1
|
Zhang S, Li X, Geng T, Zhang Y, Zhang W, Zheng X, Sheng H, Jiang Y, Jin P, Kui X, Liu H, Ma G, Yun J, Yan X, Zhang X, Galindo-Prieto B, Kelly FJ, Mudway I. Using machine learning to predict soil lead relative bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136515. [PMID: 39591930 DOI: 10.1016/j.jhazmat.2024.136515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Although the relative bioavailability (RBA) can be applied to assess the effects of Pb on human health, there is no definition and no specific data of Pb-RBA to different soil sources and endpoints in vivo. In this study, we estimated the Pb-RBA from different soil sources and endpoints based on machine learning. The Pb-BAc and Pb-RBA in soils were found to be mostly in the range of 20-80 %, which is different from the USEPA Pb-RBA of 60 % in soils. The mean Pb-RBA for different biological endpoints in vivo predicted using the RF model were 49.94 ± 18.65 % for blood; 60.15 ± 26.62 %, kidney; 60.90 ± 21.51 %, liver; 50.70 ± 17.56 %, femur; and 62.89 ± 16.64 % as a combined measure. Pb-RBA of shooting range soils was 88.21 ± 16.92 % (mean), spiked/aged soils 77.11 ± 14.05 % and certified reference materials 73.70 ± 20.31 %; agricultural soil 68.28 ± 18.93 %, urban soil 64.36 ± 21.82 %, mining/smelting soils 53.99 ± 17.66 %, and industrial soils 47.71 ± 20.35 %. This study is first to define the Pb-RBA according to various soil sources and endpoints in vivo with the objective of providing more accurate Pb-RBA data for soil lead risk assessment.
Collapse
Affiliation(s)
- Shuang Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Tunyang Geng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Weixi Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Sheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Pengyuan Jin
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xuelian Kui
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Huimin Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Ge Ma
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Jiang Yun
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Beatriz Galindo-Prieto
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Frank J Kelly
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK; NIHR Health Protection Research Units in Environmental Exposures and Health, and Chemical and Radiation Threats and Hazards, Imperial College London, London, UK
| |
Collapse
|
2
|
Chen R, Hu M, Cheng N, Shi R, Ma T, Wang W, Huang W. Prediction of the bioaccessibility and accumulation of cadmium in the soil-rice-human system based on optimized DGT and BCR coupled models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116509. [PMID: 38833979 DOI: 10.1016/j.ecoenv.2024.116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Cadmium, as a typical heavy metal, has the potential to induce soil pollution and threaten human health through the soil-plant-human pathway. The conventional evaluation method based on the total content in soil cannot accurately represent the content migrated from the food chain to plants and the human body. Previous studies focused on the process of plant enrichment of heavy metals in soil, and very few studies directly predicted human exposure or risk through the labile state of Cd in soil. Hence, a relatively accurate and convenient prediction model of Cd release and translocation in the soil-rice-human system was developed. This model utilizes available Cd and soil parameters to predict the bioavailability of Cd in soil, as well as the in vitro bioaccessibility of Cd in cooked rice. The bioavailability of Cd was determined by the Diffusive Gradients in Thin-films technology and BCR sequential extraction procedure, offering in-situ quantification, which presents a significant advantage over traditional monitoring methods and aligns closely with the actual uptake of heavy metals by plants. The experimental results show that the prediction model based on the concentration of heavy metal forms measured by BCR sequential extraction procedure and diffusive gradients in thin-films technique can accurately predict the Cd uptake in rice grains, gastric and gastrointestinal phase (R2=0.712, 0.600 and 0.629). This model accurately predicts Cd bioavailability and bioaccessibility across the soil-rice-human pathway, informing actual human Cd intake, offering scientific support for developing more effective risk assessment methods.
