1
|
Xiao J, Zhou Y, Sun L, Wang H. Role of integrating cannabinoids and the endocannabinoid system in neonatal hypoxic-ischaemic encephalopathy. Front Mol Neurosci 2023; 16:1152167. [PMID: 37122621 PMCID: PMC10130673 DOI: 10.3389/fnmol.2023.1152167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
Neonatal hypoxic-ischaemic events, which can result in long-term neurological impairments or even cell death, are among the most significant causes of brain injury during neurodevelopment. The complexity of neonatal hypoxic-ischaemic pathophysiology and cellular pathways make it difficult to treat brain damage; hence, the development of new neuroprotective medicines is of great interest. Recently, numerous neuroprotective medicines have been developed to treat brain injuries and improve long-term outcomes based on comprehensive knowledge of the mechanisms that underlie neuronal plasticity following hypoxic-ischaemic brain injury. In this context, understanding of the medicinal potential of cannabinoids and the endocannabinoid system has recently increased. The endocannabinoid system plays a vital neuromodulatory role in numerous brain regions, ensuring appropriate control of neuronal activity. Its natural neuroprotection against adult brain injury or acute brain injury also clearly demonstrate the role of endocannabinoid signalling in modulating neuronal activity in the adult brain. The goal of this review is to examine how cannabinoid-derived compounds can be used to treat neonatal hypoxic-ischaemic brain injury and to assess the critical function of the endocannabinoid system and its potential for use as a new neuroprotective treatment for neonatal hypoxic-ischaemic brain injury.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Pathology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, China
| | - Yue Zhou
- Department of Pharmacy, Xindu District People’s Hospital of Chengdu, Chengdu, China
| | - Luqiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haichuan Wang
- Department of Paediatrics, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Haichuan Wang,
| |
Collapse
|
2
|
N-Acetylcysteine Administration Attenuates Sensorimotor Impairments Following Neonatal Hypoxic-Ischemic Brain Injury in Rats. Int J Mol Sci 2022; 23:ijms232416175. [PMID: 36555816 PMCID: PMC9783020 DOI: 10.3390/ijms232416175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hypoxic ischemic (HI) brain injury that occurs during neonatal period has been correlated with severe neuronal damage, behavioral deficits and infant mortality. Previous evidence indicates that N-acetylcysteine (NAC), a compound with antioxidant action, exerts a potential neuroprotective effect in various neurological disorders including injury induced by brain ischemia. The aim of the present study was to investigate the role of NAC as a potential therapeutic agent in a rat model of neonatal HI brain injury and explore its long-term behavioral effects. To this end, NAC (50 mg/kg/dose, i.p.) was administered prior to and instantly after HI, in order to evaluate hippocampal and cerebral cortex damage as well as long-term functional outcome. Immunohistochemistry was used to detect inducible nitric oxide synthase (iNOS) expression. The results revealed that NAC significantly alleviated sensorimotor deficits and this effect was maintained up to adulthood. These improvements in functional outcome were associated with a significant decrease in the severity of brain damage. Moreover, NAC decreased the short-term expression of iNOS, a finding implying that iNOS activity may be suppressed and that through this action NAC may exert its therapeutic action against neonatal HI brain injury.
