1
|
Zhang J, Li J, Lin Q, Huang Y, Chen D, Ma H, Zhao Q, Luo W, Nawaz M, Jeyakumar P, Trakal L, Wang H. Impact of coconut-fiber biochar on lead translocation, accumulation, and detoxification mechanisms in a soil-rice system under elevated lead stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133903. [PMID: 38430601 DOI: 10.1016/j.jhazmat.2024.133903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/17/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.
Collapse
Affiliation(s)
- Jingmin Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Jianhong Li
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Qinghuo Lin
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Yanyan Huang
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China
| | - Dongliang Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Haiyang Ma
- Key Laboratory of Tropical Crops Nutrition of Hainan Province/ South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Zhanjiang, Guangdong 524091, China
| | - Qingjie Zhao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Luo
- Danzhou Soil Environment of Rubber Plantation, Hainan Observation and Research Station, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China.
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture & Environment, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, 165 00 Prague 6, Czech Republic
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Guangdong Provincial Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong 510650, China.
| |
Collapse
|
2
|
Viana RDSR, Figueiredo CCD, Chagas JKM, Paz-Ferreiro J. Combined use of biochar and phosphate rocks on phosphorus and heavy metal availability: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120204. [PMID: 38278116 DOI: 10.1016/j.jenvman.2024.120204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
Biochar (BC) and phosphate rocks (PR) are alternative nutrient sources with multiple benefits for sustainable agriculture. The combination of these soil amendments serves two main purposes: to increase soil phosphorus (P) availability and to remediate heavy metal (HM) contamination. However, a further demonstration of the benefits and risks associated with the combined use of BC and PR (BC + PR) is needed, considering the specific characteristics of raw materials, soil types, experimental conditions, and climatic contexts. This meta-analysis is based on data from 28 selected studies, including 581 paired combinations evaluating effects on extraction and fractionation of cadmium (Cd) and lead (Pb), and 290 paired combinations for soil labile and non-labile P. The results reveal that BC, PR, and BC + PR significantly increase soil labile and non-labile P, with BC + PR showing a 150% greater increase compared to BC alone. In tropical regions, substantial increases in P levels were observed with BC, PR, and BC + PR exhibiting increments of 317, 798, and 288%, respectively. In contrast, temperate climate conditions showed lower increases, with BC, PR, and BC + PR indicating 54, 123, and 88% rises in soil P levels. Moreover, BC, PR, and BC + PR effectively reduce the bioavailability of Cd and Pb in soil, with BC + PR demonstrating the highest efficacy in immobilizing Cd. The synergistic effect of BC + PR highlights their potential for Cd remediation. BC + PR effectively reduces the exchangeable fraction of Cd and Pb in soil, leading to their immobilization in more stable forms, such as the residual fraction. This study provides valuable insights into the remediation potential and P management benefits of BC and PR, highlighting their importance for sustainable agriculture and soil remediation practices.
Collapse
Affiliation(s)
| | | | - Jhon Kenedy Moura Chagas
- Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, DF, Brazil
| | - Jorge Paz-Ferreiro
- School of Engineering, RMIT University, GPO Box 2476, 3001, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Jin Y, Wang Y, Li X, Luo T, Ma Y, Wang B, Liang H. Remediation and its biological responses to Cd(II)-Cr(VI)-Pb(II) multi-contaminated soil by supported nano zero-valent iron composites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161344. [PMID: 36610630 DOI: 10.1016/j.scitotenv.2022.161344] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/18/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Multi-metal contaminated soil has received extensive attention. The biochar and bentonite-supported nano zero-valent iron (nZVI) (BC-BE-nZVI) composite was synthesized in this study by the liquid-phase reduction method. Subsequently, the BC-BE-nZVI composite was applied to immobilize cadmium (Cd), chromium (Cr), and lead (Pb) in simulated contaminated soil. The simultaneous immobilization efficiencies of Cd, Cr(VI), Crtotal, and Pb were achieved at 70.95 %, 100 %, 86.21 %, and 100 %, respectively. In addition, mobility and bioavailabilities of Cd, Cr, and Pb were significantly decreased and the risk of iron toxicity was reduced. Stabilized metal species in the contaminated soil (e.g., Cd(OH)2, Cd-Fe-(OH)2, CrxFe1-xOOH, CrxFe1-x(OH)3, PbO, PbCrO4, and Pb(OH)2) were formed after the BC-BE-nZVI treatment. Thus, the immobilization mechanisms of Cd, Cr, and Pb, including adsorption, reduction, co-precipitation, and complexation co-exist with the metals. More importantly, bacterial richness, bacterial diversity, soil enzyme activities (dehydrogenase, urease, and fluorescein diacetate hydrolase), and microbial activity were enhanced by applying the BC-BE-nZVI composite, thus increasing the soil metabolic function. Over all, this work applied a promising procedure for remediating multi- metal contaminated soil by using the BC-BE-nZVI composite.