Collapse
Affiliation(s)
- Rui Chen
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Miaomiao Hu
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Nuo Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rongguang Shi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Tiantian Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Wensheng Wang
- Bao Gang Group Environmental Engineering Research Institute, Baotou 014000, China
| | - Wenyang Huang
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
3
|
Zhang J, Wang X, Li J, Luo J, Wang X, Ai S, Cheng H, Liu Z. Bioavailability (BA)-based risk assessment of soil heavy metals in provinces of China through the predictive BA-models. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133327. [PMID: 38141317 DOI: 10.1016/j.jhazmat.2023.133327] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The real biological effect is not generated by the total content of heavy metals (HMs), but rather by bioavailable content. A new bioavailability-based ecological risk assessment (BA-based ERA) framework was developed for deriving bioavailability-based soil quality criteria (BA-based SQC) and accurately assessing the ecological risk of soil HMs at a multi-regional scale in this study. Through the random forest (RF) models and BA-based ERA framework, the 217 BA-based SQC for HMs in 31 Chinese provinces were derived and the BA-based ERA was comprehensively assessed. This study found that bioavailable HMs extraction methods (BHEMs) and total HMs content play the predominant role in affecting HMs (As, Cd, Cr, Cu, Ni, Pb, and Zn) bioavailability by explaining 27.55-56.11% and 9.20-62.09% of the variation, respectively. The RF model had accurate and stable prediction ability for the bioavailability of soil HMs with the mean R2 and RMSE of 0.83 and 0.43 for the test set, respectively. The results of BA-based ERA showed that bioavailability could avoid the overestimation of ecological risks to some extent after reducing the uncertainty of soil differences. This study confirmed the feasibility of using bioavailability for ERA and will utilised to revise the soil environmental standards based on bioavailability for HMs.
Collapse
Affiliation(s)
- Jiawen Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jingjing Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
4
|
Wu MW, Dong WJ, Guan DX, Li SW, Ma LQ. Total contents, fractionation and bioaccessibility of nine heavy metals in household dust from 14 cities in China. ENVIRONMENTAL RESEARCH 2024; 243:117842. [PMID: 38065384 DOI: 10.1016/j.envres.2023.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/06/2024]
Abstract
The potential health risk caused by long-term exposure to heavy metals in household dust is not only depended on their total content, but also bioaccessibility. In this study, twenty-one dust samples were collected from residential buildings, schools, and laboratories in 14 provincial-capital/industrial cities of China, aiming to evaluate the total contents, fractionation, bioaccessibility and health risks of nine heavy metals (As, Cd, Cr, Ni, Pb, Mn, Zn, Fe, and Cu). Results showed that the highest levels of Cd, Cr, Ni and Zn were found in laboratory dust, As, Pb and Mn in school dust, and Fe and Cu in residential dust, indicating different source profiles of the heavy metals. The mean bioaccessibility of the heavy metals across all samples as evaluated using SBRC (Solubility Bioavailability Research Consortium), IVG (In Vitro Gastrointestinal), and PBET (Physiologically Based Extraction Test) assays was 58.4%, 32.4% and 17.2% in gastric phase (GP), and 24.9%, 21.9% and 9.39% in intestinal phase (IP), respectively. Cadmium had the highest content in the fractions of E1+C2 (43.7%), as determined by sequential extraction, and Pb, Mn, and Zn had a higher content in E1+C2+F3 (64.2%, 67.2%, 78.8%), resulting in a higher bioaccessibility of these heavy metals than others. Moreover, the bioaccessibility of most heavy metals was inversely related to dust pH (R = -0.18 in GP; -0.18 in IP; P < 0.01) and particle size, while a positive correlation was observed with total organic carbon (R = 0.40 in GP; 0.38 in IP; P < 0.01). The exposure risk calculated by the highest bioaccessibility was generally lower than that calculated by the total content. However, Pb in one school dust sample had an unacceptable carcinogenic risk (adult risk = 1.19 × 10-4; child risk = 1.08 × 10-4). This study suggests that bioaccessibility of heavy metals in household dust is likely related to geochemical fractions and physical/chemical properties. Further research is needed to explore the sources of bioaccessible heavy metals in household dust.
