a reduction in REEs toxicity level. Mutagenicity was detected only at pH 4 by Gd (up to 3-fold compared to negative controls), La and Nd, while Ce did not show any adverse effect. Toxic effects due to Ce, Gd, La, and Nd can be reduced by controlling the pH, but several gaps of knowledge still remain about their uptake and trophic transfer, and long-term effects on targeted species.
Collapse
Affiliation(s)
- Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giovanni Pagano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Trifuoggi
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Franca Tommasi
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giusy Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Isidora Gjata
- Department of Biology, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonios Apostolos Brouziotis
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Renato Liguori
- Department of Science and Technology, University of Naples Parthenope, Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| |
Collapse
|
11
|
Trapasso G, Chiesa S, Freitas R, Pereira E. What do we know about the ecotoxicological implications of the rare earth element gadolinium in aquatic ecosystems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146273. [PMID: 33813143 DOI: 10.1016/j.scitotenv.2021.146273] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Gadolinium (Gd) is one of the most commercially exploited rare earth elements, commonly employed in magnetic resonance imaging as a contrast agent. The present review was performed aiming to identify the Gd concentrations in marine and freshwater environments. In addition, information on Gd speciation in the environment is discussed, in order to understand how each chemical form affects its fate in the environment. Biological responses caused by Gd exposure and its bioaccumulation in different aquatic invertebrates are also discussed. This review was devoted to aquatic invertebrates, since this group of organisms includes species widely used as bioindicators of pollution and they represent important resources for human socio-economic development, as edible seafood, fishing baits and providing food resources for other species. From the literature, most of the published data are focused on freshwater environments, revealing concentrations from 0.347 to 80 μg/L, with the highest Gd anomalies found close to highly industrialized areas. In marine environments, the published studies identified a range of concentrations between 0.36 and 26.9 ng/L (2.3 and 171.4 pmol/kg), reaching 409.4 ng/L (2605 pmol/kg) at a submarine outfall. Concerning the bioaccumulation and effects of Gd in aquatic species, most of the literature regards to freshwater species, revealing concentration ranging from 0.006 to 0.223 μg/g, with high variability in the bioaccumulation extent according to Gd complexes chemical speciation. Conversely, no field data concerning Gd bioaccumulation in tissues of marine species have been published. Finally, impacts of Gd in invertebrate aquatic species were identified at different biological levels, including alterations on gene expression, cellular homeostasis, shell formation, metabolic capacity and antioxidant mechanisms. The information here presented highlights that Gd may represent an environmental threat and a risk to human health, demonstrating the need for further research on Gd toxicity towards aquatic wildlife and the necessity for new water remediation strategies.
Collapse
Affiliation(s)
- Giacomo Trapasso
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Italy
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Italy; ISPRA, The Italian Institute for Environmental Protection and Research, Rome, Italy
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Portugal.
| | - Eduarda Pereira
- Departamento de Química & REQUIMTE, Universidade de Aveiro, Portugal
| |
Collapse
|
12
|
Trapasso G, Coppola F, Queirós V, Henriques B, Soares AMVM, Pereira E, Chiesa S, Freitas R. How Ulva lactuca can influence the impacts induced by the rare earth element Gadolinium in Mytilus galloprovincialis? The role of macroalgae in water safety towards marine wildlife. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112101. [PMID: 33765593 DOI: 10.1016/j.ecoenv.2021.112101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Rare earth elements (REEs) are gaining growing attention in environmental and ecotoxicological studies due to their economic relevance, wide range of applications and increasing environmental concentrations. Among REEs, special consideration should be given to Gadolinium (Gd), whose wide exploitation as a magnetic resonance imaging (MRI) contrast agent is enhancing the risk of its occurrence in aquatic environments and impacts on aquatic organisms. A promising approach for water decontamination from REEs is sorption, namely through the use of macroalgae and in particular Ulva lactuca that already proved to be an efficient biosorbent for several chemical elements. Therefore, the present study aimed to evaluate the toxicity of Gd, comparing the biochemical effects induced by this element in the presence or absence of algae. Using the bivalve species Mytilus galloprovincialis, Gd toxicity was evaluated by assessing changes on mussels' metabolic capacity and oxidative status. Results clearly showed the toxicity of Gd but further revealed the capacity of U. lactuca to prevent injuries to M. galloprovincialis, mainly reducing the levels of Gd in water and thus the bioaccumulation and toxicity of this element by the mussels. The results will advance the state of the art not only regarding the effects of REEs but also with regard to the role of algae in accumulation of metals and protection of aquatic organisms, generating new insights on water safety towards aquatic wildlife and highlighting the possibility for resources recovery.