Collapse
|
3
|
Jenkins DD, Moss HG, Brown TR, Yazdani M, Thayyil S, Montaldo P, Vento M, Kuligowski J, Wagner C, Hollis BW, Wiest DB. NAC and Vitamin D Improve CNS and Plasma Oxidative Stress in Neonatal HIE and Are Associated with Favorable Long-Term Outcomes. Antioxidants (Basel) 2021; 10:1344. [PMID: 34572976 PMCID: PMC8466838 DOI: 10.3390/antiox10091344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
N-acetylcysteine (NAC) and vitamin D provide effective neuroprotection in animal models of severe or inflammation-sensitized hypoxic ischemic encephalopathy (HIE). To translate these FDA-approved drugs to HIE neonates, we conducted an early phase, open-label trial of 10 days of NAC (25, 40 mg/kg q12h) + 1,25(OH)2D (calcitriol 0.05 mg/kg q12h, 0.03 mg/kg q24h), (NVD), for pharmacokinetic (PK) estimates during therapeutic hypothermia and normothermia. We paired PK samples with pharmacodynamic (PD) targets of plasma isoprostanoids, CNS glutathione (GSH) and total creatine (tCr) by serial MRS in basal ganglia (BG) before and after NVD infusion at five days. Infants had moderate (n = 14) or severe HIE (n = 16), funisitis (32%), and vitamin D deficiency (75%). NVD resulted in rapid, dose-responsive increases in CNS GSH and tCr that correlated positively with plasma [NAC], inversely with plasma isofurans, and was greater in infants with lower baseline [GSH] and [tCr], suggesting increases in these PD markers were titrated by neural demand. Hypothermia and normothermia altered NAC PK estimates. NVD was well tolerated. Excluding genetic syndromes (2), prolonged ECMO (2), lost-to-follow-up (1) and SIDS death (1), 24 NVD treated HIE infants have no evidence of cerebral palsy, autism or cognitive delay at 24-48 months. These data confirm that low, safe doses of NVD in HIE neonates decreased oxidative stress in plasma and CNS, improved CNS energetics, and are associated with favorable developmental outcomes at two to four years.
Collapse
Affiliation(s)
- Dorothea D Jenkins
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425, USA; (C.W.); (B.W.H.)
| | - Hunter G Moss
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC 29425, USA; (H.G.M.); (T.R.B.); (M.Y.)
| | - Truman R Brown
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC 29425, USA; (H.G.M.); (T.R.B.); (M.Y.)
| | - Milad Yazdani
- Center for Biomedical Imaging, Department of Radiology, Medical University of South Carolina, Charleston, SC 29425, USA; (H.G.M.); (T.R.B.); (M.Y.)
| | - Sudhin Thayyil
- Centre for Perinatal Neuroscience, Imperial College London, London W12 0HS, UK; (S.T.); (P.M.)
| | - Paolo Montaldo
- Centre for Perinatal Neuroscience, Imperial College London, London W12 0HS, UK; (S.T.); (P.M.)
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute Hospital La Fe, 46026 Valencia, Spain; (M.V.); (J.K.)
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe, 46026 Valencia, Spain; (M.V.); (J.K.)
| | - Carol Wagner
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425, USA; (C.W.); (B.W.H.)
| | - Bruce W Hollis
- Division of Neonatology, Department of Pediatrics, Medical University of South Carolina, 10 McClennan Banks Drive, Charleston, SC 29425, USA; (C.W.); (B.W.H.)
| | - Donald B Wiest
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
4
|
Adusumilli NC, Zhang D, Friedman JM, Friedman AJ. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide 2020; 103:4-8. [PMID: 32681986 PMCID: PMC7362842 DOI: 10.1016/j.niox.2020.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023]
Abstract
The ongoing outbreak of COVID-19 has quickly become a daunting challenge to global health. In the absence of targeted therapy and a reported 5.5% case fatality rate in the United States, treatments preventing rapid cardiopulmonary failure are urgently needed. Clinical features, pathology and homology to better understood pathogens suggest that uncontrolled inflammation and a cytokine storm likely drive COVID-19's unrelenting disease process. Interventions that are protective against acute lung injury and ARDS can play a critical role for patients and health systems during this pandemic. Nitric oxide is an antimicrobial and anti-inflammatory molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary disease states. This article reviews the rationale for exogenous nitric oxide use for the pathogenesis of COVID-19 and highlights its potential for contributing to better clinical outcomes and alleviating the rapidly rising strain on healthcare capacity.
Collapse
Affiliation(s)
- Nagasai C Adusumilli
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - David Zhang
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joel M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Adam J Friedman
- Department of Dermatology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
5
|
Parikh P, Juul SE. Neuroprotective Strategies in Neonatal Brain Injury. J Pediatr 2018; 192:22-32. [PMID: 29031859 DOI: 10.1016/j.jpeds.2017.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Pratik Parikh
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA
| | - Sandra E Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA.
| |
Collapse
|
6
|
Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochem Soc Trans 2017; 45:1067-1076. [PMID: 28939695 PMCID: PMC5652227 DOI: 10.1042/bst20170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023]
Abstract
Birth asphyxia in term neonates affects 1–2/1000 live births and results in the development of hypoxic–ischaemic encephalopathy with devastating life-long consequences. The majority of neuronal cell death occurs with a delay, providing the potential of a treatment window within which to act. Currently, treatment options are limited to therapeutic hypothermia which is not universally successful. To identify new interventions, we need to understand the molecular mechanisms underlying the injury. Here, we provide an overview of the contribution of both oxidative stress and endoplasmic reticulum stress in the development of neonatal brain injury and identify current preclinical therapeutic strategies.