Collapse
Affiliation(s)
- Ming-Wen Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wen-Jie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Billmann M, Hulot C, Pauget B, Badreddine R, Papin A, Pelfrêne A. Oral bioaccessibility of PTEs in soils: A review of data, influencing factors and application in human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165263. [PMID: 37400023 DOI: 10.1016/j.scitotenv.2023.165263] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Understanding the behavior of metal(loi)ds transported from soil to humans is critical for human health risk assessment (HHRA). In the last two decades, extensive studies have been conducted to better assess human exposure to potentially toxic elements (PTEs) by estimating their oral bioaccessibility (BAc) and quantifying the influence of different factors. This study reviews the common in vitro methods used to determine the BAc of PTEs (in particular As, Cd, Cr, Ni, Pb, and Sb) under specific conditions (particularly in terms of the particle size fraction and validation status against an in vivo model). The results were compiled from soils derived from various sources and allowed the identification of the most important influencing factors of BAc (using single and multiple regression analyses), including physicochemical soil properties and the speciation of the PTEs in question. This review presents current knowledge on integrating relative bioavailability (RBA) in calculating doses from soil ingestion in the HHRA process. Depending on the jurisdiction, validated or non-validated bioaccessibility methods were used, and risks assessors applied different approaches: (i) using default assumptions (i.e., RBA of 1); (ii) considering that bioaccessibility value (BAc) accurately represents RBA (i.e., RBA equal to BAc); (iii) using regression models to convert BAc of As and Pb into RBA as proposed by the USA with the US EPA Method 1340; or (iv) applying an adjustment factor as proposed by the Netherlands and France to use BAc from UBM (Unified Barge Method) protocol. The findings from this review should help inform risk stakeholders about the uncertainties surrounding using bioaccessibility data and provide recommendations for better interpreting the results and using bioaccessibility in risk studies.
Collapse
Affiliation(s)
- Madeleine Billmann
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France; Agence de l'Environnement et de la Maîtrise de l'Énergie, 20 avenue du Grésillé BP 90406, F-49004 Angers Cedex 01, France
| | - Corinne Hulot
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | | | - Rabia Badreddine
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Arnaud Papin
- Ineris, Parc technologique Alata, BP 2, F-60550 Verneuil-en-Halatte, France
| | - Aurélie Pelfrêne
- Univ. Lille, IMT Nord Europe, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, 48 boulevard Vauban, F-59000 Lille, France.
| |
Collapse
|
6
|
Bai Y, Ma T, Liu Z, Liu X, Wei H, Xue Y. Stabilization of cadmium in a fluvo-aquic soil-Chinese chive system using loess and chicken manure compost. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6231-6243. [PMID: 37280504 DOI: 10.1007/s10653-023-01645-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
The stabilization of heavy metals in soil has been increasingly applied in China in recent years due to its quick effect and low cost. In this study, loess and chicken manure compost (a commercial organic fertilizer) were used to stabilize Cd in slightly polluted fluvo-aquic soil from the North China Plain, and the driving factors for stabilization were investigated through ridge regression. The additives significantly reduced the total concentration of Cd in soil through dilution. The addition of loess and compost increased carbonates and organic matter in soil, respectively. This caused exchangeable Cd to be transformed to fractions bound to carbonates or organic matter, thereby decreasing the concentration of Cd in the roots and leaves of Chinese chive. The decreasing exchangeable Cd in soil was the direct cause of decreased uptake of Cd by plants, and the increasing fractions bound to carbonates or organic matter were indirect influencing factors. However, adding loess decreased soil fertility and retarded plant growth. The addition of compost compensated for these defects. This study suggests that the combined addition of loess and chicken manure compost was able to effectively reduce the total concentration and phytoavailability of Cd in soil and guarantee crop yield and quality.
Collapse
Affiliation(s)
- Ying Bai
- Gansu Academy of Eco-Environmental Sciences, Lanzhou, 730000, China
| | - Tingting Ma
- Gansu Academy of Eco-Environmental Sciences, Lanzhou, 730000, China
| | - Zheng Liu
- Research Center for Environmental Pollution Control of Yellow River Basin Cities, Lanzhou City University, Lanzhou, 730070, China.
- School of Chemical Engineering, Lanzhou City University, Anning District, Lanzhou City, Gansu Province, China.
| | - Xianyu Liu
- School of Chemical Engineering, Lanzhou City University, Anning District, Lanzhou City, Gansu Province, China
| | - Huijuan Wei
- School of Chemical Engineering, Lanzhou City University, Anning District, Lanzhou City, Gansu Province, China
| | - Yifei Xue
- School of Chemical Engineering, Lanzhou City University, Anning District, Lanzhou City, Gansu Province, China
| |
Collapse
|
7
|
Lu X, Yang Q, Wang H, Zhu Y. A global meta-analysis of the correlation between soil physicochemical properties and lead bioaccessibility. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131440. [PMID: 37086667 DOI: 10.1016/j.jhazmat.2023.131440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Soil physiochemical properties play a vital role in bioaccessibility-based health risk assessment as it can determine the bioaccessibility and the true risk of potentially toxic elements in soil. However, the effects of soil properties on bioaccessibility still remains unclear. In this paper, 17 of the 1454 literatures with 474 samples were identified, screened and reviewed for exploring the correlation between soil physicochemical properties and lead bioaccessibility (BAcPb) through a meta-analysis approach. Five soil physicochemical parameters including pH, SOM, Clay, CEC and T-Pb were systematically analyzed using Principal component analysis, Pearson correlation analysis and survival analysis. The results showed that pH of simulated gastric juice is a major source of heterogeneity of the correlation between soil pH and BAcPb. In the gastric phase, the effect of alkaline soil on high BAcPb (BAc >50%) is more sensitive, and the effect of acidic soil on low BAcPb (BAc <50%) is more sensitive. However, in the small intestinal phase, soil pH displays little impacts on BAcPb in acidic, alkaline and neutral soils. Although three principal components explained 66.2% and 64.9% of the total variance of the urban, agricultural, and mining soils in gastric and small intestinal phases, respectively, there was no strong evidence that soil type can influence the BAcPb. The results of present study provide insights into the correlation between soil properties and BAcPb, and prediction of the bioaccessibility and bioavailability of Pb in different types of soil.
