1
|
Guo J, Cao W, Luo J, Huang R, Xiao Y. A retrospective study of the role of hypercapnia in patients with acromegaly. BMC Pulm Med 2023; 23:186. [PMID: 37244996 DOI: 10.1186/s12890-023-02488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Acromegaly is a multisystemic disease characterized by an excessive release of growth hormone (GH) and insulin-like growth factor-1. Obstructive sleep apnea (OSA) is a common consequence of acromegaly, and hypercapnia is frequently observed in patients with acromegaly, OSA, and obesity. However, the effects of hypercapnia on acromegaly remain unknown. This study was designed to investigate whether there are differences in clinical symptoms, sleep variables, and biochemical remission after surgery for acromegaly in patients with OSA with or without hypercapnia. METHODS A retrospective analysis was conducted involving patients with acromegaly and OSA. The pharmacotherapy history for acromegaly before surgery, anthropometric measures, blood gas, sleep monitoring data, and biochemical assays of hypercapnic and eucapnic individuals were collected 1-2 weeks before surgery. Univariate and multivariate logistic regression analyses were performed to determine the risk factors for failed postoperative biochemical remission. RESULTS In this study, 94 patients with OSA and acromegaly were included. Among them, 25 (26.6%) had hypercapnia. The hypercapnic group had higher body mass index (92% vs. 62.3%; p = 0.005) and poorer nocturnal hypoxemia index. No serological differences were found between the two groups. According to the post-surgery GH level, 52 patients (55.3%) reached biochemical remission. Univariate logistic regression analysis revealed that diabetes mellitus (odds ratio [OR], 2.59; 95% confidence interval [CI], 1.02-6.55), instead of hypercapnia (OR, 0.61; 95% CI, 0.24-1.58), was associated with lower remission rates. Patients who received pharmacotherapy for acromegaly before surgery (OR, 0.21; 95% CI, 0.06-0.79) and had higher thyroid-stimulating hormone levels (OR, 0.53; 95% CI, 0.32-0.88) were more likely to have biochemical remission after surgery. Multivariate analysis further showed that only diabetes mellitus (OR, 3.29; 95% CI, 1.15-9.46) and preoperative pharmacotherapy (OR, 0.21; 95% CI, 0.06-0.83) remained significant. Hypercapnia, hormone levels, and sleep indicators had no effect on biochemical remission after surgery. CONCLUSIONS Single-center evidence shows that hypercapnia alone may not be a risk factor for lower biochemical remission rates. Correcting hypercapnia does not appear to be required before surgery. More evidence is needed to further support this conclusion.
Collapse
Affiliation(s)
- Junwei Guo
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Wenhao Cao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinmei Luo
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Rong Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China
| | - Yi Xiao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Ismaiel N, Whynot S, Geldenhuys L, Xu Z, Slutsky AS, Chappe V, Henzler D. Lung-Protective Ventilation Attenuates Mechanical Injury While Hypercapnia Attenuates Biological Injury in a Rat Model of Ventilator-Associated Lung Injury. Front Physiol 2022; 13:814968. [PMID: 35530505 PMCID: PMC9068936 DOI: 10.3389/fphys.2022.814968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Objective: Lung-protective mechanical ventilation is known to attenuate ventilator-associated lung injury (VALI), but often at the expense of hypoventilation and hypercapnia. It remains unclear whether the main mechanism by which VALI is attenuated is a product of limiting mechanical forces to the lung during ventilation, or a direct biological effect of hypercapnia. Methods: Acute lung injury (ALI) was induced in 60 anesthetized rats by the instillation of 1.25 M HCl into the lungs via tracheostomy. Ten rats each were randomly assigned to one of six experimental groups and ventilated for 4 h with: 1) Conventional HighVENormocapnia (high VT, high minute ventilation, normocapnia), 2) Conventional Normocapnia (high VT, normocapnia), 3) Protective Normocapnia (VT 8 ml/kg, high RR), 4) Conventional iCO2Hypercapnia (high VT, low RR, inhaled CO2), 5) Protective iCO2Hypercapnia (VT 8 ml/kg, high RR, added CO2), 6) Protective endogenous Hypercapnia (VT 8 ml/kg, low RR). Blood gasses, broncho-alveolar lavage fluid (BALF), and tissue specimens were collected and analyzed for histologic and biologic lung injury assessment. Results: Mild ALI was achieved in all groups characterized by a decreased mean PaO2/FiO2 ratio from 428 to 242 mmHg (p < 0.05), and an increased mean elastance from 2.46 to 4.32 cmH2O/L (p < 0.0001). There were no differences in gas exchange among groups. Wet-to-dry ratios and formation of hyaline membranes were significantly lower in low VT groups compared to conventional tidal volumes. Hypercapnia reduced diffuse alveolar damage and IL-6 levels in the BALF, which was also true when CO2 was added to conventional VT. In low VT groups, hypercapnia did not induce any further protective effect except increasing pulmonary IL-10 in the BALF. No differences in lung injury were observed when hypercapnia was induced by adding CO2 or decreasing minute ventilation, although permissive hypercapnia decreased the pH significantly and decreased liver histologic injury. Conclusion: Our findings suggest that low tidal volume ventilation likely attenuates VALI by limiting mechanical damage to the lung, while hypercapnia attenuates VALI by limiting pro-inflammatory and biochemical mechanisms of injury. When combined, both lung-protective ventilation and hypercapnia have the potential to exert an synergistic effect for the prevention of VALI.
Collapse
Affiliation(s)
- Nada Ismaiel
- Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesia, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sara Whynot
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Laurette Geldenhuys
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Zhaolin Xu
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | | | - Valerie Chappe
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Dietrich Henzler
- Department of Anesthesia, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.,Department of Anesthesiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Masterson C, Horie S, McCarthy SD, Gonzalez H, Byrnes D, Brady J, Fandiño J, Laffey JG, O'Toole D. Hypercapnia in the critically ill: insights from the bench to the bedside. Interface Focus 2021; 11:20200032. [PMID: 33628425 PMCID: PMC7898152 DOI: 10.1098/rsfs.2020.0032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/16/2023] Open
Abstract
Carbon dioxide (CO2) has long been considered, at best, a waste by-product of metabolism, and at worst, a toxic molecule with serious health consequences if physiological concentration is dysregulated. However, clinical observations have revealed that 'permissive' hypercapnia, the deliberate allowance of respiratory produced CO2 to remain in the patient, can have anti-inflammatory effects that may be beneficial in certain circumstances. In parallel, studies at the cell level have demonstrated the profound effect of CO2 on multiple diverse signalling pathways, be it the effect from CO2 itself specifically or from the associated acidosis it generates. At the whole organism level, it now appears likely that there are many biological sensing systems designed to respond to CO2 concentration and tailor respiratory and other responses to atmospheric or local levels. Animal models have been widely employed to study the changes in CO2 levels in various disease states and also to what extent permissive or even directly delivered CO2 can affect patient outcome. These findings have been advanced to the bedside at the same time that further clinical observations have been elucidated at the cell and animal level. Here we present a synopsis of the current understanding of how CO2 affects mammalian biological systems, with a particular emphasis on inflammatory pathways and diseases such as lung specific or systemic sepsis. We also explore some future directions and possibilities, such as direct control of blood CO2 levels, that could lead to improved clinical care in the future.