Collapse
|
7
|
Arteaga O, Álvarez A, Revuelta M, Santaolalla F, Urtasun A, Hilario E. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches. Int J Mol Sci 2017; 18:E265. [PMID: 28134843 PMCID: PMC5343801 DOI: 10.3390/ijms18020265] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.
Collapse
Affiliation(s)
- Olatz Arteaga
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Antonia Álvarez
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Miren Revuelta
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Francisco Santaolalla
- Department of Otorhinolaryngology, Basurto University Hospital, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| | - Andoni Urtasun
- Department of Neuroscience, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
- Neurogenomiks Laboratory, Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain.
| | - Enrique Hilario
- Department of Cell Biology & Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain.
| |
Collapse
|
8
|
Nie X, Lowe DW, Rollins LG, Bentzley J, Fraser JL, Martin R, Singh I, Jenkins D. Sex-specific effects of N-acetylcysteine in neonatal rats treated with hypothermia after severe hypoxia-ischemia. Neurosci Res 2016; 108:24-33. [PMID: 26851769 DOI: 10.1016/j.neures.2016.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 12/16/2015] [Accepted: 01/24/2016] [Indexed: 12/29/2022]
Abstract
Approximately half of moderate to severely hypoxic-ischemic (HI) newborns do not respond to hypothermia, the only proven neuroprotective treatment. N-acetylcysteine (NAC), an antioxidant and glutathione precursor, shows promise for neuroprotection in combination with hypothermia, mitigating post-HI neuroinflammation due to oxidative stress. As mechanisms of HI injury and cell death differ in males and females, sex differences must be considered in translational research of neuroprotection. We assessed the potential toxicity and efficacy of NAC in combination with hypothermia, in male and female neonatal rats after severe HI injury. NAC 50mg/kg/d administered 1h after initiation of hypothermia significantly decreased iNOS expression and caspase 3 activation in the injured hemisphere versus hypothermia alone. However, only females treated with hypothermia +NAC 50mg/kg showed improvement in short-term infarct volumes compared with saline treated animals. Hypothermia alone had no effect in this severe model. When NAC was continued for 6 weeks, significant improvement in long-term neuromotor outcomes over hypothermia treatment alone was observed, controlling for sex. Antioxidants may provide insufficient neuroprotection after HI for neonatal males in the short term, while long-term therapy may benefit both sexes.
Collapse
Affiliation(s)
- Xingju Nie
- Center for Biomedical Imaging, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Danielle W Lowe
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Laura Grace Rollins
- Department of Psychology, University of Massachusetts, 100 Morrissey Blvd, Boston, MA 02125, United States.
| | - Jessica Bentzley
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Jamie L Fraser
- Medical Genetics Training Program, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892-2152, United States.
| | - Renee Martin
- Department of Biostatistics and Epidemiology, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| | - Dorothea Jenkins
- Department of Pediatrics, Medical University of South Carolina, 165 Ashley Ave, Charleston, SC 29425, United States.