Collapse
Affiliation(s)
- Giacomo Trapasso
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30172 Venice, Italy
| | - Francesca Coppola
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Vanessa Queirós
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; LAVQ-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal; LAVQ-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30172 Venice, Italy; ISPRA, The Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
| | - Rosa Freitas
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
13
|
Galdiero E, Carotenuto R, Siciliano A, Libralato G, Race M, Lofrano G, Fabbricino M, Guida M. Cerium and erbium effects on Daphnia magna generations: A multiple endpoints approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112985. [PMID: 31394345 DOI: 10.1016/j.envpol.2019.112985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Cerium (Ce, CeCl3) and Erbium (Er, ErCl3) are increasingly used in many electronic devices facilitating the alteration of their biogeochemical cycles (e.g. e-waste). Previous surveys stated that their environmental concentrations due to natural or anthropogenic events can reach up to 161 μg/L in ore mine effluent for Ce with a mean water concentration of 0.79 μg/L, and 11.9 μg/L for Er in ore mine effluents with a mean water concentration of 0.004 μg/L. Their potential effects onto aquatic organisms are still relatively unexplored. In this study, long-term multigenerational effects on Daphnia magna were assessed using various exposure times (3, 7, 14, and 21 days) in three generations (F0, F1 and F2). Each generation was exposed to environmental concentrations of Ce and Er (0.54 and 0.43 μg/L, respectively - mean values) and effects included organisms' size, parental reproduction, and survival, determination of reactive oxygen species (ROS), enzymatic activity (superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST)), gene expression of ATP-binding cassette (ABC) transporter, and uptake. Results evidenced that chronic multi-generational exposure of daphnids to Ce and Er reduced survival, growth and reproduction, decreasing ROS, SOD and CAT from F0 to F2. Ce reduced the number of generated offsprings after each generation, while Er delayed the time of offsprings emergence, but not their number. ROS, SOD, CAT and GST evidenced that Er is slightly more toxic than Ce. Up- and downregulation of genes was limited, but Ce and Er activated the ABC transporters. Uptake of Ce and Er decreased through exposure time and generations.
Collapse
Affiliation(s)
- E Galdiero
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy.
| | - R Carotenuto
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy.
| | - A Siciliano
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy.
| | - G Libralato
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy.
| | - M Race
- Department of Civil and Mechanical Engineering, Università di Cassino e del Lazio Meridionale, Cassino, Italy.
| | - G Lofrano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Naples Federico II, via Cinthia, 80126 Naples, Italy; Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - M Fabbricino
- University of Naples Federico II, Department of Civil, Architectural and Environmental Engineering, Via Claudio 21, 80125 Napoli, Italy.
| | - M Guida
- Department of Biology, University of Naples Federico II, via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
14
|
Pagano G, Thomas PJ, Di Nunzio A, Trifuoggi M. Human exposures to rare earth elements: Present knowledge and research prospects. ENVIRONMENTAL RESEARCH 2019; 171:493-500. [PMID: 30743241 DOI: 10.1016/j.envres.2019.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/23/2023]
Abstract
The extensive use of rare earth elements (REEs) in a number of technologies is expected to impact on human health, including occupational and environmental REE exposures. A body of experimental evidence on REE-associated toxicity has been accumulated in recent decades, thus providing extensive background information on the adverse effects of REE exposures. Unlike experimental studies, the consequences of REE exposures to human health have been subjected to relatively fewer investigations. Geographical studies have been conducted on residents in REE mining districts, reporting on REE bioaccumulation, and associations between REE residential exposures and adverse health effects. A recent line of studies has associated tobacco smoking and indoor smoke with increased levels of some REEs in exposed residents. A body of literature has been focused on occupational REE exposures, with the observation of respiratory tract damage. The occupations related to REE mining and processing have shown REE bioaccumulation in scalp hair, excess REE urine levels, and defective gene expression. As for other REE occupational exposures, mention should be made of: a) jobs exposing to REE aerosol, such as movie operator; b) e-waste processing and, c) diesel engine repair and maintenance, with exposures to exhaust microparticulate (containing nanoCeO2 as a catalytic additive). Diesel exhaust microparticulate has been studied in animal models, leading to evidence of several pathological effects in animals exposed by respiratory or systemic routes. A working hypothesis for REE occupational exposures is raised on REE-based supermagnet production and manufacture, by reviewing experimental studies that suggest several pathological effects of static magnetic fields, and warrant further investigations.
Collapse
Affiliation(s)
- Giovanni Pagano
- Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy.
| | - Philippe J Thomas
- Environment and Climate Change Canada, Science & Technology Branch, National Wildlife Research Center - Carleton University, Ottawa, Ontario, Canada K1A 0H3
| | - Aldo Di Nunzio
- Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Federico II Naples University, Department of Chemical Sciences, via Cinthia, I-80126 Naples, Italy
| |
Collapse
|