1
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
2
|
Li X, Shen X, Jiang W, Xi Y, Li S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116420. [PMID: 38701654 DOI: 10.1016/j.ecoenv.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Emerging contaminants (ECs) are a diverse group of unregulated pollutants increasingly present in the environment. These contaminants, including pharmaceuticals, personal care products, endocrine disruptors, and industrial chemicals, can enter the environment through various pathways and persist, accumulating in the food chain and posing risks to ecosystems and human health. This comprehensive review examines the chemical characteristics, sources, and varieties of ECs. It critically evaluates the current understanding of their environmental and health impacts, highlighting recent advancements and challenges in detection and analysis. The review also assesses existing regulations and policies, identifying shortcomings and proposing potential enhancements. ECs pose significant risks to wildlife and ecosystems by disrupting animal hormones, causing genetic alterations that diminish diversity and resilience, and altering soil nutrient dynamics and the physical environment. Furthermore, ECs present increasing risks to human health, including hormonal disruptions, antibiotic resistance, endocrine disruption, neurological effects, carcinogenic effects, and other long-term impacts. To address these critical issues, the review offers recommendations for future research, emphasizing areas requiring further investigation to comprehend the full implications of these contaminants. It also suggests increased funding and support for research, development of advanced detection technologies, establishment of standardized methods, adoption of precautionary regulations, enhanced public awareness and education, cross-sectoral collaboration, and integration of scientific research into policy-making. By implementing these solutions, we can improve our ability to detect, monitor, and manage ECs, reducing environmental and public health risks.
Collapse
Affiliation(s)
- Xingyu Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| | - Xiaojing Shen
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Jiang
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Yongkai Xi
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China
| | - Song Li
- College of Science, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agricultural Emerging Contaminants Prevention and Control, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
3
|
Fayaz T, Rana SS, Goyal E, Ratha SK, Renuka N. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120723. [PMID: 38565028 DOI: 10.1016/j.jenvman.2024.120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.
Collapse
Affiliation(s)
- Tufail Fayaz
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Soujanya S Rana
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Esha Goyal
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India
| | - Sachitra Kumar Ratha
- Algology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Nirmal Renuka
- Algal Biotechnology Laboratory, Department of Botany, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Pednekar RR, Rajan AP. Unraveling the contemporary use of microbial fuel cell in pesticide degradation and simultaneous electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:144-166. [PMID: 38048001 DOI: 10.1007/s11356-023-30782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Pesticide is an inevitable substance used worldwide to kill pests, but their indiscriminate use has posed serious complications to health and the environment. Various physical, chemical, and biological methods are employed for pesticide treatment, but this paper deals with microbial fuel cell (MFC) as a futuristic technology for pesticide degradation with electricity production. In MFC, organic compounds are utilized as the carbon source for electricity production and the generation of electrons which can be replaced with pollutants such as dyes, antibiotics, and pesticides as carbon sources. However, MFC is been widely studied for a decade for electricity production, but its implementation in pesticide degradation is less known. We fill this void by depicting a real picture of the global pesticide scenario with an eagle eye view of the bioremediation techniques implemented for pesticide treatment with phytoremediation and rhizoremediation as effective techniques for efficient pesticide removal. The enormous literature survey has revealed that not many researchers have ventured into this new arena of MFC employed for pesticide degradation. Based on the Scopus database, an increase in annual trend from 2014 to 2023 is observed for MFC-implemented pesticide remediation. However, a novel MFC to date for effective remediation of pesticides with simultaneous electricity generation is discussed for the first time. Furthermore, the limitation of MFC technology and the implementation of MFC and rhizoremediation as a clubbed system which is the least applied can be seen as promising and futuristic approaches to enhance pesticide degradation by bacteria and electricity as a by-product.
