1
|
Wei J, Chen J, Zhang Z, Ban Y, Guo J, Dong L, Feng Z. Toxicity and Glutathione S-Transferase-Catalyzed Metabolism of R-/ S-Metolachlor in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39487793 DOI: 10.1021/acs.jafc.4c06711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Metolachlor, the chiral herbicide, inhibits the very-long-chain fatty acid (VLCFA) synthesis; elucidating the enantioselectivity between R- and S-metolachlor in the toxicological difference will facilitate the understanding of the site of action. We found that the endogenous accumulation of C22 VLCFAs decreased in both R-/S-metolachlor -treated plants by 6, 12, and 24 h after treatment, with more significant reduction in the S isomer group. Gene expression of glutathione S-transferase OsGST Tau members were obviously induced upon treatments with S or R isomer; both OsGSTU1 and OsGSTU4 can metabolize metolachlor effectively, with S isomer as the preference by directly catalyzing the conjugation between S-metolachlor and glutathione. In the current study, we provide the first evidence in rice seedlings that S-metolachlor showed herbicidal toxicity by blocking the synthesis of C22-type fatty acid, which eventually affects the whole elongation chain of (V)LCFA. Meanwhile, OsGSTU1 and 4 metabolize the metolachlor with the S isomer as preference. All of these discoveries broaden our knowledge about metolachlor toxicology and enantioselectivity.
Collapse
Affiliation(s)
- Jianguo Wei
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jinyi Chen
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhanzhan Zhang
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yaxin Ban
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jiaying Guo
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhike Feng
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
2
|
Carvalho AR, Morão AM, Gonçalves VMF, Tiritan ME, Gorito AM, Pereira MF, Silva AMT, Castro BB, Carrola JS, Amorim MM, Ribeiro ARL, Ribeiro C. Toxicity of butylone and its enantiomers to Daphnia magna and its degradation/toxicity potential using advanced oxidation technologies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 271:106906. [PMID: 38588636 DOI: 10.1016/j.aquatox.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Butylone (BTL) is a chiral synthetic cathinone available as a racemate and reported as contaminant in wastewater effluents. However, there are no studies on its impact on ecosystems and possible enantioselectivity in ecotoxicity. This work aimed to evaluate: (i) the possible ecotoxicity of BTL as racemate or its isolated (R)- and (S)- enantiomers using Daphnia magna; and (ii) the efficiency of advanced oxidation technologies (AOTs) in the removal of BTL and reduction of toxic effects caused by wastewaters. Enantiomers of BTL were obtained by liquid chromatography (LC) using a chiral semi-preparative column. Enantiomeric purity of each enantiomer was > 97 %. For toxicity assessment, a 9-day sub-chronic assay was performed with the racemate (at 0.10, 1.0 or 10 μg L-1) or each enantiomer (at 0.10 or 1.0 μg L-1). Changes in morphophysiological, behavioural, biochemical and reproductive endpoints were observed, which were dependent on the form of the substance and life stage of the organism (juvenile or adult). Removal rates of BTL in spiked wastewater (10 μg L-1) treated with different AOTs (ultraviolet, UV; ozonation, O3; and UV/O3) were similar and lower than 29 %. The 48 h D. magna acute toxicity assays demonstrated a reduction in the toxicity of the treated spiked effluents, but no differences were found amongst AOTs treatments. These results warn for the contamination and negative impact of BTL on ecosystems and highlight the need for efficient removal processes.
Collapse
Affiliation(s)
- Ana R Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; School of Health, Polytechnic Institute of Porto 4200-072, Porto, Portugal
| | - Ana M Morão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal
| | - Virgínia M F Gonçalves
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL 4585-116, Gandra, Portugal
| | - Maria Elizabeth Tiritan
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal; Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões 4450-208, Matosinhos, Portugal; Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto 4050-313, Porto, Portugal
| | - Ana M Gorito
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - M Fernando Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - Adrián M T Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal
| | - Bruno B Castro
- CBMA - Centre of Molecular and Environmental Biology / ARNET - Aquatic Research Network, University of Minho, 4710-057, Braga, Portugal; IB-S - Institute of Science and Innovation for Bio-Sustainability, University of Minho 4710-057, Braga, Portugal
| | - João S Carrola
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, CITAB/Inov4Agro 5000-801, Vila Real, Portugal
| | - Maria M Amorim
- School of Health, Polytechnic Institute of Porto 4200-072, Porto, Portugal
| | - Ana R L Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto 4200-465, Porto, Portugal.