| |
Collapse
|
9
|
Najafi A, Mojtahedzadeh M, Ahmadi KH, Abdollahi M, Mousavi M, Chelkeba L, Najmeddin F, Ahmadi A. The immunological benefit of higher dose N-acetyl cysteine following mechanical ventilation in critically ill patients. ACTA ACUST UNITED AC 2014; 22:57. [PMID: 25027749 PMCID: PMC4223415 DOI: 10.1186/2008-2231-22-57] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 07/08/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Sepsis complication is a major cause of death in multiple trauma critically ill patients. Defensin (cysteine rich anti-microbial peptides), as an important component of immune system, might play an important role in this process. There is also rising data on immunological effects of N-acetyl-cysteine (NAC), a commonly used anti-oxidant in oxidative stress conditions and glutathione (GSH) deficiencies. The aim of the present study was to evaluate the potential beneficial effects of NAC administration on multiple trauma patients with sepsis. METHODS In a prospective, randomized controlled study, 44 multiple trauma critically ill patients who were mechanically ventilated and met the criteria of sepsis and admitted to the intensive care unit (ICU) were randomized into two groups . Control group received all standard ICU therapies and NAC group received intravenous NAC 3 gr every 6 hours for 72 hours in addition to standard therapies. Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores, length of ICU stay, ICU mortality were recorded. Levels of serum Immunoglobulin M (IgM), Human β-Defensin 2 (HβD2) and GSH were assessed at baseline and 24, 72, 120 hours after intervention. RESULTS During a period of 13-month screening, 44 patients underwent randomization but 5 patients had to be excluded. 21 patients in NAC group and 18 patients in control group completed the study. For both groups the length of ICU stay, SOFA score and systemic oxygenation were similar. Mortality rate (40% vs. 22% respectively, p = 0.209) and ventilator days (Mean ± SD 19.82 ± 19.55 days vs. 13.82 ± 11.89 days respectively, p = 0.266) were slightly higher for NAC group. IgM and GSH levels were similar between two groups (p = 0.325, 0.125 respectively), HβD2 levels were higher for NAC group (at day 3). CONCLUSION High dose of NAC administration not only did not improve patients' outcome, but also raised the risk of inflammation and was associated with increased serum creatinine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arezoo Ahmadi
- Department of Anesthesiology and Critical Care Medicine, Sina Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Marks KA. Hypoxic–ischemic brain injury and neuroprotection in the newborn infant. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent clinical trials have confirmed that in term infants with moderate-to-severe hypoxic–ischemic encephalopathy, death and severe developmental disability can be reduced by early treatment with hypothermia. However, meta-analysis of these trials has confirmed that two-thirds of the survivors remain seriously impaired. The search for new neuroprotective interventions has therefore continued. Extensive research has identified the important biochemical pathways that result in neuronal loss, and the subsequent repair and regeneration processes. The most promising neuroprotective agents that limit the former, and promote the latter, are being tested in animal models of hypoxic–ischemic brain injury and are awaiting clinical trials. It is likely that a ‘cocktail’ of agents, affecting a number of pathways, will ultimately prove to be the most effective intervention. The latest additions to a long list of proposed substances are various stem cells that promote neurogenesis by releasing trophic substances into the injured brain. Future clinical trials are likely to employ early biomarkers, of which MRI and proton spectroscopy are probably the most predictive of long-term neurodevelopmental outcome. In conclusion, the exponential increase in knowledge in this field can be expected to provide many more neuroprotective agents within the next decade.
Collapse
Affiliation(s)
- Kyla-Anna Marks
- Department of Neonatal Medicine, Soroka University Medical Centre, PO Box 151, Beersheva, Israel
| |
Collapse
|
11
|
Gill RS, Lee TF, Liu JQ, Chaudhary H, Brocks DR, Bigam DL, Cheung PY. Cyclosporine treatment reduces oxygen free radical generation and oxidative stress in the brain of hypoxia-reoxygenated newborn piglets. PLoS One 2012; 7:e40471. [PMID: 22792343 PMCID: PMC3392221 DOI: 10.1371/journal.pone.0040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/08/2012] [Indexed: 11/05/2022] Open
Abstract
Oxygen free radicals have been implicated in the pathogenesis of hypoxic-ischemic encephalopathy. It has previously been shown in traumatic brain injury animal models that treatment with cyclosporine reduces brain injury. However, the potential neuroprotective effect of cyclosporine in asphyxiated neonates has yet to be fully studied. Using an acute newborn swine model of hypoxia-reoxygenation, we evaluated the effects of cyclosporine on the brain, focusing on hydrogen peroxide (H(2)O(2)) production and markers of oxidative stress. Piglets (1-4 d, 1.4-2.5 kg) were block-randomized into three hypoxia-reoxygenation experimental groups (2 h hypoxia followed by 4 h reoxygenation) (n = 8/group). At 5 min after reoxygenation, piglets were given either i.v. saline (placebo, controls) or cyclosporine (2.5 or 10 mg/kg i.v. bolus) in a blinded-randomized fashion. An additional