Collapse
|
4
|
El-Betany AMM, Behiry EM, Gumbleton M, Harding KG. Humidified Warmed CO 2 Treatment Therapy Strategies Can Save Lives With Mitigation and Suppression of SARS-CoV-2 Infection: An Evidence Review. Front Med (Lausanne) 2020; 7:594295. [PMID: 33425942 PMCID: PMC7793941 DOI: 10.3389/fmed.2020.594295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
The coronavirus disease (COVID-19) outbreak has presented enormous challenges for healthcare, societal, and economic systems worldwide. There is an urgent global need for a universal vaccine to cover all SARS-CoV-2 mutant strains to stop the current COVID-19 pandemic and the threat of an inevitable second wave of coronavirus. Carbon dioxide is safe and superior antimicrobial, which suggests it should be effective against coronaviruses and mutants thereof. Depending on the therapeutic regime, CO2 could also ameliorate other COVID-19 symptoms as it has also been reported to have antioxidant, anti-inflammation, anti-cytokine effects, and to stimulate the human immune system. Moreover, CO2 has beneficial effects on respiratory physiology, cardiovascular health, and human nervous systems. This article reviews the rationale of early treatment by inhaling safe doses of warmed humidified CO2 gas, either alone or as a carrier gas to deliver other inhaled drugs may help save lives by suppressing SARS-CoV-2 infections and excessive inflammatory responses. We suggest testing this somewhat counter-intuitive, but low tech and safe intervention for its suitability as a preventive measure and treatment against COVID-19. Overall, development and evaluation of this therapy now may provide a safe and economical tool for use not only during the current pandemic but also for any future outbreaks of respiratory diseases and related conditions.
Collapse
Affiliation(s)
- Alaa M. M. El-Betany
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Enas M. Behiry
- School of Medicine, Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Keith G. Harding
- Wound Healing Research Unit, Welsh Wound Innovation Centre, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Ding H, Liu X, Li X, Wen M, Li Y, Han Y, Huang L, Liu M, Zeng H. Hypercapnia exacerbates the disruption of the blood‑brain barrier by inducing interleukin‑1β overproduction in the blood of hypoxemic adult rats. Int J Mol Med 2020; 46:762-772. [PMID: 32626911 PMCID: PMC7307827 DOI: 10.3892/ijmm.2020.4604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/27/2020] [Indexed: 12/28/2022] Open
Abstract
Refractory hypoxemia is the main symptom of acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is routinely applied in clinical practice to correct hypoxemia, which aims to prevent ventilator‑induced lung injury. However, this ventilation strategy inevitably leads to hypercapnia. Our previous study demonstrated that hypercapnia aggravated cognitive impairment in hypoxemic rats; however, the underlying mechanism remains unclear. The aim of the present study was to investigate whether hypercapnia exacerbates the blood‑brain barrier (BBB) disruption through inducing interleukin (IL)‑1β overproduction in the blood of hypoxemic rats. The BBB permeability in a rat model of hypercapnia/hypoxemia was evaluated. The levels of IL‑1β in the blood of rats and human whole‑blood cultures were assessed. The expression of IL‑1 receptor 1 (IL‑1R1), phosphorylated IL‑1R1‑associated kinase (p‑IRAK‑1) and tight junctional proteins in cerebral vascular endothelial cells was examined in vitro and in vivo. In addition, IL‑1Ra, an IL‑1 receptor antagonist, was used to determine whether hypercapnia affects tight junctional protein expression in hypoxic cerebral vascular endothelial cells through inducing IL‑1β overproduction. It was observed that hypercapnia alone did not disrupt the BBB, but aggravated the damage to the BBB integrity in hypoxemic rats. Hypercapnia increased IL‑1β expression in the blood of hypoxemic rats as well as in hypoxic human whole‑blood cultures. IL‑1R1 and p‑IRAK‑1 expression was increased, while that of tight junctional proteins was reduced by hypercapnia in hypoxemic cerebral vascular endothelial cells in vitro and in vivo. Additionally, the expression of tight junctional proteins was markedly increased following treatment with IL‑1Ra. These results suggest that hypercapnia‑induced IL‑1β overproduction in the hypoxemic blood may decrease tight junctional protein expression in cerebrovascular endothelial cells via the IL‑1R1/p‑IRAK‑1 pathway, further disrupting BBB integrity, and eventually resulting in increased BBB permeability.
Collapse
Affiliation(s)
- Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xinqiang Liu
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Xusheng Li
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Ya Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Mengting Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
6
|
Morales-Quinteros L, Camprubí-Rimblas M, Bringué J, Bos LD, Schultz MJ, Artigas A. The role of hypercapnia in acute respiratory failure. Intensive Care Med Exp 2019; 7:39. [PMID: 31346806 PMCID: PMC6658637 DOI: 10.1186/s40635-019-0239-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
The biological effects and physiological consequences of hypercapnia are increasingly understood. The literature on hypercapnia is confusing, and at times contradictory. On the one hand, it may have protective effects through attenuation of pulmonary inflammation and oxidative stress. On the other hand, it may also have deleterious effects through inhibition of alveolar wound repair, reabsorption of alveolar fluid, and alveolar cell proliferation. Besides, hypercapnia has meaningful effects on lung physiology such as airway resistance, lung oxygenation, diaphragm function, and pulmonary vascular tree. In acute respiratory distress syndrome, lung-protective ventilation strategies using low tidal volume and low airway pressure are strongly advocated as these have strong potential to improve outcome. These strategies may come at a price of hypercapnia and hypercapnic acidosis. One approach is to accept it (permissive hypercapnia); another approach is to treat it through extracorporeal means. At present, it remains uncertain what the best approach is.
Collapse
Affiliation(s)
- Luis Morales-Quinteros
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.
| | - Marta Camprubí-Rimblas
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
| | - Josep Bringué
- Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Lieuwe D Bos
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Antonio Artigas
- Intensive Care Unit, Hospital Universitario Sagrado Corazón, Carrer de Viladomat, 288, 08029, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Bellatera, Spain.,Critical Care Center, Corporació Sanitària I Universitària Parc Taulí, Sabadell, Spain.,Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain.,Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
7
|
Morales Quinteros L, Bringué Roque J, Kaufman D, Artigas Raventós A. Importance of carbon dioxide in the critical patient: Implications at the cellular and clinical levels. Med Intensiva 2018; 43:234-242. [PMID: 29486904 DOI: 10.1016/j.medin.2018.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/22/2023]
Abstract
Important recent insights have emerged regarding the cellular and molecular role of carbon dioxide (CO2) and the effects of hypercapnia. The latter may have beneficial effects in patients with acute lung injury, affording reductions in pulmonary inflammation, lessened oxidative alveolar damage, and the regulation of innate immunity and host defenses by inhibiting the expression of inflammatory cytokines. However, other studies suggest that CO2 can have deleterious effects upon the lung, reducing alveolar wound repair in lung injury, decreasing the rate of reabsorption of alveolar fluid, and inhibiting alveolar cell proliferation. Clearly, hypercapnia has both beneficial and harmful consequences, and it is important to determine the net effect under specific conditions. The purpose of this review is to describe the immunological and physiological effects of carbon dioxide, considering their potential consequences in patients with acute respiratory failure.