| | - Cláudia Ribeiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU 4585-116, Gandra, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU) 4585-116, Gandra, Portugal.
| |
Collapse
|
3
|
Sondhia S, Pawar DV, Dasari S. Degradation dynamics, correlations, and residues of carfentrazone-ethyl, fenoxaprop-p-ethyl, and pinoxaden under the continuous application in the wheat field. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8851-8865. [PMID: 36700995 DOI: 10.1007/s10653-023-01487-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Weed infestation is a major biotic limitations in wheat cultivation; thus, various herbicides are being applied to control these weeds. Therefore, this study was undertaken for two successive years to assess degradation behaviours, persistence and residue risk imposed by carfentrazone, fenoxaprop-p-ethyl and pinoxaden sprayed as post-emergence herbicides in the wheat crop for management of weeds. Soil and crop samples were collected at periodically at after two hour of herbicide application till harvest of wheat crop and analysed by a high-performance liquid chromatograph. Degradation of carfentrazone, pinoxaden and fenoxaprop-p-ethyl, in the soil of wheat field occurred rapid to moderately with the mean half-life 9.92, 11.7 and 11.8 days, respectively. Persistence was found to be dependent on the weather parameters as well as physicochemical properties of the soil and herbicides. Half-life of studied herbicides was found to be negatively correlated with persistence (R2 0.38, p = 0.05, n = 3) and vapour pressure (R2 0.99, p = 0.05, n = 3). Principal component analysis revealed that the first two Principal Components (PCs) had eigenvalues more than 1, and the first and second PCs contributed 77.4 and 22.6% in herbicide residues and different parameters variation, respectively. Terminal residues of carfentrazone, pinoxaden and fenoxaprop-p-ethyl in the wheat straw, grains and soil were found below the maximum residue limits. Owing to the moderate persistence under wheat field conditions, carfentrazone, pinoxaden and fenoxaprop-p-ethyl are supposed to be safe for control of weeds in wheat crop and hence, suspected risk on the human and environment or crop produce under evaluated doses is negligible.
Collapse
Affiliation(s)
- Shobha Sondhia
- ICAR-Directorate of Weed Research, Jabalpur, M.P, India.
| | | | | |
Collapse
|
4
|
Zhang Y, Kong Z, Gregoire N, Li L, Yang L, Zhao M, Jin N, Wang F, Fan B, Francis F, Li M. Enantioselective activity and toxicity of chiral acaricide cyflumetofen toward target and non-target organisms. CHEMOSPHERE 2023; 325:138431. [PMID: 36933840 DOI: 10.1016/j.chemosphere.2023.138431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Cyflumetofen (CYF), a novel chiral acaricide, exert enantiomer-specific effects on target organisms by binding to glutathione S-transferase. However, there is limited knowledge regarding the response of non-target organisms to CYF, including enantioselective toxicity. In this study, we investigated the effects of racemic CYF (rac-CYF) and its two enantiomers (+)-CYF and (-)-CYF on MCF-7 cells and non-target (honeybees) and target (bee mites and red spider mites) organisms. The results showed that similar to estradiol, 1 μM (+)-CYF promoted the proliferation and disturbed the redox homeostasis of MCF-7 cells, whereas at high concentrations (≥100 μM) it exerted a negative effect on cell viability that was substantially stronger than that of (-)-CYF or rac-CYF. (-)-CYF and rac-CYF at 1 μM concentration did not significantly affect cell proliferation, but caused cell damage at high concentrations (≥100 μM). Analysis of acute CYF toxicity against non-target and target organisms revealed that for honeybees, all CYF samples had high lethal dose (LD50) values, indicating low toxicity. In contrast, for bee mites and red spider mites, LD50 values were low, whereas those of (+)-CYF were the lowest, suggesting higher toxicity of (+)-CYF than that of the other CYF samples. Proteomics profiling revealed potential CYF-targeted proteins in honeybees related to energy metabolism, stress responses, and protein synthesis. Upregulation of estrogen-induced FAM102A protein analog indicated that CYF might exert estrogenic effects by dysregulating estradiol production and altering estrogen-dependent protein expression in bees. Our findings suggest that CYF functions as an endocrine disruptor in non-target organisms in an enantiomer-specific manner, indicating the necessity for general ecological risk assessment for chiral pesticides.