sham-operated group (n = 4) underwent no hypoxia-reoxygenation. Systemic hemodynamics, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H(2)O(2) production (electrochemical sensor), cerebral tissue glutathione (ELISA) and cytosolic cytochrome-c (western blot) levels were examined. Hypoxic piglets had cardiogenic shock (cardiac output 40-48% of baseline), hypotension (mean arterial pressure 27-31 mmHg) and acidosis (pH 7.04) at the end of 2 h of hypoxia. Post-resuscitation cyclosporine treatment, particularly the higher dose (10 mg/kg), significantly attenuated the increase in cortical H(2)O(2) concentration during reoxygenation, and was associated with lower cerebral oxidized glutathione levels. Furthermore, cyclosporine treatment significantly attenuated the increase in cortical cytochrome-c and lactate levels. Carotid blood arterial flow was similar among groups during reoxygenation. Conclusively, post-resuscitation administration of cyclosporine significantly attenuates H(2)O(2) production and minimizes oxidative stress in newborn piglets following hypoxia-reoxygenation.
Collapse
Affiliation(s)
- Richdeep S. Gill
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Tze-Fun Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jiang-Qin Liu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Hetal Chaudhary
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dion R. Brocks
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David L. Bigam
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Po-Yin Cheung
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Infusing sodium bicarbonate suppresses hydrogen peroxide accumulation and superoxide dismutase activity in hypoxic-reoxygenated newborn piglets. PLoS One 2012; 7:e39081. [PMID: 22761724 PMCID: PMC3382246 DOI: 10.1371/journal.pone.0039081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022] Open
Abstract
Background The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H2O2) generation in the resuscitation of hypoxic newborn animals with severe acidosis. Methods Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H2O2 production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed. Results Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (pH: 6.99±0.07, HCO3−: 8.5±1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO3− recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H2O2 accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls. Conclusions Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H2O2 accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity.
Collapse
|
13
|
Alonso-Alconada D, Alvarez A, Hilario E. Cannabinoid as a neuroprotective strategy in perinatal hypoxic-ischemic injury. Neurosci Bull 2011; 27:275-85. [PMID: 21788999 DOI: 10.1007/s12264-011-1008-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Perinatal hypoxia-ischemia remains the single most important cause of brain injury in the newborn, leading to death or lifelong sequelae. Because of the fact that there is still no specific treatment for perinatal brain lesions due to the complexity of neonatal hypoxic-ischemic pathophysiology, the search of new neuroprotective therapies is of great interest. In this regard, therapeutic possibilities of the endocannabinoid system have grown lately. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. Concerning perinatal asphyxia, the neuroprotective role of this endogenous system is emerging these years. The present review mainly focused on the current knowledge of the cannabinoids as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, Leioa, Vizcaya, Spain
| | | | | |
Collapse
|
14
|
Improved renal recovery with postresuscitation N-acetylcysteine treatment in asphyxiated newborn pigs. Shock 2011; 35:428-33. [PMID: 20938377 DOI: 10.1097/shk.0b013e3181fffec2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Renal injury is one of the severe and common complications that occurs early in neonates with asphyxia, and reactive oxygen species have been implicated to play an important role on its pathogenesis. Improved renal recovery has been shown previously with N-acetyl-l-cysteine (NAC) in various acute kidney injuries. Using a subacute swine model of neonatal hypoxia-reoxygenation (H/R), we examined whether NAC can sustain its beneficial effect on renal recovery for 48 h. Newborn piglets were randomly assigned into a sham-operated group (without H/R, n = 6) and two H/R experimental groups (n = 8 each) with 2 h normocapnic alveolar hypoxia and 1 h 100% oxygen of reoxygenation followed by 21% oxygen for 47 h. Five minutes after reoxygenation, piglets received either normal saline (H/R control) or NAC (150-mg/kg bolus and 20 mg/kg per hour i.v. for 24 h) in a blinded, randomized fashion. All piglets were acidotic and in cardiogenic shock after hypoxia. Treating the piglets with NAC significantly increased both renal blood flow and oxygen delivery throughout the reoxygenation period. N-acetyl-l-cysteine treatment also improved the renal function with the attenuation of elevated urinary N-acetyl-β-d-glucosaminidase activity and plasma creatinine concentration observed in H/R controls (both P < 0.05). The tissue levels of lipid hydroperoxides and caspase 3 in the kidney of NAC-treated animals were significantly lower than those of H/R controls. Conclusively, postresuscitation administration of NAC elicits a prolonged beneficial effect in improving renal functional recovery and reducing oxidative stress in newborn piglets with H/R insults for 48 h.