Collapse
Affiliation(s)
| | | | - David Kaufman
- Division of Pulmonary, Critical Care & Sleep, NYU School of Medicine, New York, NY, Estados Unidos
| | - Antonio Artigas Raventós
- Servicio de Medicina Intensiva, Hospital Universitario Sagrat Cor, Barcelona, España; Universidad Autónoma de Barcelona, Sabadell, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, España
| |
Collapse
|
8
|
Malek M, Hassanshahi J, Fartootzadeh R, Azizi F, Shahidani S. Nephrogenic acute respiratory distress syndrome: A narrative review on pathophysiology and treatment. Chin J Traumatol 2018; 21:4-10. [PMID: 29398292 PMCID: PMC5835491 DOI: 10.1016/j.cjtee.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
The kidneys have a close functional relationship with other organs especially the lungs. This connection makes the kidney and the lungs as the most organs involved in the multi-organ failure syndrome. The combination of acute lung injury (ALI) and renal failure results a great clinical significance of 80% mortality rate. Acute kidney injury (AKI) leads to an increase in circulating cytokines, chemokines, activated innate immune cells and diffuse of these agents to other organs such as the lungs. These factors initiate pathological cascade that ultimately leads to ALI and acute respiratory distress syndrome (ARDS). We comprehensively searched the English medical literature focusing on AKI, ALI, organs cross talk, renal failure, multi organ failure and ARDS using the databases of PubMed, Embase, Scopus and directory of open access journals. In this narrative review, we summarized the pathophysiology and treatment of respiratory distress syndrome following AKI. This review promotes knowledge of the link between kidney and lung with mechanisms, diagnostic biomarkers, and treatment involved ARDS induced by AKI.
Collapse
Affiliation(s)
- Maryam Malek
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Jalal Hassanshahi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Fartootzadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Azizi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Shahidani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Otulakowski G, Engelberts D, Post M, Masterson C, Kavanagh BP. Hypercapnic Acidosis Regulates Mer Tyrosine Kinase Receptor Shedding and Activity. Am J Respir Cell Mol Biol 2017; 58:132-134. [PMID: 29286859 DOI: 10.1165/rcmb.2017-0316le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | - Martin Post
- 1 Hospital for Sick Children Toronto, Ontario, Canada and
| | | | - Brian P Kavanagh
- 1 Hospital for Sick Children Toronto, Ontario, Canada and.,2 University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
10
|
Cagle LA, Franzi LM, Linderholm AL, Last JA, Adams JY, Harper RW, Kenyon NJ. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model. PLoS One 2017; 12:e0187419. [PMID: 29112971 PMCID: PMC5675408 DOI: 10.1371/journal.pone.0187419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency of recruitment maneuvers to help ameloriate ventilator-induced lung injury.
Collapse
Affiliation(s)
- Laura A. Cagle
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
- * E-mail:
| | - Lisa M. Franzi
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
| | - Angela L. Linderholm
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
| | - Jerold A. Last
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
| | - Jason Y. Adams
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, Davis, CA, United States of America
| | - Richart W. Harper
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, Davis, CA, United States of America
| | - Nicholas J. Kenyon
- Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA, United States of America
- Division of Pulmonary, Critical Care, and Sleep Medicine, School of Medicine, University of California, Davis, Davis, CA, United States of America
| |
Collapse
|
11
|
Ashworth L, Norisue Y, Koster M, Anderson J, Takada J, Ebisu H. Clinical management of pressure control ventilation: An algorithmic method of patient ventilatory management to address "forgotten but important variables". J Crit Care 2017; 43:169-182. [PMID: 28918201 DOI: 10.1016/j.jcrc.2017.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Pressure controlled ventilation is a common mode of ventilation used to manage both adult and pediatric populations. However, there is very little evidence that distinguishes the efficacy of pressure controlled ventilation over that of volume controlled ventilation in the adult population. This gap in the literature may be due to the absence of a consistent and systematic algorithm for managing pressure controlled ventilation. This article provides a brief overview of the applications of both pressure controlled ventilation and volume controlled ventilation and proposes an algorithmic approach to the management of patients receiving pressure controlled ventilation. This algorithmic approach highlights the need for clinicians to have a comprehensive conceptual understanding of mechanical ventilation, pulmonary physiology, and interpretation of ventilator graphics in order to best care for patients receiving pressure controlled ventilation. The objective of identifying a systematic approach to managing pressure controlled ventilation is to provide a more generalizable and equitable approach to management of the ICU patient. Ideally, a consistent approach to managing pressure controlled ventilation in the adult population will glean more reliable information regarding actual patient outcomes, as well as the efficacy of pressure controlled ventilation when compared to volume controlled ventilation.
Collapse
Affiliation(s)
- Lonny Ashworth
- Boise State University, Department of Respiratory Care, 1910 University Drive, Boise, ID, USA.
| | - Yasuhiro Norisue
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu City, Chiba 2790001, Japan
| | - Megan Koster
- Boise State University, Department of Respiratory Care, 1910 University Drive, Boise, ID, USA
| | - Jeff Anderson
- Boise State University, Department of Respiratory Care, 1910 University Drive, Boise, ID, USA
| | - Junko Takada
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu City, Chiba 2790001, Japan
| | - Hatsuyo Ebisu
- Department of Pulmonary and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, 3-4-32 Todaijima, Urayasu City, Chiba 2790001, Japan
| |
Collapse
|
12
|
Hypercapnic Conditions After Experimental Blunt Chest Trauma Increase Efferocytosis of Alveolar Macrophages and Reduce Local Inflammation. Shock 2017; 48:104-111. [DOI: 10.1097/shk.0000000000000813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Fuchs H, Rossmann N, Schmid MB, Hoenig M, Thome U, Mayer B, Klotz D, Hummler HD. Permissive hypercapnia for severe acute respiratory distress syndrome in immunocompromised children: A single center experience. PLoS One 2017. [PMID: 28632754 PMCID: PMC5478142 DOI: 10.1371/journal.pone.0179974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Controlled hypoventilation while accepting hypercapnia has been advocated to reduce ventilator-induced lung injury. The aim of the study was to analyze outcomes of a cohort of immunocompromised children with acute respiratory distress syndrome (ARDS) ventilated with a strategy of stepwise increasing PCO2 targets up to 140 mm Hg. METHODS Retrospective analysis of outcomes of a cohort of children with oncologic disease or after stem cell transplantation and severe respiratory failure in comparison with a historical control cohort. RESULTS Out of 150 episodes of admission to the PICU 88 children underwent invasive mechanical ventilation for >24h (overall survival 75%). In a subgroup of 38 children with high ventilator requirements the PCO2 target ranges were increased stepwise. Fifteen children survived and were discharged from the PICU. Severe pulmonary hypertension was seen in two patients and no case of cerebral edema was observed. Long term outcome was available in 15 patients and 10 of these patients survived without adverse neurological sequelae. With introduction of this strategy survival of immunocompromised children undergoing mechanical ventilation for >24h increased to 48% compared to 32% prior to introduction (historical cohort). CONCLUSIONS A ventilation strategy incorporating very high carbon dioxide levels to allow for low tidal volumes and limited inspiratory pressures is feasible in children. Even severe hypercapnia may be well tolerated. No severe side effects associated with hypercapnia were observed. This strategy could potentially increase survival in immunocompromised children with severe ARDS.