Collapse
Affiliation(s)
- Reshma Raviuday Pednekar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Prem Rajan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
da Luz DS, Guimarães PS, Castro MS, Primel EG, Giroldo D, Martins CDMG. Effects of the Pesticide Carbofuran on Two Species of Chlorophyceae (Desmodesmus communis and Pseudopediastrum boryanum) and Their Pesticide Bioremediation Ability. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023. [PMID: 38153230 DOI: 10.1002/etc.5818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
Carbofuran is one of the most toxic broad-spectrum pesticides. We evaluated the effects of carbofuran on two species of microalgae, Pseudopediastrum boryanum and Desmodesmus communis, through measurements of cell viability, biomass, chlorophyll content, and the production of reactive oxygen species (ROS). The ability of these algae to remove carbofuran dissolved in the media was also determined. For the evaluations, both microalgae species were exposed to carbofuran (FURADAN 350 SC®) at concentrations of 100, 1000, and 10,000 µg L-1 for 7 days. Algae cell viability and chlorophyll-a concentration were not affected by the presence of carbofuran. Both species grew when exposed to the pesticide; however, the microalgae D. communis grew less than its respective control when exposed to the highest concentration (10,000 µg L-1 of carbofuran), indicating an adverse effect of the pesticide on this species. A significant increase in ROS production was observed in D. communis and P. boryanum when exposed to the highest concentration tested. The microalgae P. boryanum completely removed carbofuran in the media within 2 days, regardless of the concentration, whereas D. communis achieved the same result only after 5 days of exposure. Growth inhibition was observed only until the disappearance of carbofuran from the media. The present study suggests the use of microalgae, mainly P. boryanum, as potential tools for the remediation of environments contaminated by carbofuran because of their resistance to the insecticide and their ability to remove it rapidly from water. Environ Toxicol Chem 2024;00:1-12. © 2023 SETAC.
Collapse
Affiliation(s)
- Daniéli Saul da Luz
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Pablo Santos Guimarães
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Muryllo Santos Castro
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ednei Giberto Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Danilo Giroldo
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| |
Collapse
|
6
|
Encarnação T, Nicolau N, Ramos P, Silvestre E, Mateus A, de Carvalho TA, Gaspar F, Massano A, Biscaia S, Castro RAE, Nogueira BA, Singh P, Pacheco D, Patrício T, Fausto R, Sobral AJFN. Recycling Ophthalmic Lens Wastewater in a Circular Economy Context: A Case Study with Microalgae Integration. MATERIALS (BASEL, SWITZERLAND) 2023; 17:75. [PMID: 38203929 PMCID: PMC10779472 DOI: 10.3390/ma17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Water pollution poses a global threat to ecosystems and human health and is driven by the presence of various contaminants in wastewater, including nano- and microplastics. Despite the magnitude of this problem, the majority of global wastewater is released untreated into water bodies. To combat this issue, a multi-strategy approach is needed. This study explores a circular economy-based solution for treating emerging pollutants, particularly wastewater from ophthalmic spectacle lens production. Our approach integrates solid waste materials into polymeric and cement matrices while also utilising wastewater for microalgae cultivation. This innovative strategy focuses on biomass generation and economic valorisation. By adopting a circular economy model, we aim to transform environmental pollutants from wastewater into valuable organic products. A key component of our approach is the utilisation of microalgae, specifically Nannochloropsis sp., known for its high lipid content and resilience. This microalgae species serves as a promising biobased feedstock, supporting the production of innovative biobased products, such as biopolymers, for ophthalmic lens manufacturing. Our interdisciplinary approach combines microalgae technology, analytical chemistry, cement production, and polymer processing to develop a sustainable circular economy model that not only addresses environmental concerns, but also offers economic benefits. This study underscores the potential of harnessing high-value products from waste streams and underscores the importance of circular economy principles in tackling pollution and resource challenges.
Collapse
Affiliation(s)
- Telma Encarnação
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (R.A.E.C.); (B.A.N.); (D.P.); (R.F.); (A.J.F.N.S.)
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
- PTScience, Avenida do Atlântico, N 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal; (N.N.); (P.R.); (E.S.); (P.S.)
| | - Nadia Nicolau
- PTScience, Avenida do Atlântico, N 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal; (N.N.); (P.R.); (E.S.); (P.S.)
| | - Pedro Ramos
- PTScience, Avenida do Atlântico, N 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal; (N.N.); (P.R.); (E.S.); (P.S.)
- Opticentro, 2460-071 Alcobaça, Portugal
| | - Elsa Silvestre
- PTScience, Avenida do Atlântico, N 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal; (N.N.); (P.R.); (E.S.); (P.S.)
- Opticentro, 2460-071 Alcobaça, Portugal
| | - Artur Mateus
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Tomás Archer de Carvalho
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Florindo Gaspar
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Anabela Massano
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Sara Biscaia
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Ricardo A. E. Castro
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (R.A.E.C.); (B.A.N.); (D.P.); (R.F.); (A.J.F.N.S.)
| | - Bernardo A. Nogueira
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (R.A.E.C.); (B.A.N.); (D.P.); (R.F.); (A.J.F.N.S.)
| | - Poonam Singh
- PTScience, Avenida do Atlântico, N 16, Office 5.07, Parque das Nações, 1990-019 Lisboa, Portugal; (N.N.); (P.R.); (E.S.); (P.S.)
| | - Diana Pacheco
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (R.A.E.C.); (B.A.N.); (D.P.); (R.F.); (A.J.F.N.S.)