Collapse
|
15
|
Russ M, Ott S, Bedarf JR, Haacke N, Keckel T, Unger JK. Prolonged hypoxemia and acidemia in anesthetized pigs: a model for research on extracorporeal organ support in an intensive care setting. Int J Artif Organs 2011; 33:544-52. [PMID: 20872349 DOI: 10.1177/039139881003300805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2010] [Indexed: 11/15/2022]
Abstract
PURPOSE Hypoxemia and acidemia (hypoxemia/acidemia) are serious complications in the critically ill and often occur in unstable patients exposed to extracorporeal organ support. Still, little is known about the biocompatibility interactions of hypoxemia/acidemia with extracorporeal circuits (ECC). Existing animal models often include the release of mediator cascades (sepsis-, lung injury models) or are based on small laboratory animals. We established a porcine model of hypoxemia/acidemia without an underlying disease and further challenged the situation with an extracorporeal circuit (ECC). METHODS Hypoxemia/acidemia were induced (3.5 h) and maintained (3 h) in anesthetized pigs (40 kg) by a stepwise reduction in oxygenation, infusion of 0.4 mol.l⁻¹ lactic and hydrochloric acid and by low tidal volume ventilation, targeting an PaO₂ < 70 mmHg, SvO₂ < 65%, pH ~ 7.2. Venovenous hemofiltration (CVVH) operated in recirculation mode without volume exchange was chosen to prove the suitability of the model for studies on ECCs under clinical conditions (ECC group, n=6). Another 6 animals underwent the same protocol except for the CVVH (reference group, n=6). RESULTS The median PaO₂ during hypoxemia/acidemia was 62 mmHg, the median SvO₂ was 38%, and the median pH was 7.22. Hypoxemia/acidemia was successfully induced and maintained for 6.5 h in all pigs. CVVH could be performed for 3 h with blood flow rates up to 300 ml.min⁻¹ and filtrate rates up to 60 ml.min⁻¹. CONCLUSIONS Our model provides hypoxemia/acidemia with blood gas values comparable to critically ill adult patients for several hours, during which it is possible to perform CVVH. Thus, it enables research on the biocompatibility reactions of extracorporeal circuits under intensive care conditions.
Collapse
Affiliation(s)
- Martin Russ
- Department of Experimental Medicine (FEM), Charité - Campus Virchow, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Liu JQ, Lee TF, Chen C, Bagim DL, Cheung PY. N-acetylcysteine improves hemodynamics and reduces oxidative stress in the brains of newborn piglets with hypoxia-reoxygenation injury. J Neurotrauma 2011; 27:1865-73. [PMID: 20649480 DOI: 10.1089/neu.2010.1325] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species have been implicated in the pathogenesis of hypoxic-ischemic injury. It has been shown previously that treating an animal with N-acetyl-L-cysteine (NAC), a scavenger of free radicals, significantly minimizes hypoxic-ischemic-induced brain injury in various acute models. Using a subacute swine model of neonatal hypoxia-reoxygenation (H-R), we evaluated the long-term beneficial effect of NAC against oxidative stress-induced brain injury. Newborn piglets were randomly assigned to a sham-operated group (without H-R, n = 6), and two H-R experimental groups (n = 8 each), with 2 h normocapnic alveolar hypoxia and 1 h of 100% oxygen reoxygenation followed by 21% oxygen for 47 h. Five minutes after reoxygenation, the H-R piglets received either normal saline (H-R controls) or NAC (150 mg/kg bolus and 20 mg/kg/h IV for 24 h) in a blinded randomized fashion. Treating the piglets with NAC significantly increased both common carotid arterial flow (CCAF) and oxygen delivery during the early phase of rexoygenation, while both CCAF and carotid oxygen delivery of the H-R group remained lower than the sham-operated groups throughout the experimental period. Compared with H-R controls, significantly higher amounts of anesthetic and sedative medications were required to maintain the NAC-treated piglets in stable condition throughout the experimental period, indicating a stronger recovery. Post-resuscitation NAC treatment also significantly attenuated the increase in cortical caspase-3 and lipid hydroperoxide concentrations. Our findings suggest that post-resuscitation administration of NAC reduces cerebral oxidative stress with improved cerebral oxygen delivery, and probably attenuates apoptosis in newborn piglets with H-R insults.