Collapse
Affiliation(s)
- Hans Fuchs
- Center for Pediatrics, Department of Neonatology and Pediatric Intensive Care, Medical Center – Albert Ludwig University of Freiburg, Faculty of Medicine, Freiburg, Germany
- * E-mail:
| | - Nicola Rossmann
- Division of Neonatology and Pediatric Critical Care, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Manuel B. Schmid
- Department of Neonatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manfred Hoenig
- Oncology and stem cell transplantation, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| | - Ulrich Thome
- Division of Neonatology, University Hospital of Leipzig, Leipzig, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Daniel Klotz
- Center for Pediatrics, Department of Neonatology and Pediatric Intensive Care, Medical Center – Albert Ludwig University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helmut D. Hummler
- Division of Neonatology and Pediatric Critical Care, Department for Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
14
|
Otulakowski G, Engelberts D, Arima H, Hirate H, Bayir H, Post M, Kavanagh BP. α-Tocopherol transfer protein mediates protective hypercapnia in murine ventilator-induced lung injury. Thorax 2017; 72:538-549. [PMID: 28159772 DOI: 10.1136/thoraxjnl-2016-209501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/27/2022]
Abstract
RATIONALE Hypercapnia is common in mechanically ventilated patients. Experimentally, 'therapeutic hypercapnia' can protect, but it can also cause harm, depending on the mechanism of injury. Hypercapnia suppresses multiple signalling pathways. Previous investigations have examined mechanisms that were known a priori, but only a limited number of pathways, each suppressed by CO2, have been reported. OBJECTIVE Because of the complexity and interdependence of processes in acute lung injury, this study sought to fill in knowledge gaps using an unbiased screen, aiming to identify a specifically upregulated pathway. METHODS AND RESULTS Using genome-wide gene expression analysis in a mouse model of ventilator-induced lung injury, we discovered a previously unsuspected mechanism by which CO2 can protect against injury: induction of the transporter protein for α-tocopherol, α-tocopherol transfer protein (αTTP). Pulmonary αTTP was induced by inspired CO2 in two in vivo murine models of ventilator-induced lung injury; the level of αTTP expression correlated with degree of lung protection; and, absence of the αTTP gene significantly reduced the protective effects of CO2. α-Tocopherol is a potent antioxidant and hypercapnia increased lung α-tocopherol in wild-type mice, but this did not alter superoxide generation or expression of NRF2-dependent antioxidant response genes in wild-type or in αTTP-/- mice. In concordance with a regulatory role for α-tocopherol in lipid mediator synthesis, hypercapnia attenuated 5-lipoxygenase activity and this was dependent on the presence of αTTP. CONCLUSIONS Inspired CO2 upregulates αTTP which increases lung α-tocopherol levels and inhibits synthesis of a pathogenic chemoattractant.
Collapse
Affiliation(s)
- Gail Otulakowski
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Doreen Engelberts
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Hajime Arima
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Hirate
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hülya Bayir
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Martin Post
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada
| | - Brian P Kavanagh
- Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Anesthesia, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Abstract
BACKGROUND During mechanical ventilation, stress and strain may be locally multiplied in an inhomogeneous lung. The authors investigated whether, in healthy lungs, during high pressure/volume ventilation, injury begins at the interface of naturally inhomogeneous structures as visceral pleura, bronchi, vessels, and alveoli. The authors wished also to characterize the nature of the lesions (collapse vs. consolidation). METHODS Twelve piglets were ventilated with strain greater than 2.5 (tidal volume/end-expiratory lung volume) until whole lung edema developed. At least every 3 h, the authors acquired end-expiratory/end-inspiratory computed tomography scans to identify the site and the number of new lesions. Lung inhomogeneities and recruitability were quantified. RESULTS The first new densities developed after 8.4 ± 6.3 h (mean ± SD), and their number increased exponentially up to 15 ± 12 h. Afterward, they merged into full lung edema. A median of 61% (interquartile range, 57 to 76) of the lesions appeared in subpleural regions, 19% (interquartile range, 11 to 23) were peribronchial, and 19% (interquartile range, 6 to 25) were parenchymal (P < 0.0001). All the new densities were fully recruitable. Lung elastance and gas exchange deteriorated significantly after 18 ± 11 h, whereas lung edema developed after 20 ± 11 h. CONCLUSIONS Most of the computed tomography scan new densities developed in nonhomogeneous lung regions. The damage in this model was primarily located in the interstitial space, causing alveolar collapse and consequent high recruitability.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Multiple clinical and laboratory studies have been conducted to illustrate the effects of hypercapnia in a range of injuries, and to understand the mechanisms underlying these effects. The aim of this review is to highlight and interpret information obtained from these recent reports and discuss how they may inform the clinical context. RECENT FINDINGS In the last decade, several important articles have addressed key elements of how carbon dioxide interacts in critical illness states. Among them the most important insights relate to how hypercapnia affects critical illness and include the effects and mechanisms of carbon dioxide in pulmonary hypertension, infection, inflammation, diaphragm dysfunction, and cerebral ischemia. In addition, we discuss molecular insights that apply to multiple aspects of critical illness. SUMMARY Experiments involving hypercapnia have covered a wide range of illness models with varying degrees of success. It is becoming evident that deliberate hypercapnia in the clinical setting should seldom be used, except wherever necessitated to avoid ventilator-associated lung injury. A more complete understanding of the molecular mechanisms must be established.
Collapse
|
17
|
Yang W, Yue Z, Cui X, Guo Y, Zhang L, Zhou H, Li W. Comparison of the effects of moderate and severe hypercapnic acidosis on ventilation-induced lung injury. BMC Anesthesiol 2015; 15:67. [PMID: 25924944 PMCID: PMC4443663 DOI: 10.1186/s12871-015-0050-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 04/22/2015] [Indexed: 01/12/2023] Open
Abstract
Background We have proved that hypercapnic acidosis (a PaCO2 of 80-100 mmHg) protects against ventilator-induced lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO2 or if greater CO2 “doses” (PaCO2 > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can reduce stretch-induced injury, as well as the role of nuclear factor-κB (NF-κB) in the effects of acute hypercapnic acidosis. Methods Fifty-four rats were ventilated for 4 hours with a pressure-controlled ventilation mode set at a peak inspiratory pressure (PIP) of 30 cmH2O. A gas mixture of carbon dioxide with oxygen (FiCO2 = 4-5%, FiCO2 = 11-12% or FiCO2 = 16-17%; FiO2 = 0.7; balance N2) was immediately administered to maintain the target PaCO2 in the NC (a PaCO2 of 35-45 mmHg), MHA (a PaCO2 of 80-100 mmHg) and SHA (a PaCO2 of 130-150 mmHg) groups. Nine normal or non-ventilated rats served as controls. The hemodynamics, gas exchange and inflammatory parameters were measured. The role of NF-κB pathway in hypercapnic acidosis-mediated protection from high-pressure stretch injury was then determined. Results In the NC group, high-pressure ventilation resulted in a decrease in PaO2/FiO2 from 415.6 (37.1) mmHg to 179.1 (23.5) mmHg (p < 0.001), but improved by MHA (379.9 ± 34.5 mmHg) and SHA (298.6 ± 35.3 mmHg). The lung injury score in the SHA group (7.8 ± 1.6) was lower than the NC group (11.8 ± 2.3, P < 0.05) but was higher than the MHA group (4.4 ± 1.3, P < 0.05). Compared with the NC group, after 4 h of high pressure ventilation, the MHA and SHA groups had decreases in MPO activity of 67% and 33%, respectively, and also declined the levels of TNF-α (58% versus 72%) and MIP-2 (76% versus 60%) in the BALF. Additionally, both hypercapnic acidosis groups reduced stretch–induced NF-κB activation (p < 0.05) and significantly decreased lung ICAM-1 expression (p < 0.05). Conclusions Moderate hypercapnic acidosis (PaCO2 maintained at 80-100 mmHg) has a greater protective effect on high-pressure ventilation-induced inflammatory injury. The potential mechanisms may involve alterations in NF-κB activity.