Collapse
Affiliation(s)
- Yi Jin
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yaxuan Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China.
| | - Ting Luo
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China
| | - Yongsong Ma
- School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, PR China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China
| | - Hong Liang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, PR China; Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, PR China
| |
Collapse
|
4
|
Song A, Li Z, Wang E, Xu D, Wang S, Bi J, Wang H, Jeyakumar P, Li Z, Fan F. Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148797. [PMID: 34273835 DOI: 10.1016/j.scitotenv.2021.148797] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Soil amendments of black bone (BB), biochar (BC), silicon fertilizer (SI), and leaf fertilizer (LF) play vital roles in decreasing cadmium (Cd) availability, thereby supporting healthy plant growth and food security in agroecosystems. However, the effect of their additions on soil microbial community and the resulting soil Cd bioavailability, plant Cd uptake and health growth are still unknown. Therefore, in this study, BB, BC, SI, and LF were selected to evaluate Cd amelioration in wheat grown in Cd-contaminated soils. The results showed that relative to the control, all amendments significantly decreased both soil Cd bioavailability and its uptake in plant tissues, promoting healthy wheat growth and yield. This induced-decrease effect in seeds was the most obvious, wherein the effect was the highest in SI (52.54%), followed by LF (43.31%), and lowest in BC (35.24%) and BB (31.98%). Moreover, the induced decrease in soil Cd bioavailability was the highest in SI (29.56%), followed by BC (28.85%), lowest in LF (17.55%), and BB (15.30%). The significant effect in SI likely resulted from a significant increase in both the soil bioavailable Si and microbial community (Acidobacteria and Thaumarchaeota), which significantly decreased soil Cd bioavailability towards plant roots. In particular, a co-occurrence network analysis indicated that soil microbes played a substantial role in wheat yield under Si amendment. Therefore, supplying Si alters the soil microbial community, positively and significantly interacting with soil bioavailable Si and decreasing Cd bioavailability in soils, thereby sustaining healthy crop development and food quality.
Collapse
Affiliation(s)
- Alin Song
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zimin Li
- Earth and Life Institute, Soil Sciences, Université catholique de Louvain (UCLouvain), Croix du Sud 2/L7.05.10, 1348 Louvain-la-Neuve, Belgium.
| | - Enzhao Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Duanyang Xu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China.
| | - Sai Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Paramsothy Jeyakumar
- Environmental Sciences, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Zhongyang Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China.
| | - Fenliang Fan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Ding Y, Wang W, Ao S. The regulating effects and mechanism of biochar and maifanite on copper and cadmium in a polluted soil- Lolium perenne L. system. PeerJ 2021; 9:e11921. [PMID: 34434656 PMCID: PMC8359803 DOI: 10.7717/peerj.11921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Arable land polluted by copper (Cu) and cadmium (Cd) is a widespread problem. The use of biochar and/or clay mineral as a soil amendment can effectively solidify heavy metals in the soil. We applied biochar (BC), iron modified biochar (Fe-BC), maifanite (MF, a kind of clay minerals), a combination of BC with MF (BC:MF), and Fe-BC with MF (Fe-BC:MF) at a 2 wt % dose as soil amendments to study their ability to prevent Cu and Cd from accumulating in ryegrass (Lolium perenne L.). We found that after 90 days of cultivation, the Cd and Cu content both significantly decreased in ryegrass shoots from 2.06 and 209.3 mg kg−1 (control) to 1.44–2.01 and 51.50–70.92 mg kg−1, respectively, across treatments (p < 0.05). Similarly, the bioconcentration factor (BCF) for Cd/Cu was significantly smaller (P < 0.05) in all amendments versus control soil. This trend differed among the shoot, BCF, and transportation factor (TF). Combining BC:MF or Fe-BC:MF did not significantly improve the Cd/Cu stabilization in the soil compared to the corresponding single amendment (p > 0.05). Our adsorption balance experiment showed that BC, Fe-BC, and MF physically and chemically adsorbed Cd and Cu by complexation with functional groups (mesoporous nanomaterials) whose porosity measurements ranged from 0.68 to 78.57 m2 g−1. Furthermore, the amorphous crystalline iron oxide binding Cd and Cu was the key to immobilizing these metals in the soil. The amendments applied in our study show promise for enhancing immobilization of Cu and Cd in contaminated paddy soils.