Collapse
Affiliation(s)
- Jiang-Qin Liu
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
17
|
Effects of post-resuscitation treatment with N-acetylcysteine on cardiac recovery in hypoxic newborn piglets. PLoS One 2010; 5:e15322. [PMID: 21203535 PMCID: PMC3006425 DOI: 10.1371/journal.pone.0015322] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 11/06/2010] [Indexed: 12/02/2022] Open
Abstract
Aims Although N-acetylcysteine (NAC) can decrease reactive oxygen species and improve myocardial recovery after ischemia/hypoxia in various acute animal models, little is known regarding its long-term effect in neonatal subjects. We investigated whether NAC provides prolonged protective effect on hemodynamics and oxidative stress using a surviving swine model of neonatal asphyxia. Methods and Results Newborn piglets were anesthetized and acutely instrumented for measurement of systemic hemodynamics and oxygen transport. Animals were block-randomized into a sham-operated group (without hypoxia-reoxygenation [H–R, n = 6]) and two H-R groups (2 h normocapnic alveolar hypoxia followed by 48 h reoxygenation, n = 8/group). All piglets were acidotic and in cardiogenic shock after hypoxia. At 5 min after reoxygenation, piglets were given either saline or NAC (intravenous 150 mg/kg bolus + 20 mg/kg/h infusion) via for 24 h in a blinded, randomized fashion. Both cardiac index and stroke volume of H-R controls remained lower than the pre-hypoxic values throughout recovery. Treating the piglets with NAC significantly improved cardiac index, stroke volume and systemic oxygen delivery to levels not different from those of sham-operated piglets. Accompanied with the hemodynamic improvement, NAC-treated piglets had significantly lower plasma cardiac troponin-I, myocardial lipid hydroperoxides, activated caspase-3 and lactate levels (vs. H-R controls). The change in cardiac index after H-R correlated with myocardial lipid hydroperoxides, caspase-3 and lactate levels (all p<0.05). Conclusions Post-resuscitation administration of NAC reduces myocardial oxidative stress and caused a prolonged improvement in cardiac function and in newborn piglets with H-R insults.
Collapse
|
18
|
Lee TF, Tymafichuk CN, Schulz R, Cheung PY. Post-resuscitation NOS inhibition does not improve hemodynamic recovery of hypoxic newborn pigs. Intensive Care Med 2009; 35:1628-35. [PMID: 19551371 DOI: 10.1007/s00134-009-1553-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/31/2009] [Indexed: 12/01/2022]
Abstract
BACKGROUND Significant improvement in myocardial recovery has been shown previously with interventions to decrease reactive oxygen species after ischemia/hypoxia. We investigated whether co-administration of N-acetylcysteine (NAC, a scavenger for reactive oxygen species) and N (G)-monomethyl-L: -arginine (L-NMMA, a non-selective nitric oxide synthase inhibitor) results in better hemodynamic recovery. DESIGN Controlled, block-randomized study. SETTING University research laboratory. SUBJECT Mixed breed piglets (1-4d, 1.6-2.4 kg). INTERVENTIONS Acutely instrumented piglets received normocapnic alveolar hypoxia (10-15% oxygen) for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). After reoxygenation, hypoxic-reoxygenated piglets were given either saline (controls), NAC [30 mg/kg bolus + 20 mg/(kg h) infusion], NMMA [0.1 mg/kg bolus + 0.1 mg/(kg h) infusion] or NAC + L-NMMA via intravenous infusion in a blinded, randomized fashion (n = 8/group). Sham-operated piglets had no hypoxia-reoxygenation (n = 5). MEASUREMENTS AND RESULTS Both cardiac index and stroke volume of hypoxia-reoxygenation controls remained depressed during reoxygenation (vs. normoxic baseline, p < 0.05). Post-resuscitation treatment with L-NMMA alone did not improve systemic hemodynamic recovery, but caused pulmonary hypertension (vs. controls). In contrast, treating the piglets with either NAC or NAC + L-NMMA improved cardiac index and stroke volume, with no effect on heart rate and blood pressure (vs. controls). These treatments also decreased various oxidative stress markers in myocardial tissues (vs. controls). However, there was no significant difference between NAC- and NAC + L-NMMA groups in all examined parameters. CONCLUSIONS Post-resuscitation administration of NAC improved cardiac function and reduced oxidative stress in newborn pigs with hypoxia-reoxygenation insult. Low-dose, non-selective inhibitor of nitric oxide synthase activity did not provide any further beneficial effect.