Collapse
Affiliation(s)
- Wanchao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Ziyong Yue
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Xiaoguang Cui
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Yueping Guo
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Lili Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Huacheng Zhou
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China. .,Education Department of Heilongjiang Province, Anesthesiology Key Laboratory, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Wenzhi Li
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University; Anesthesiology Key Laboratory, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
18
|
Lan C, Wang J, Li L, Li H, Li L, Su Q, Che L, Liu L, Di M. Effects of different tidal volume ventilation on paraquat-induced acute lung injury in piglets. Med Sci Monit 2015; 21:452-8. [PMID: 25671690 PMCID: PMC4335577 DOI: 10.12659/msm.893179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to explore the effects of different tidal volume (VT) ventilation on paraquat-induced acute lung injury or acute respiratory distress syndrome (ALI/ARDS) in piglets. Material/Methods We developed ALI/ARDS models in piglets by intraperitoneal injection of paraquat (PQ). The piglets were randomly divided into three groups: small VT group (VT=6 ml/kg, n=6), middle VT group (VT=10 ml/kg, n=6), and large VT group (VT=15 ml/kg, n=6), with the positive end-expiratory pressure (PEEP) set as 10 cmH2O. The hemodynamics were monitored by pulse-indicated continuous cardiac output (PiCCO) and the airway pressure changes and blood gas analysis indexes were recorded at different time points. The pathological changes were observed by lung puncture. Results The piglets showed ALI/ARDS in 4.5±0.8 hours after PQ intraperitoneal injection. PH, PaO2 and oxygenation indexes in the three groups all decreased after modeling success compared with baseline, and PaCO2 increased significantly. PH in the small VT group decreased most obviously after ventilation for 6 hours. PaO2 and oxygenation indexes in the small VT group showed the most obvious increase after ventilation for 2 hours and were much higher than the other two groups after ventilation for 6 hours. PaCO2 increased gradually after mechanical ventilation and the small VT group showed most obvious increase. The ELWI increased obviously after ventilation for 2 hours and then the small VT group clearly decreased. PIP and plateau pressure (Pplat) in the small VT group decreased gradually and in the middle and large VT group they increased after ventilation. The lung histopathology showed that the large VT group had the most severe damage and the small VT group had only minimal damage. Conclusions Small tidal volume ventilation combined with PEEP could alleviate the acute lung injury induced by paraquat and improve oxygenation.
Collapse
Affiliation(s)
- Chao Lan
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jinzhu Wang
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Li Li
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Haina Li
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lu Li
- Department of Emergency Intensive Care Unit, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Qianqian Su
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lu Che
- Department of Emergency Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Lanping Liu
- Department of Anesthesiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Min Di
- Department of Ultrasonography, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
19
|
|
20
|
Setting the Ventilator in the NICU. PEDIATRIC AND NEONATAL MECHANICAL VENTILATION 2015. [PMCID: PMC7122498 DOI: 10.1007/978-3-642-01219-8_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Success in providing respiratory support to the neonate requires a clear understanding of the context in which it is being applied. Perhaps more than for any other age group, the array of different situations in which ventilation is applied to the newborn infant is extremely broad, with in each case different pathophysiological disturbances and often the need to use a specific approach to apply ventilation optimally. Table 42.1 provides a list of the more common situations in which conventional ventilation is used in the neonate and includes some considerations regarding ventilator settings for each situation. For each situation, a suggested mode of ventilation is indicated, along with target ranges for positive end-expiratory pressure (PEEP) and tidal volume (VT). Further discussion of the physiological rationale and available evidence for ventilator settings is set out below.
Collapse
|
21
|
Otulakowski G, Engelberts D, Gusarova GA, Bhattacharya J, Post M, Kavanagh BP. Hypercapnia attenuates ventilator-induced lung injury via a disintegrin and metalloprotease-17. J Physiol 2014; 592:4507-21. [PMID: 25085885 DOI: 10.1113/jphysiol.2014.277616] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hypercapnic acidosis, common in mechanically ventilated patients, has been reported to exert both beneficial and harmful effects in models of lung injury. Understanding its effects at the molecular level may provide insight into mechanisms of injury and protection. The aim of this study was to establish the effects of hypercapnic acidosis on mitogen‐activated protein kinase (MAPK) activation, and determine the relevant signalling pathways. p44/42 MAPK activation in a murine model of ventilator‐induced lung injury (VILI) correlated with injury and was reduced in hypercapnia. When cultured rat alveolar epithelial cells were subjected to cyclic stretch, activation of p44/42 MAPK was dependent on epidermal growth factor receptor (EGFR) activity and on shedding of EGFR ligands; exposure to 12% CO2 without additional buffering blocked ligand shedding, as well as EGFR and p44/42 MAPK activation. The EGFR ligands are known substrates of the matrix metalloprotease ADAM17, suggesting stretch activates and hypercapnic acidosis blocks stretch‐mediated activation of ADAM17. This was corroborated in the isolated perfused mouse lung, where elevated CO2 also inhibited stretch‐activated shedding of the ADAM17 substrate TNFR1 from airway epithelial cells. Finally, in vivo confirmation was obtained in a two‐hit murine model of VILI where pharmacological inhibition of ADAM17 reduced both injury and p44/42 MAPK activation. Thus, ADAM17 is an important proximal mediator of VILI; its inhibition is one mechanism of hypercapnic protection and may be a target for clinical therapy.