Collapse
Affiliation(s)
- Yuan Ding
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Weiya Wang
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| | - Shiying Ao
- National-Local Joint Engineering Research Center of Heavy Metal Pollutant Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
6
|
Zhang D, Li T, Ding A, Wu X. Effects of an additive (hydroxyapatite-bentonite-biochar) on Cd and Pb stabilization and microbial community composition in contaminated vegetable soil. RSC Adv 2021; 11:12200-12208. [PMID: 35423762 PMCID: PMC8697084 DOI: 10.1039/d1ra00565k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/19/2021] [Indexed: 12/27/2022] Open
Abstract
A two-year pot experiment was conducted with a pimiento-celery cabbage (Capsicum annuum L.-Brassica pekinensis) rotation in acidic soil contaminated with Cd and Pb, which was amended with 0.0, 1.0, 2.5, 5.0 and 10.0% (w/w) premixtures of hydroxyapatite, bentonite and biochar combinations (HTB, in a ratio of 1 : 2 : 2). The results showed that the application of HTB at 2.5-10.0% significantly increased soil pH and organic carbon by an average of 10.38-17.60% and 35.60-55.34% during the two years, respectively. Compared to the control treatment, 1.0-10.0% HTB decreased the available Cd and Pb concentrations by 40.92-77.53% and 41.60-82.79% on average, respectively. In addition, the diversity and richness of the soil bacterial community improved after the two-year application of HTB. The relative abundances of Acidobacteria, Bacteroidetes and Chloroflexi increased under the HTB treatments, while those of Proteobacteria and Actinobacteria decreased. Redundancy analysis (RDA) and regression analysis indicated that soil pH and Cd and Pb availability were important factors shaping the soil bacterial community. The Cd and Pb concentrations in the edible parts of pimiento and celery cabbage decreased as the HTB application rate increased and met the Food Quality Standard in each season when the HTB application rate was 5.0% or higher. Higher rates of HTB (5.0% and 10.0%) not only ensured the quality of vegetables, but also significantly promoted pimiento and celery cabbage growth. Overall, these results indicated that the application of HTB, especially at a rate of 5.0%, could be an effective way to immobilize Cd and Pb, improve soil quality and ensure vegetables produced in acidic contaminated soil are safe for human consumption.
Collapse
Affiliation(s)
- Di Zhang
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Ting Li
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Aifang Ding
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| | - Xiaoxia Wu
- Nanjing XiaoZhuang University Nanjing 211171 People's Republic of China
| |
Collapse
|
7
|
Liu J, Ding Y, Ji Y, Gao G, Wang Y. Effect of Maize Straw Biochar on Bacterial Communities in Agricultural Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:333-338. [PMID: 32006054 DOI: 10.1007/s00128-020-02793-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Biochar has become a popular soil amendment. However, its effect on soil microbial community is still unclear. In the present study, maize straw biochar was pyrolysed at 300°C, 450°C and 600°C, respectively, and then was added to agricultural soil at the ratio of 0.5%, 1% and 2%. Bacterial dynamics was analyzed in the pot experiments using denaturing gradient gel electrophoresis. The results indicated that the pyrolysis temperature has great impact on the elemental composition, pH and porous structures of biochar. Moreover, pyrolysis temperature was primary factor to drive the variation of bacterial community structure in biochar amended soil. In addition, the results suggested that biochar amendments on agricultural soil would decrease the bacterial diversity, and selectively promote growth of functional bacteria to become the dominant community, which could increase the bacterial community organization and improve the stability of bacteria to counteract effects of perturbation.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Yanli Ding
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yurui Ji
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
- New Energy Department, Tianjin Sino-German University of Applied Sciences, Tianjin, 300350, China
| | - Guanghai Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|