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Tatiana Patrício
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, 2430-028 Marinha Grande, Portugal; (A.M.); (T.A.d.C.); (F.G.); (A.M.); (S.B.); (T.P.)
| | - Rui Fausto
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (R.A.E.C.); (B.A.N.); (D.P.); (R.F.); (A.J.F.N.S.)
- Faculty of Sciences and Letters, Department of Physics, Istanbul Kultur University, Ataköy Campus, Bakirköy, Istanbul 34156, Turkey
| | - Abílio J. F. N. Sobral
- Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (R.A.E.C.); (B.A.N.); (D.P.); (R.F.); (A.J.F.N.S.)
| |
Collapse
|
7
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
8
|
Efremenko E, Senko O, Stepanov N, Aslanli A, Maslova O, Lyagin I. Quorum Sensing as a Trigger That Improves Characteristics of Microbial Biocatalysts. Microorganisms 2023; 11:1395. [PMID: 37374897 DOI: 10.3390/microorganisms11061395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Quorum sensing (QS) of various microorganisms (bacteria, fungi, microalgae) today attracts the attention of researchers mainly from the point of view of clarifying the biochemical basics of this general biological phenomenon, establishing chemical compounds that regulate it, and studying the mechanisms of its realization. Such information is primarily aimed at its use in solving environmental problems and the development of effective antimicrobial agents. This review is oriented on other aspects of the application of such knowledge; in particular, it discusses the role of QS in the elaboration of various prospective biocatalytic systems for different biotechnological processes carried out under aerobic and anaerobic conditions (synthesis of enzymes, polysaccharides, organic acids, etc.). Particular attention is paid to the biotechnological aspects of QS application and the use of biocatalysts, which have a heterogeneous microbial composition. The priorities of how to trigger a quorum response in immobilized cells to maintain their long-term productive and stable metabolic functioning are also discussed. There are several approaches that can be realized: increase in cell concentration, introduction of inductors for synthesis of QS-molecules, addition of QS-molecules, and provoking competition between the participants of heterogeneous biocatalysts, etc.).
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
9
|
Reyad AGA, Abbassy MA, Marei GIK, Rabea EI, Badawy MEI. Removal of fenamiphos, imidacloprid, and oxamyl pesticides from water by microalgal Nannochloropsis oculata biomass and their determination by validated HPLC method. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:345-356. [PMID: 37006160 DOI: 10.1080/03601234.2023.2195530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The present study assessed the removal of fenamiphos, imidacloprid, and oxamyl pesticides from water using algal Nannochloropsis oculata biomass. Several factors, such as algal biomass concentration, incubation time, and pesticide concentration, were studied for their impact on pesticide removal. Analysis and quantification of pesticides by rapid HPLC have been developed and validated. The optimum conditions were obtained at 15 min, 50 mg/L of pesticide concentration, and 4,500 mg/L of the algal biomass with 92.24% and 90.43% removal for fenamiphos and imidacloprid, respectively. While optimum parameters of 10 min incubation, 250 mg/L of pesticide concentration, and 2,750 mg/L of the algal biomass exhibited 67.34% removal for oxamyl. N. oculata, marine microalgae, successively removed different concentrations of the tested pesticides from water, and the algal biomass showed a potential reduction of pesticides in polluted water samples.
Collapse
Affiliation(s)
- Azza G A Reyad
- Department of Plant Protection, Damanhour University, Damanhour, Egypt
| | | | - Gehan I Kh Marei
- Department of Plant Protection, Damanhour University, Damanhour, Egypt
| | - Entsar I Rabea
- Department of Plant Protection, Damanhour University, Damanhour, Egypt
| | - Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Gautam P, Pandey AK, Dubey SK. Multi-omics approach reveals elevated potential of bacteria for biodegradation of imidacloprid. ENVIRONMENTAL RESEARCH 2023; 221:115271. [PMID: 36640933 DOI: 10.1016/j.envres.2023.115271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The residual imidacloprid, a widely used insecticide is causing serious environmental concerns. Knowledge of its biodegradation will help in assessing its residual mass in soil. In view of this, a soil microcosm-based study was performed to test the biodegradation potential of Agrobacterium sp. InxBP2. It achieved ∼88% degradation in 20 days and followed the pseudo-first-order kinetics (k = 0.0511 day-1 and t1/2=7 days). Whole genome sequencing of Agrobacterium sp. InxBP2 revealed a genome size of 5.44 Mbp with 5179 genes. Imidacloprid degrading genes at loci K7A42_07110 (ABC transporter substrate-binding protein), K7A42_07270 (amidohydrolase family protein), K7A42_07385 (ABC transporter ATP-binding protein), K7A42_16,845 (nitronate monooxygenase family protein), and K7A42_20,660 (FAD-dependent monooxygenase) having sequence and functional similarity with known counterparts were identified. Molecular docking of proteins encoded by identified genes with their respective degradation pathway intermediates exhibited significant binding energies (-6.56 to -4.14 kcal/mol). Molecular dynamic simulation discovered consistent interactions and binding depicting high stability of docked complexes. Proteome analysis revealed differential protein expression in imidacloprid treated versus untreated samples which corroborated with the in-silico findings. Further, the detection of metabolites proved the bacterial degradation of imidacloprid. Thus, results provided a mechanistic link between imidacloprid and associated degradative genes/enzymes of Agrobacterium sp. InxBP2. These findings will be of immense significance in carrying out the lifecycle analysis and formulating strategies for the bioremediation of soils contaminated with insecticides like imidacloprid.