Collapse
Affiliation(s)
- Gail Otulakowski
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Doreen Engelberts
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Galina A Gusarova
- Departments of Medicine and Physiology, Columbia University, New York, NY, USA
| | - Jahar Bhattacharya
- Departments of Medicine and Physiology, Columbia University, New York, NY, USA
| | - Martin Post
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Brian P Kavanagh
- Physiology and Experimental Medicine Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada Departments of Critical Care Medicine and Anaesthesia, Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
22
|
Yang WC, Song CY, Wang N, Zhang LL, Yue ZY, Cui XG, Zhou HC. Hypercapnic acidosis confers antioxidant and anti-apoptosis effects against ventilator-induced lung injury. J Transl Med 2013; 93:1339-49. [PMID: 24126891 DOI: 10.1038/labinvest.2013.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 11/09/2022] Open
Abstract
Hypercapnic acidosis may attenuate ventilator-induced lung oxidative stress injury and alveolar cell apoptosis, but the underlying mechanisms are poorly understood. We examined the effects of hypercapnic acidosis on the role of apoptosis signal-regulating kinase 1 (ASK1), which activates the c-Jun N-terminal kinase (JNK) and p38 cascade in both apoptosis and oxidative reactions, in high-pressure ventilation stimulated rat lungs. Rats were ventilated with a peak inspiratory pressure (PIP) of 30 cmH2O for 4 h and randomly given FiCO2 to achieve normocapnia (PaCO2 at 35-45 mm Hg) or hypercapnia (PaCO2 at 80-100 mm Hg); normally ventilated rats with PIP of 15 cmH2O were used as controls. Lung injury was quantified by gas exchange, microvascular leaks, histology, levels of inflammatory cytokines, and pulmonary oxidative reactions. Apoptosis through the ASK1-JNK/p38 mitogen-activated protein kinase (MAPK) cascade in type II alveolar epithelial cells (AECIIs) were evaluated by examination of caspase-3 activation. The results showed that injurious ventilation caused significant lung injury, including deteriorative oxygenation, changes of histology, and the release of inflammatory cytokines. In addition, the high-pressure mechanical stretch also induced apoptosis and caspase-3 activation in the AECIIs. Hypercapnia attenuated these responses, suppressing the ASK1 signal pathways with its downstream kinase phosphorylation of p38 MAPK and JNK, and caspase-3 activation. Thus, hypercapnia can attenuate cell apoptosis and oxidative stress damage in rat lungs during injurious ventilation, at least in part, due to the suppression of the ASK1-JNK/p38 MAPK pathways.
Collapse
Affiliation(s)
- Wan-Chao Yang
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Shen Y, Zhong M, Wu W, Wang H, Feng M, Tan L, Wang Q. The impact of tidal volume on pulmonary complications following minimally invasive esophagectomy: a randomized and controlled study. J Thorac Cardiovasc Surg 2013; 146:1267-73; discussion 1273-4. [PMID: 23993028 DOI: 10.1016/j.jtcvs.2013.06.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/26/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Minimally invasive esophagectomy (MIE) has been advantageous for lowering pulmonary complications compared with open approaches.(1) However, pulmonary complications remain the most common morbidity after surgical resection of esophageal cancer.(2,3) The aim of this prospective, randomized, controlled, clinical trial was designed to see whether low tidal volume (VT) could further minimize pulmonary complications after MIE. METHODS Between June 2011 and July 2012, a total of 101 patients who underwent MIE received left-lung ventilation during thoracoscopic esophagectomy. All patients received left-lung ventilation during thoracoscopic esophagectomy. Patients were randomly assigned to a low VT (5 mL/kg + 5 cm H2O positive end-expiratory pressure) preserved ventilation (PV) group (n = 53) and a conventional VT (8 mL/kg) controlled ventilation (CV) group (n = 48) in the thoracic stage. Alveolar lavage fluid was harvested from the ventilated lung at intubation and at 18 hours after surgery for analysis of interleukin (IL)-1ß, IL-6, and IL-8 levels. Clinical characteristics, including patient demographics, operation features, and changes in oxygenation index, were recorded and analyzed. Pulmonary complications were identified and statistically compared between the 2 groups. RESULTS The clinical characteristics and operation features were comparable between the 2 groups. IL-1ß, IL-6, and IL-8 expressions in preoperative alveolar lavage fluid were similar between the 2 groups. Significantly lower IL expressions were observed in the PV group than those in the CV group at 18 hours after MIE (IL-1ß, 25.42 ± 31.01 vs 94.96 ± 118.24 pg/mL; IL-6, 30.86 ± 75.78 vs 92.99 ± 72.90 pg/mL; IL-8, 258.75 ± 188.24 vs 403.95 ± 151.44 pg/mL; all P < .05). The 18-hour postoperative oxygenation index was lower in the CV group than that in the PV group (292.85 ± 28.74 vs 326.35 ± 34.43; P = .046). Pulmonary complications were observed in 18 cases of our series, occurring more frequently on the ventilation side (right, 6 cases; and left, 12 cases). All patients were cured by conservative therapy without severe sequelae. The occurrence of pulmonary complications in the PV group was lower than that in the CV group (9.43% vs 27.08%; P = .021). CONCLUSIONS Lung injury due to intraoperative single-lung ventilation may contribute to pulmonary complications after MIE. Low VT ventilation could decrease ventilation-associated lung inflammation, thus minimizing pulmonary complications after MIE. Further studies, based on a larger volume of populations, are required to confirm these findings.
Collapse
Affiliation(s)
- Yaxing Shen
- Division of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Bein T, Weber-Carstens S, Goldmann A, Müller T, Staudinger T, Brederlau J, Muellenbach R, Dembinski R, Graf BM, Wewalka M, Philipp A, Wernecke KD, Lubnow M, Slutsky AS. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus 'conventional' protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 2013; 39:847-56. [PMID: 23306584 PMCID: PMC3625408 DOI: 10.1007/s00134-012-2787-6] [Citation(s) in RCA: 368] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/29/2012] [Indexed: 01/11/2023]
Abstract
Background Acute respiratory distress syndrome is characterized by damage to the lung caused by various insults, including ventilation itself, and tidal hyperinflation can lead to ventilator induced lung injury (VILI). We investigated the effects of a low tidal volume (VT) strategy (VT ≈ 3 ml/kg/predicted body weight [PBW]) using pumpless extracorporeal lung assist in established ARDS. Methods Seventy-nine patients were enrolled after a ‘stabilization period’ (24 h with optimized therapy and high PEEP). They were randomly assigned to receive a low VT ventilation (≈3 ml/kg) combined with extracorporeal CO2 elimination, or to a ARDSNet strategy (≈6 ml/kg) without the extracorporeal device. The primary outcome was the 28-days and 60-days ventilator-free days (VFD). Secondary outcome parameters were respiratory mechanics, gas exchange, analgesic/sedation use, complications and hospital mortality. Results Ventilation with very low VT’s was easy to implement with extracorporeal CO2-removal. VFD’s within 60 days were not different between the study group (33.2 ± 20) and the control group (29.2 ± 21, p = 0.469), but in more hypoxemic patients (PaO2/FIO2 ≤150) a post hoc analysis demonstrated significant improved VFD-60 in study patients (40.9 ± 12.8) compared to control (28.2 ± 16.4, p = 0.033). The mortality rate was low (16.5 %) and did not differ between groups. Conclusions The use of very low VT combined with extracorporeal CO2 removal has the potential to further reduce VILI compared with a ‘normal’ lung protective management. Whether this strategy will improve survival in ARDS patients remains to be determined (Clinical trials NCT 00538928). Electronic supplementary material The online version of this article (doi:10.1007/s00134-012-2787-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Bein
- Department of Anesthesia and Operative Intensive Care, Regensburg University Hospital, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
HÖSTMAN S, ENGSTRÖM J, HEDENSTIERNA G, LARSSON A. Intensive buffering can keep pH above 7.2 for over 4 h during apnea: an experimental porcine study. Acta Anaesthesiol Scand 2013; 57:63-70. [PMID: 23167283 DOI: 10.1111/aas.12012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ventilation with low tidal volumes reduces mortality in acute respiratory distress syndrome. A further reduction of tidal volumes might be beneficial, and it is known that apneic oxygenation (no tidal volumes) with arteriovenous CO(2) removal can keep acid-base balance and oxygenation normal for at least 7 h in an acute lung injury model. We hypothesized that adequate buffering might be another approach and tested whether tris-hydroxymethyl aminomethane (THAM) alone could keep pH at a physiological level during apneic oxygenation for 4 h. METHODS Six pigs were anesthetized, muscle relaxed, and normoventilated. The lungs were recruited, and apneic oxygenation as well as administration of THAM, 20 mmol/kg/h, was initiated. The experiment ended after 270 min, except one that was studied for 6 h. RESULTS Two animals died before the end of the experiment. Arterial pH and arterial carbon dioxide tension (PaCO(2) ) changed from 7.5 (7.5, 7.5) to 7.3 (7.2, 7.3) kPa, P < 0.001 at 270 min, and from 4.5 (4.3, 4.7) to 25 (22, 28) kPa, P < 0.001, respectively. Base excess increased from 5 (3, 6) to 54 (51, 57) mM, P < 0.001. Cardiac output and arterial pressure were well maintained. The pig, which was studied for 6 h, had pH 7.27 and PaCO(2) 27 kPa at that time. CONCLUSION With intensive buffering using THAM, pH can be kept in a physiologically acceptable range for 4 h during apnea.