Collapse
Affiliation(s)
- Xingyu Lu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Qingchun Yang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China.
| | - Hao Wang
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| | - Yiwen Zhu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Groundwater Resources and Environment, Jilin University, Changchun 130021, PR China
| |
Collapse
|
8
|
Shi YXX, Cui JQ, Zhang F, Li KW, Jiang J, Xu RK. Effects of soil pH and organic carbon content on in vitro Cr bioaccessibility in Ultisol, Alfisol, and Inceptisol. CHEMOSPHERE 2023; 336:139274. [PMID: 37343637 DOI: 10.1016/j.chemosphere.2023.139274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a toxic heavy metal and its mobility and bioaccessibility in soils are influenced by soil properties. In this study, the soil pH and organic carbon contents of Ultisol, Alfisol, and Inceptisol were adjusted before they were polluted with 230 mg kg-1 Cr(VI). Alkaline digestion, sequential extraction, and an in vitro experiment were conducted to study the valence state, species, and bioaccessibility of Cr in the soils. The results showed that a high soil pH was not favorable for reduction of Cr(VI); therefore the Cr(VI) and exchangeable Cr contents were positively related to soil pH. Soil organic carbon promoted the reduction of Cr(VI). Almost all Cr(VI) was reduced to Cr(III) when the soil organic carbon content reached 10 g kg-1. Chromium bioaccessibility in simulated gastric and intestinal phase solutions was influenced by Cr(VI) and Cr(III) adsorption/desorption, dissolution/precipitation, and redox reactions. Chromium bioaccessibility differences between the gastric and intestinal phases were associated with the Cr(VI)/Cr(III) ratio. Acidic conditions and a high organic carbon content promoted the conversion of Cr(VI) to Cr(III). When soil pH was increased from 4.01 to 5.85, Cr(VI) in Alfisol without the addition of humic acid increased from 96.38 to 174.78 mg kg-1, the exchangeable Cr proportion increased from 9.7% to 22.6%, and Cr bioaccessibility increased from 41.29% to 49.14% in the gastric phase and from 41.32% to 48.24% in the intestinal phase. When the organic content increased from 3.95 to 9.28 g kg-1 in Alfisol, Cr(VI) content decreased from 167.66 to 20.52 mg kg-1, which led to a decrease in Cr bioaccessibility from 49.15% to 13.8% in the gastric phase and from 45.85% to 7.67% in the intestinal phase. Therefore, acidic conditions and increasing soil organic carbon levels can reduce the health risk posed by Cr in soils.