Collapse
Affiliation(s)
- Pallavi Gautam
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
11
|
Picone M, Distefano GG, Marchetto D, Russo M, Baccichet M, Brusò L, Zangrando R, Gambaro A, Volpi Ghirardini A. Long-term effects of neonicotinoids on reproduction and offspring development in the copepod Acartia tonsa. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105761. [PMID: 36206640 DOI: 10.1016/j.marenvres.2022.105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Neonicotinoids (NEOs) are neurotoxic pesticides acting as nicotinic acetylcholine receptor agonists. NEOs' efficacy against pest insects has favoured their spreading use in agriculture, but their proven effectiveness against non-target insects in terrestrial and aquatic ecosystems also raised concern over their environmental impact. Crustaceans were often studied for the impacts of NEOs due to their economic values and nervous' system similarity with insects. However, most studies on crustaceans focused on acute effects or exposure of early-life stages, while long-term effects were seldom explored. The present study aimed to assess the potential long-term effects of four commercially available NEOs on the reproduction and offspring of the calanoid copepod Acartia tonsa, a key species in the food webs of several coastal and estuarine environments. NEOs were confirmed as potent interferents of copepod reproduction. The first-generation compound acetamiprid significantly inhibited egg production and hatching ratio at 10 ng L-1, while larval survival and development were affected at 81 ng L-1. Similarly, the first-generation compound thiacloprid significantly inhibited the hatching ratio and larval development at 9 ng L-1, while it did not affect egg production and larval survival. Second-generation compounds were less toxic than acetamiprid and thiacloprid: clothianidin affected significantly only larval development of the offspring at 62 ng L-1, while thiamethoxam was not toxic at both the tested concentrations (8 ng L-1 and 84 ng L-1). These data evidenced that effects on copepods may occur at concentrations below the chronic aquatic life benchmarks reported by USEPA for acetamiprid (2100 ng L-1) and thiacloprid (970 ng L-1), suggesting that long-term effects of NEOs have been underestimated. A comparison with environmental concentrations evidenced that NEO-mediated effects on copepods are more liable in coastal areas receiving discharge from wastewater treatment plants or diffuse inputs from agricultural land during pesticide application periods.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy.
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Martina Russo
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Luca Brusò
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Roberta Zangrando
- Institute of Polar Sciences - National Research Council (ISP-CNR), Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy; Institute of Polar Sciences - National Research Council (ISP-CNR), Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University, Campus Scientifico Via Torino 155, I-30170, Mestre, Venezia, Italy
| |
Collapse
|
12
|
Cheng Y, Wang H, Deng Z, Wang J, Liu Z, Chen Y, Ma Y, Li B, Yang L, Zhang Z, Wu L. Efficient removal of Imidacloprid and nutrients by algae-bacteria biofilm reactor (ABBR) in municipal wastewater: Performance, mechanisms and the importance of illumination. CHEMOSPHERE 2022; 305:135418. [PMID: 35750233 DOI: 10.1016/j.chemosphere.2022.135418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Neonicotinoids, such as Imidacloprid (IMI), are frequently detected in water and wastewater, posing a threat on both the environment and the health of living things. In this work, a novel algae-bacteria biofilm reactor (ABBR) was constructed to remove IMI and conventional nutrients from municipal wastewater, aiming to explore the removal effect and advantage of ABBR. Results showed that ABBR achieved 74.9% removal of IMI under 80 μmol m-2·s-1 light, higher than photobioreactor (PBR) without biofilm (61.2%) or ABBR under 40 μmol m-2·s-1 light (48.4%) after 16 days of operation. Moreover, it also showed that ABBR allowed a marked improvement on the removal of total dissolved nitrogen (TDN), total dissolved phosphorus (TDP) and soluble chemical oxygen demand (sCOD). ABBR showed different IMI removal efficiencies and bacterial communities under different light conditions, indicating that light played an important role in driving ABBR. The merits of ABBR are including (i) ABBR showed rapid pollutant removal in a short time, (ii) in ABBR, stable consortiums were formed and chlorophyll content in effluent was very low, (iii) compared with PBR, degradation products in ABBR showed lower biological toxicity. Our study highlights the benefits of ABBR on IMI removing from municipal wastewater and provides an effective and environment-friendly engineering application potential of IMI removal.