Collapse
Affiliation(s)
- S. HÖSTMAN
- Hedenstierna laboratory, Anesthesia and Intensive Care; Department of Surgical Sciences; Uppsala University; Uppsala; Sweden
| | - J. ENGSTRÖM
- Hedenstierna laboratory, Anesthesia and Intensive Care; Department of Surgical Sciences; Uppsala University; Uppsala; Sweden
| | - G. HEDENSTIERNA
- Department of Medical Sciences, Clinical Physiology; Uppsala University; Uppsala; Sweden
| | - A. LARSSON
- Hedenstierna laboratory, Anesthesia and Intensive Care; Department of Surgical Sciences; Uppsala University; Uppsala; Sweden
| |
Collapse
|
26
|
Seeley EJ. Updates in the management of acute lung injury: a focus on the overlap between AKI and ARDS. Adv Chronic Kidney Dis 2013; 20:14-20. [PMID: 23265592 DOI: 10.1053/j.ackd.2012.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/01/2012] [Accepted: 10/03/2012] [Indexed: 02/08/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults and can result from several predisposing factors, such as sepsis and trauma, which also predispose patients to acute kidney injury (AKI). Animal models of AKI and ARDS suggest that AKI increases inflammatory cytokines in the circulation such that IL-6 may be a direct mediator of AKI induced lung injury. When ARDS and AKI overlap, intensive care unit length of stay, resource utilization, and mortality increase dramatically. New evidence suggests that the prevalence and clinical implications of even mild AKI in patients with ARDS is likely underestimated. The cornerstone of therapy for ARDS continues to be low tidal volume ventilation, and more recent trials illustrate that diuretic administration to shock-free ARDS patients may help them avoid the deleterious effects of volume overload. This review focuses on new developments in the care of ARDS patients with a specific focus on interactions between the lungs and kidneys in patients with overlapping ARDS and AKI.
Collapse
|
27
|
|
28
|
Wilson MR, Patel BV, Takata M. Ventilation with "clinically relevant" high tidal volumes does not promote stretch-induced injury in the lungs of healthy mice. Crit Care Med 2012; 40:2850-7. [PMID: 22890257 PMCID: PMC3698535 DOI: 10.1097/ccm.0b013e31825b91ef] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Ventilator-induced lung injury is a crucial determinant of the outcome of mechanically ventilated patients. Increasing numbers of mouse studies have identified numerous pathways and mediators that are modulated by ventilation, but it is conceptually difficult to reconcile these into a single paradigm. There is substantial variability in tidal volumes used in these studies and no certainty about the pathophysiology that such varied models actually represent. This study was designed to investigate whether ventilation strategies ranging from "very high" to more "clinically relevant" tidal volumes induce similar pathophysiologies in healthy mice or represent distinct entities. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS C57/Bl6 mice. INTERVENTIONS Anesthetized mice were ventilated with various tidal volumes up to 40 mL/kg. MEASUREMENTS AND MAIN RESULTS Respiratory system compliance and arterial blood gases were used to evaluate physiological variables of injury. Lung wet:dry weight ratio, lavage fluid protein, and cytokines were used to assess pulmonary edema and inflammation. All ventilation strategies induced changes in respiratory system compliance, although the pattern of change was unique for each strategy. Ventilation with 10 mL/kg and 40 mL/kg also induced decreases in arterial PO2 and blood pressure. Any physiological changes induced during the 10, 20, and 30 mL/kg strategies were largely reversed by recruitment maneuvers at the end of the protocol. Markers of pulmonary edema and inflammation indicated that only 40 mL/kg induced substantial increases in both, consistent with development of lung injury. CONCLUSIONS Tidal volumes up to 20 mL/kg are unlikely to induce substantial lung overstretch in models using healthy, young mice. Signs of injury/inflammation using such models are likely to result from other factors, particularly alveolar derecruitment and atelectasis. The results of such studies may need to be reevaluated before clinical relevance can be accurately determined.
Collapse
Affiliation(s)
- Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom.
| | | | | |
Collapse
|
29
|
Pang YL, Chen BS, Li SP, Huang CC, Chang SW, Lam CF, Tsai YC. The preconditioning pulmonary protective effect of volatile isoflurane in acute lung injury is mediated by activation of endogenous iNOS. J Anesth 2012; 26:822-8. [PMID: 22864653 DOI: 10.1007/s00540-012-1456-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 07/09/2012] [Indexed: 01/11/2023]
Abstract
PURPOSE There is still a lack of evidence to support the use of specific anesthetic agents during major operations that could affect the development of postoperative acute lung injury (ALI). This study determined the protective effect of inhaled isoflurane in a rat model of endotoxin-induced ALI. METHODS Rats were exposed to volatile isoflurane (1.5 % in oxygen) or pure oxygen via a facemask for 2 h. After a 3-h recovery period, rats were reanesthetized and ALI was induced by intratracheal instillation of lipopolysaccharide (LPS, 1 mg/kg in 0.5 ml saline). In some animals, a specific inducible nitric oxide synthase (iNOS) inhibitor, 1400W, (10 mg/kg, i.p.) was administered before exposure to isoflurane. Animals were sacrificed 12 h later for analysis. Pulmonary artery vasomotor function and alveolocapillary permeability were assessed. Expression of iNOS and CD11b, and activity of myeloperoxidase in the lung were analyzed. RESULTS The maximal relaxation response to acetylcholine was significantly potentiated in rats pretreated with isoflurane. Lung wet-to-dry ratio was reduced in the lung of isoflurane-treated animals. Expression of iNOS and CD11b were attenuated in the lung tissue obtained from rats receiving isoflurane. Furthermore, enzymatic activity of myeloperoxidase was also reduced in the lung preexposed to isoflurane. However, these pulmonary protective effects of isoflurane were significantly abolished by pretreatment with 1400W. CONCLUSION Pretreatment with volatile isoflurane attenuated inflammatory process in the lung tissue of rats with LPS-induced ALI, and this preconditioning pulmonary protective effect was mainly mediated by activation of endogenous iNOS in the lung.