Collapse
Affiliation(s)
- Yang-Xiao-Xiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Qi Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Ke-Wei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Shi Y, Yu Y, Xiang M, Cui P, Cui J, Zhang F, Jiang J, Xu R. Changes in molybdenum bioaccessibility in four spiked soils with respect to soil pH and organic matter. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117476. [PMID: 36773452 DOI: 10.1016/j.jenvman.2023.117476] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Investigation of the inherent relationship between soil physicochemical properties and pollutant's bioaccessibility (BAc) by analyzing different soil types may produce erroneous results or bias, owing to the complexity of natural soil characteristics. However, use of single factor analysis (e.g., soil pH, organic matter) facilitates evaluation of the transition. In this study, the inherent relationship between soil properties and the BAc of molybdenum (Mo) was evaluated in two typical variable-charge soils (Ferralosol and Ferrosol) and constant-charge soils (Alfisol and Inceptisol) spiked with Mo after adjusting their pH and organic carbon content. The Unified Bioaccessibility Research Group of Europe (BARGE) Method (UBM) was applied to evaluate the BAc of Mo in the gastric and intestinal phase (GP and IP, respectively). Isothermal adsorption experiment, Tessier sequential extraction, and field emission scanning electron microscope-energy dispersive spectroscopy (FESEM-EDS) analysis were conducted on these spiked soils. The results indicated that the BAc of Mo in IP (27.42-80.41%) was significantly higher than that in GP (2.52-28.53%). A significantly lower level of BAc of Mo was found in the variable-charge soils, when compared with that in the constant-charge soils. Furthermore, significant negative correlations were identified between the BAc and adsorption of Mo, which decreased with soil pH. These negative correlations can be attributed to the increase in soil negative charge density and enhancement of Mo desorption by hydroxyl, which reinforce the repulsion between Mo and soil particles with increasing soil pH; this was further confirmed by the decrease in Mo adsorption with Alfisol pH. The Mo fractions and FESEM-EDS patterns confirmed that the BAc of Mo in GP was negatively correlated with soil organic carbon (SOC) content, possibly owing to an increase in Mo retention by SOC. These findings indicated that the health risk of Mo contamination in low pH and SOC-rich variable-charge soil is relatively low, thus providing references for rationalizing risk assessment and remediating Mo-polluted soil.
Collapse
Affiliation(s)
- Yangxiaoxiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Jiaqi Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
| | - Jun Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Renkou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Wang Y, Wang X, Ai F, Du W, Yin Y, Guo H. Climatic CO 2 level-driven changes in the bioavailability, accumulation, and health risks of Cd and Pb in paddy soil-rice systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121396. [PMID: 36871748 DOI: 10.1016/j.envpol.2023.121396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Rising atmospheric carbon dioxide (CO2) and soil heavy metal pollution, which affects safe rice production and soil ecosystem stability, have caused widespread concern. In this study, we evaluated the effects of elevated CO2 on Cd and Pb accumulation in rice plants (Oryza sativa L.), Cd and Pb bioavailability, and soil bacterial communities in Cd-Pb co-contaminated paddy soils via rice pot experiments. We showed that elevated CO2 accelerates the accumulation of Cd and Pb in rice grains by 48.4-75.4% and 20.5-39.1%, respectively. Elevated CO2 levels decreased soil pH value by 0.2 units, which increased Cd and Pb bioavailability in soil but inhibited iron plaque formation on rice roots, ultimately promoting Cd and Pb uptake. 16S rRNA sequencing analysis revealed that elevated CO2 increased the relative abundance of certain soil bacteria (e.g., Acidobacteria, Alphaproteobacteria, Holophagae, and Burkholderiaceae). A health risk assessment showed that elevated CO2 markedly increased the total carcinogenic risk values for children, adult males, and adult females by 75.3% (P < 0.05), 65.6% (P < 0.05), and 71.1% (P < 0.05), respectively. These results demonstrate the serious performance of elevated CO2 levels in accelerating the bioavailability and accumulation of Cd and Pb in paddy soil-rice ecosystems, with particular risks for future safe rice production.