Collapse
Affiliation(s)
- Tze-fun Lee
- Department of Pediatrics, University of Alberta, NICU Royal Alexandra Hospital, Edmonton, Alberta T5H 3V9, Canada
| | | | | | | |
Collapse
|
19
|
Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation. Intensive Care Med 2009; 35:215-31. [PMID: 19125232 PMCID: PMC2638603 DOI: 10.1007/s00134-008-1380-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 12/11/2022]
|
20
|
Lee TF, Tymafichuk CN, Bigam DL, Cheung PY. Effects of postresuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets. Pediatr Res 2008; 64:256-61. [PMID: 18437097 DOI: 10.1203/pdr.0b013e31817cfcc0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrogen peroxide (H2O2) and nitric oxide (NO) contribute to the pathogenesis of cerebral hypoxic-ischemic injury. We evaluated the neuroprotective effect of N-acetyl-l-cysteine (NAC, a free radical scavenger) against oxidative stress and perfusion in a model of neonatal hypoxia-reoxygenation (H-R). Piglets (1-3 d, 1.6-2.3 kg) were randomized into a sham-operated group (without H-R) (n = 5) and two H-R experimental groups (2 h normocapnic alveolar hypoxia followed by 4 h reoxygenation) (n = 7/group). Five minutes after reoxygenation, piglets were given either i.v. saline (H-R controls) or NAC (30 mg/kg bolus then 20 mg/kg/h infusion) in a blinded-randomized fashion. Heart rate, mean arterial pressure, carotid arterial blood flow (transit-time ultrasonic probe), cerebral cortical H2O2 and NO production (electrochemical sensor), cerebral tissue glutathione and nitrotyrosine levels (enzyme-linked immunosorbent assay) were examined. Hypoxic piglets were acidotic (pH 6.88-6.90), which recovered similarly in the H-R groups (p > 0.05 versus shams). Postresuscitation NAC treatment significantly attenuated the increase in cortical H2O2, but not NO, concentration during reoxygenation, with lower cerebral oxidized glutathione levels. NAC-treated piglets had significantly higher carotid oxygen delivery and lower cerebral lactate levels than that of H-R controls with corresponding changes in carotid arterial flow and vascular resistance. In newborn piglets with H-R, postresuscitation administration of NAC reduced cerebral oxidative stress and improved cerebral perfusion.
Collapse
Affiliation(s)
- Tze-Fun Lee
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
21
|
Jantzie LL, Todd KG, Cheung PY. Neonatal ischemic stroke: a hypoxic–ischemic injury to the developing brain. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.99] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lauren L Jantzie
- University of Alberta, Neurochemical Research Unit, Department of Psychiatry, Edmonton, AB T6G 2R7, Canada
| | - Kathryn G Todd
- University of Alberta, Neurochemical Research Unit, Department of Psychiatry, Edmonton, AB T6G 2R7, Canada
| | - Po-Yin Cheung
- Royal Alexandra Hospital, NICU, Rm 5027, 10240 Kingsway Avenue, Edmonton, AB T5H 3V9, Canada
| |
Collapse
|