Collapse
Affiliation(s)
- Yu-Li Pang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
30
|
Oliver KM, Lenihan CR, Bruning U, Cheong A, Laffey JG, McLoughlin P, Taylor CT, Cummins EP. Hypercapnia induces cleavage and nuclear localization of RelB protein, giving insight into CO2 sensing and signaling. J Biol Chem 2012; 287:14004-11. [PMID: 22396550 PMCID: PMC3340129 DOI: 10.1074/jbc.m112.347971] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Carbon dioxide (CO2) is increasingly being appreciated as an intracellular signaling molecule that affects inflammatory and immune responses. Elevated arterial CO2 (hypercapnia) is encountered in a range of clinical conditions, including chronic obstructive pulmonary disease, and as a consequence of therapeutic ventilation in acute respiratory distress syndrome. In patients suffering from this syndrome, therapeutic hypoventilation strategy designed to reduce mechanical damage to the lungs is accompanied by systemic hypercapnia and associated acidosis, which are associated with improved patient outcome. However, the molecular mechanisms underlying the beneficial effects of hypercapnia and the relative contribution of elevated CO2 or associated acidosis to this response remain poorly understood. Recently, a role for the non-canonical NF-κB pathway has been postulated to be important in signaling the cellular transcriptional response to CO2. In this study, we demonstrate that in cells exposed to elevated CO2, the NF-κB family member RelB was cleaved to a lower molecular weight form and translocated to the nucleus in both mouse embryonic fibroblasts and human pulmonary epithelial cells (A549). Furthermore, elevated nuclear RelB was observed in vivo and correlated with hypercapnia-induced protection against LPS-induced lung injury. Hypercapnia-induced RelB processing was sensitive to proteasomal inhibition by MG-132 but was independent of the activity of glycogen synthase kinase 3β or MALT-1, both of which have been previously shown to mediate RelB processing. Taken together, these data demonstrate that RelB is a CO2-sensitive NF-κB family member that may contribute to the beneficial effects of hypercapnia in inflammatory diseases of the lung.
Collapse
Affiliation(s)
- Kathryn M Oliver
- School of Medicine and Medical Science, UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rehder KJ, Turner DA, Cheifetz IM. Use of extracorporeal life support in adults with severe acute respiratory failure. Expert Rev Respir Med 2012; 5:627-33. [PMID: 21955233 DOI: 10.1586/ers.11.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is a recognized and accepted therapeutic option in the treatment of neonatal and pediatric respiratory failure. However, early studies in adults did not demonstrate a survival benefit associated with the utilization of ECMO for severe acute respiratory failure. Despite this historical lack of benefit, use of ECMO in adult patients has seen a recent resurgence. Local successes and a recently published randomized trial have both demonstrated promising results in an adult population with high baseline mortality and limited therapeutic options. This article will review the history of ECMO use for respiratory failure; investigate the driving forces behind the latest surge in interest in ECMO for adults with refractory severe acute respiratory failure; and describe potential applications of ECMO that will likely increase in the near future.
Collapse
Affiliation(s)
- Kyle J Rehder
- Duke University Medical Center, Division of Pediatric Critical Care Medicine, Durham, NC, USA.
| | | | | |
Collapse
|
32
|
Xia J, Sun B, He H, Zhang H, Wang C, Zhan Q. Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits: a randomized, controlled, experimental study. Crit Care 2011; 15:R244. [PMID: 22018091 PMCID: PMC3334795 DOI: 10.1186/cc10502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/09/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Ventilator-induced lung injury (VILI), one of the most serious complications of mechanical ventilation (MV), can impact patients' clinical prognoses. Compared to control ventilation, preserving spontaneous breathing can improve many physiological features in ventilated patients, such as gas distribution, cardiac performance, and ventilation-perfusion matching. However, the effect of spontaneous breathing on VILI is unknown. The goal of this study was to compare the effects of spontaneous breathing and control ventilation on lung injury in mechanically-ventilated healthy rabbits. METHODS Sixteen healthy New Zealand white rabbits were randomly placed into a spontaneous breathing group (SB Group) and a control ventilation group (CV Group). Both groups were ventilated for eight hours using biphasic positive airway pressure (BIPAP) with similar ventilator parameters: inspiration pressure (PI) resulting in a tidal volume (VT) of 10 to 15 ml/kg, inspiratory-to-expiratory ratio of 1:1, positive end-expiration pressure (PEEP) of 2 cmH₂O, and FiO₂ of 0.5. Inflammatory markers in blood serum, lung homogenates and bronchoalveolar lavage fluid (BALF), total protein levels in BALF, mRNA expressions of selected cytokines in lung tissue, and lung injury histopathology scores were determined. RESULTS Animals remained hemodynamically stable throughout the entire experiment. After eight hours of MV, compared to the CV Group, the SB Group had lower PaCO₂ values and ratios of dead space to tidal volume, and higher lung compliance. The levels of cytokines in blood serum and BALF in both groups were similar, but spontaneous breathing led to significantly lower cytokine mRNA expressions in lung tissues and lower lung injury histological scores. CONCLUSIONS Preserving spontaneous breathing can not only improve ventilatory function, but can also attenuate selected markers of VILI in the mechanically-ventilated healthy lung.
Collapse
Affiliation(s)
- Jingen Xia
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang South Road, Beijing, 100020, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Antonelli M, Azoulay E, Bonten M, Chastre J, Citerio G, Conti G, De Backer D, Gerlach H, Hedenstierna G, Joannidis M, Macrae D, Mancebo J, Maggiore SM, Mebazaa A, Preiser JC, Pugin J, Wernerman J, Zhang H. Year in review in Intensive Care Medicine 2010: I. Acute renal failure, outcome, risk assessment and ICU performance, sepsis, neuro intensive care and experimentals. Intensive Care Med 2011; 37:19-34. [PMID: 21203748 PMCID: PMC3029817 DOI: 10.1007/s00134-010-2112-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/03/2010] [Indexed: 12/18/2022]
Affiliation(s)
- Massimo Antonelli
- Department of Intensive Care and Anesthesiology, Policlinico Universitario A. Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bench-to-bedside review: hypercapnic acidosis in lung injury--from 'permissive' to 'therapeutic'. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:237. [PMID: 21067531 PMCID: PMC3220022 DOI: 10.1186/cc9238] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modern ventilation strategies for patients with acute lung injury and acute respiratory distress syndrome frequently result in hypercapnic acidosis (HCA), which is regarded as an acceptable side effect ('permissive hypercapnia'). Multiple experimental studies have demonstrated advantageous effects of HCA in several lung injury models. To date, however, human trials studying the effect of carbon dioxide per se on outcome in patients with lung injury have not been performed. While significant concerns regarding HCA remain, in particular the possible unfavorable effects on bacterial killing and the inhibition of pulmonary epithelial wound repair, the potential for HCA in attenuating lung injury is promising. The underlying mechanisms by which HCA exerts its protective effects are complex, but dampening of the inflammatory response seems to play a pivotal role. After briefly summarizing the physiological effects of HCA, a critical analysis of the available evidence on the potential beneficial effects of therapeutic HCA from in vitro, ex vivo and in vivo lung injury models and from human studies will be reviewed. In addition, the potential concerns in the clinical setting will be outlined.
Collapse
|