Collapse
Affiliation(s)
- Yongtao Cheng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Hongyu Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Jiping Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zhe Liu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; The James Hutton Institute, Craigiebuckler, Aberdeen, ABI5 8QH, UK
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
13
|
Terayama H, Sakabe K, Kiyoshima D, Qu N, Sato T, Suyama K, Hayashi S, Sakurai K, Todaka E, Mori C. Effect of Neonicotinoid Pesticides on Japanese Water Systems: Review with Focus on Reproductive Toxicity. Int J Mol Sci 2022; 23:ijms231911567. [PMID: 36232869 PMCID: PMC9570366 DOI: 10.3390/ijms231911567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Neonicotinoid pesticides (NPs) are neurotoxic substances. They are highly effective as insecticides owing to their water solubility, permeability, and long-lasting activity. These molecules are structurally similar to nicotine and act as nicotinic acetylcholine receptor agonists. The administration of NPs to experimental animals reportedly causes neuromuscular and reproductive disorders. Moreover, recently reported problems caused by NPs include damage to land-dwelling creatures (such as mammals and birds), hydrobiology, and ecosystems. This review summarizes the recent reports on NP concentrations detected in river systems in several Japanese regions. These values were lower than the environmental standard values; however, seasonal variations were observed. Furthermore, reports on NP-induced testicular and ovarian toxicity were examined, revealing that the mechanism of injury is mainly driven by oxidative stress. The use of NPs is declining worldwide, except in Japan; therefore, continuous monitoring remains necessary.
Collapse
Affiliation(s)
- Hayato Terayama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: ; Tel.: +81-463-931121
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Department of Environmental Preventive Medicine (Yamada Bee Company, Inc.), Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
| | - Daisuke Kiyoshima
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Ning Qu
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tsutomu Sato
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kaori Suyama
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Shogo Hayashi
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kenichi Sakurai
- Division of Environmental Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
| | - Emiko Todaka
- Division of Environmental Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Chisato Mori
- Division of Environmental Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoicho, Inageku, Chiba 263-8522, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
14
|
Linxin, Kumar A, Sharma G, Naushad M, AlbertoGarcía-Peñas, Stadler FJ. A dual-functional integrated Ni5P4/g-C3N4 S-scheme heterojunction for high performance synchronous photocatalytic hydrogen evolution and multi-contaminant removal with a waste-to-energy conversion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Deng Z, Zhu J, Yang L, Zhang Z, Li B, Xia L, Wu L. Microalgae fuel cells enhanced biodegradation of imidacloprid by Chlorella sp. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ahmad S, Cui D, Zhong G, Liu J. Microbial Technologies Employed for Biodegradation of Neonicotinoids in the Agroecosystem. Front Microbiol 2021; 12:759439. [PMID: 34925268 PMCID: PMC8675359 DOI: 10.3389/fmicb.2021.759439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Neonicotinoids are synthetic pesticides widely used for the control of various pests in agriculture throughout the world. They mainly attack the nicotinic acetylcholine receptors, generate nervous stimulation, receptor clot, paralysis and finally cause death. They are low volatile, highly soluble and have a long half-life in soil and water. Due to their extensive use, the environmental residues have immensely increased in the last two decades and caused many hazardous effects on non-target organisms, including humans. Hence, for the protection of the environment and diversity of living organism's the degradation of neonicotinoids has received widespread attention. Compared to the other methods, biological methods are considered cost-effective, eco-friendly and most efficient. In particular, the use of microbial species makes the degradation of xenobiotics more accessible fast and active due to their smaller size. Since this degradation also converts xenobiotics into less toxic substances, the various metabolic pathways for the microbial degradation of neonicotinoids have been systematically discussed. Additionally, different enzymes, genes, plasmids and proteins are also investigated here. At last, this review highlights the implementation of innovative tools, databases, multi-omics strategies and immobilization techniques of microbial cells to detect and degrade neonicotinoids in the environment.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Dongming Cui
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|