Collapse
Affiliation(s)
- Yifan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhiqiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China
| | - Noel Gregoire
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Lin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Lin Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Mengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Nuo Jin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio-Tech, University of Liège, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Minmin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process/Laboratory of Agro-products Quality Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
5
|
García-Cansino L, García MÁ, Marina ML. Simultaneous Enantiomeric Separation of Carfentrazone-Ethyl Herbicide and Its Hydrolysis Metabolite Carfentrazone by Cyclodextrin Electrokinetic Chromatography. Analysis of Agrochemical Products and a Degradation Study. Molecules 2021; 26:5350. [PMID: 34500782 PMCID: PMC8433761 DOI: 10.3390/molecules26175350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
The different activity and toxicity that the enantiomers of agrochemicals may have requires the development of stereoselective analytical methodologies enabling the individual determination of each enantiomer. The aim of this work was to develop the first Electrokinetic Chromatography methodology enabling the simultaneous enantiomeric separation of carfentrazone-ethyl herbicide and its hydrolysis metabolite carfentrazone. The use of an anionic cyclodextrin as chiral selector (captisol at 2.5% (w/v)) in a 25 mM acetate buffer, at a temperature of 30 °C, and an applied voltage (reverse polarity) of -30 kV, allowed the simultaneous separation of the four enantiomers of the two compounds studied in 6.8 min with enantiomeric resolutions of 5.0 for carfentrazone-ethyl and 5.1 for carfentrazone. Analytical characteristics of the developed method were evaluated and found adequate to achieve the quantitation of carfentrazone-ethyl and carfentrazone. Analysis of a commercial herbicide formulation showed the potential of the method for the quality control of these agrochemical products. Degradation studies for carfentrazone-ethyl revealed that no significant degradation took place in cleaned sand samples while a significant but not stereoselective degradation took place in soils for the whole period of time considered (seven days).
Collapse
Affiliation(s)
- Laura García-Cansino
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra, Madrid-Barcelona Km, 33.600, 28871 Alcalá de Henares (Madrid), Spain; (L.G.-C.); (M.Á.G.)
| | - María Ángeles García
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra, Madrid-Barcelona Km, 33.600, 28871 Alcalá de Henares (Madrid), Spain; (L.G.-C.); (M.Á.G.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M, del Río, Ctra, Madrid-Barcelona Km, 33.600, 28871 Alcalá de Henares (Madrid), Spain
| | - María Luisa Marina
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra, Madrid-Barcelona Km, 33.600, 28871 Alcalá de Henares (Madrid), Spain; (L.G.-C.); (M.Á.G.)
- Universidad de Alcalá, Instituto de Investigación Química Andrés M, del Río, Ctra, Madrid-Barcelona Km, 33.600, 28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
6
|
Pan X, Wu X, Liu N, Xu J, Liu X, Wu X, Feng Y, Li R, Dong F, Zheng Y. A systematic evaluation of zoxamide at enantiomeric level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139069. [PMID: 32446056 DOI: 10.1016/j.scitotenv.2020.139069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Zoxamide is a recently discovered chiral fungicide that applied to agricultural production, but the potential environmental risk may be underestimated because the risk posed by either enantiomer has not been adequately assessed. Therefore, systemic evaluation of zoxamide was first carried out at the enantiomeric level. Enantioselective bioactivity against target pathogens (Phytophthora capsici Leonian, Alternaria solani, Botryis cinerea, Colletotrichum gloeosprioides Penz, Phytophthora sojae Kaufmann & Gerdemann) was explored, and the order of the bioactivity was R-zoxamide >Rac-zoxamide >S-zoxamide, with a 9.9- to 140.0-times difference between two enantiomers. Molecular docking simulation was utilized to clarify the mechanism underlying the observed differences in enantioselective bioactivity, and the result indicated that a difference of Van der waals force between R/S-zoxamide and the specific receptor gave rise to the different antifungal activity. The enantioselective toxicity result demonstrated that R-zoxamide had 4.9- to 10.8- times greater acute toxicity to Selenastrum capricornutum and Daphnia magna than S-zoxamide. S-zoxamide degraded faster under aerobic condition in all three types of soils, giving rise to an enrichment of high-risk R-enantiomer. Under anaerobic condition, however, no significant difference in dissipation rate was observed between two enantiomers. R-zoxamide was 1.5- to 3.5-times more bioactive and 1.1- to 1.5-times more toxic than Rac-zoxamide, which means developing R-zoxamide instead of racemate is a potential way to reduce pesticide dosage without loss of efficacy against target organisms and that an inactive isomer would no more be released to the environment. This study may have implications for better practical application and environmental risk assessment of zoxamide enantiomers.
Collapse
Affiliation(s)
- Xinglu Pan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaomao Wu
- Department of Plant Protection, College of Agriculture, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Na Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | | | - Runan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|