Collapse
Affiliation(s)
- Yabo Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaojie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Yan Y, Du M, Jing L, Zhang X, Li Q, Yang J. Green synthesized hydroxyapatite for efficient immobilization of cadmium in weakly alkaline environment. ENVIRONMENTAL RESEARCH 2023; 223:115445. [PMID: 36758915 DOI: 10.1016/j.envres.2023.115445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The development of cost-effective passivators for the remediation of heavy metal-contaminated soils has been a research hotspot and an unsolved challenge. Herein, a novel hydroxyapatite (GSCH) was synthesized by co-precipitating distiller effluent-derived Ca with (NH4)2HPO4 using straw-derived dissolved organic matter (S-DOM) as the dispersant. Batch adsorption experiments and soil incubation tests were performed to assess the immobilization efficiency of GSCH for Cd in weakly alkaline environments. As a result, GSCH showed an excellent adsorption efficiency to Cd with a maximum adsorption amount of ∼222 mg g-1, which was fairly competitive compared to other similar previously materials reported. The kinetic data indicated that the adsorption of Cd on GSCH was a chemical and irreversible process, while the thermodynamic data revealed a spontaneous (ΔG° < 0) and endothermic (ΔH° > 0) adsorption process. Based on mechanism analysis, both physisorption (e.g., electrostatic attraction and pore filling) and chemisorption (e.g., ion exchange and complexation) were responsible for Cd adsorption on GSCH. Particularly, the incorporated S-DOM and hydroxyapatite phase in GSCH acted synergistically in the adsorption process. The incubation results showed that GSCH application could significantly reduce the bioavailability, phytoavailability and bioaccessibility of Cd in soil by 48.4%-57.8%, 20.4%-28.6% and 12.6%-24.0%, respectively. Moreover, GSCH application also improved soil bacterial communities and enhanced soil nutrient availability. Overall, this is the first study to demonstrate the potential application value of GSCH in Cd immobilization, providing promising insights into the development of green and cost-effective hydroxyapatite-based passivators for the remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Yubo Yan
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Meng Du
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Liquan Jing
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N1N4, Canada
| | - Xiaoxin Zhang
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Qiao Li
- Jiangsu Engineering Laboratory for Environment Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Jianjun Yang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
12
|
Shen J, Li J, Mao Z, Zhang Y. First-principle study on the stability of Cd passivates in soil. Sci Rep 2023; 13:4255. [PMID: 36918623 PMCID: PMC10015070 DOI: 10.1038/s41598-023-31460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
The stable existence of heavy metals in soil under natural conditions is the core issue in heavy metal pollution solidification and remediation technology. However, the existing research is limited to soil passivation tests of different materials or biochar adsorption tests and cannot reveal the internal mechanism of functional groups of different compounds in soil passivation. This paper takes the common heavy metal ion Cd2+ as an example to analyze the stability of the combination of heavy metal ions and common ion groups in soil. The stability and existing form of Cd are analyzed by using first-principle calculations, and the free energy, band structure, and partial density of states of CdCO3, CdSO4, CdCl2, and CdSiO3 are computed. The stability of Cd binding to common anions in soil is determined. Results show the descending order of structural stability of cadmium compounds is CdSiO3, CdSO4, CdCO3, and CdCl2. SO42- and SiO32- can be used as preferred functional groups for cadmium pollution passivation. Anhydrous sodium sulfate and sodium silicate are promising passivators.
Collapse
Affiliation(s)
- Jianglong Shen
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China.
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China.
| | - Juan Li
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Zhongan Mao
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| | - Yang Zhang
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Shaanxi Provincial Land Consolidation Engineering Technology Research Center, Xi'an, 710075, China
| |
Collapse
|
13
|
Ren K, Wei Y, Li J, Han C, Deng Y, Su G. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated PAHs, azaarenes, and sulfur / oxygen-containing heterocyclic PAHs) in surface soils from a typical city, south China. CHEMOSPHERE 2021; 283:131190. [PMID: 34157620 DOI: 10.1016/j.chemosphere.2021.131190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons derivatives (dPAHs) were reported to be more mutagenic than parent analogues, however, studies that involving dPAHs in environmental samples are still limited. Thirty-six polycyclic aromatic compounds (PACs; 17 parent PAHs, 1 alkyl-PAH, 6 oxygenated PAHs, 6 azaarenes, 3 sulfur-containing heterocyclic PAHs, and 3 oxygen-containing heterocyclic PAHs) were analyzed in n = 100 surface soil samples collected from a prefecture-level city (hereafter referred to as D city) in South China, in the year 2019. Total concentrations of 36 PACs ranged from 3.61 to 4930 ng g-1 with a median concentration of 86.1 ng g-1. Regardless of functional zones, parent PAHs were the most abundant with the proportion of 78.9%, followed by oxygenated PAHs accounting for 16.8%, whereas contents of heterocyclic PAHs were far below the formers. Besides, PAHs with 4-6 rings were the most prevalent components. Among the five functional zones, industrial zone was contaminated most severely with a mean sum PAC concentration of 485 ng g-1, implying effects of long-term industrial emission. Total PAC concentrations in scenic and agricultural zones were significantly lower than those in industrial and residential zones. On the basis of PMF calculation, we proposed that traffic emission and biomass combustion could be responsible for PAC contamination. According to total lifetime cancer risk index, it suggested that there could be slightly health risks for children following exposure to PACs in some places.
Collapse
Affiliation(s)
- Kefan Ren
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yu Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Cunliang Han
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, PR China
| | - Yirong Deng
- Guangdong Provincial Academy of Environmental Science, Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangzhou, 510045, PR China.
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|