1
|
Renaud Y, Auroi J, Cabrio D, Lupieri E, Chiche JD, Piquilloud L. Patient-ventilator synchrony under non-invasive ventilation is improved by an automated real time waveform analysis algorithm: a bench study. Intensive Care Med Exp 2025; 13:16. [PMID: 39937374 PMCID: PMC11822138 DOI: 10.1186/s40635-025-00726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Because of inherent leaks, obtaining good patient-ventilator synchrony during non-invasive ventilation (NIV) is challenging. The IntelliSync + ® software (Hamilton medical, Bonaduz, CH), that can be used together with the NIV mode, performs real-time automated analysis of airway pressure- and flow-time curves to detect the transition between inspiration and expiration. It then controls the ventilator inspiratory and expiratory valves to improve patient-ventilator synchrony. The main goal of this NIV bench study was to evaluate the impact of IntelliSync + ® on synchrony in the presence of leaks of 9 and 20 L/min in the tested ventilator circuit (no face mask used), with normal, obstructive and restrictive respiratory mechanics and two levels of NIV pressure support (PS 8 and 14 cmH2O). For this, the time needed to trigger the ventilator (Td) and the difference between the end of the simulated breath and the termination of pressurization (Tiex) were measured. The number of classical asynchronies and the ventilator pressurization capacity were also assessed. RESULTS Compared to NIV delivered with the classical NIV mode (compensating leaks and limiting inspiratory time to 2 s), activating IntelliSync + ® improved Tiex and, to a lesser extent, Td in clinically relevant setups. IntelliSync + ® also showed a trend towards reducing classical asynchronies, particularly directly after leak flow increase. The impact of the system was most significant with high PS levels and pathological respiratory mechanics. Especially, in the obstructive model, in the presence of large leak (20 L/min) and PS 14 cmH2O, Tiex decreased from 0.61 [0.56-0.64] to 0.16 [0.07-0.18] s and Td from 0.07 [0.06-0.08] to 0.06 [0.06-0.08] s. In less challenging situations, IntelliSync + ® was less beneficial. Overall, ventilator pressurization was improved when IntelliSync + ® was activated. CONCLUSIONS In this NIV bench model, IntelliSync + ®, used in addition to NIV-PS, improved both expiratory and inspiratory synchrony. It was particularly efficient in the presence of obstructive and restrictive respiratory mechanics and high-pressure support levels. These pre-clinical results tend to support the ability of IntelliSync + ® to improve patient-ventilator synchrony in the presence of leaks and provide pre-clinical data supporting a clinical evaluation of the automated algorithm during NIV.
Collapse
Affiliation(s)
- Yann Renaud
- Adult Intensive Care Unit, Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Jocelyne Auroi
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Orthopedics & Traumatology of the Musculoskeletal System, Bürgerspital, Solothurn, Solothurn, Switzerland
| | - Davy Cabrio
- Adult Intensive Care Unit, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ermes Lupieri
- Adult Intensive Care Unit, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Daniel Chiche
- Adult Intensive Care Unit, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lise Piquilloud
- Adult Intensive Care Unit, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Westhoff M, Neumann P, Geiseler J, Bickenbach J, Arzt M, Bachmann M, Braune S, Delis S, Dellweg D, Dreher M, Dubb R, Fuchs H, Hämäläinen N, Heppner H, Kluge S, Kochanek M, Lepper PM, Meyer FJ, Neumann B, Putensen C, Schimandl D, Schönhofer B, Schreiter D, Walterspacher S, Windisch W. [Non-invasive Mechanical Ventilation in Acute Respiratory Failure. Clinical Practice Guidelines - on behalf of the German Society of Pneumology and Ventilatory Medicine]. Pneumologie 2024; 78:453-514. [PMID: 37832578 DOI: 10.1055/a-2148-3323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The guideline update outlines the advantages as well as the limitations of NIV in the treatment of acute respiratory failure in daily clinical practice and in different indications.Non-invasive ventilation (NIV) has a high value in therapy of hypercapnic acute respiratory failure, as it significantly reduces the length of ICU stay and hospitalization as well as mortality.Patients with cardiopulmonary edema and acute respiratory failure should be treated with continuous positive airway pressure (CPAP) and oxygen in addition to necessary cardiological interventions. This should be done already prehospital and in the emergency department.In case of other forms of acute hypoxaemic respiratory failure with only mild or moderately disturbed gas exchange (PaO2/FiO2 > 150 mmHg) there is no significant advantage or disadvantage compared to high flow nasal oxygen (HFNO). In severe forms of ARDS NIV is associated with high rates of treatment failure and mortality, especially in cases with NIV-failure and delayed intubation.NIV should be used for preoxygenation before intubation. In patients at risk, NIV is recommended to reduce extubation failure. In the weaning process from invasive ventilation NIV essentially reduces the risk of reintubation in hypercapnic patients. NIV is regarded useful within palliative care for reduction of dyspnea and improving quality of life, but here in concurrence to HFNO, which is regarded as more comfortable. Meanwhile NIV is also recommended in prehospital setting, especially in hypercapnic respiratory failure and pulmonary edema.With appropriate monitoring in an intensive care unit NIV can also be successfully applied in pediatric patients with acute respiratory insufficiency.
Collapse
Affiliation(s)
- Michael Westhoff
- Klinik für Pneumologie, Lungenklinik Hemer - Zentrum für Pneumologie und Thoraxchirurgie, Hemer
| | - Peter Neumann
- Abteilung für Klinische Anästhesiologie und Operative Intensivmedizin, Evangelisches Krankenhaus Göttingen-Weende gGmbH
| | - Jens Geiseler
- Medizinische Klinik IV - Pneumologie, Beatmungs- und Schlafmedizin, Paracelsus-Klinik Marl, Marl
| | - Johannes Bickenbach
- Klinik für Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, Aachen
| | - Michael Arzt
- Schlafmedizinisches Zentrum der Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Regensburg
| | - Martin Bachmann
- Klinik für Atemwegs-, Lungen- und Thoraxmedizin, Beatmungszentrum Hamburg-Harburg, Asklepios Klinikum Harburg, Hamburg
| | - Stephan Braune
- IV. Medizinische Klinik: Akut-, Notfall- und Intensivmedizin, St. Franziskus-Hospital, Münster
| | - Sandra Delis
- Klinik für Pneumologie, Palliativmedizin und Geriatrie, Helios Klinikum Emil von Behring GmbH, Berlin
| | - Dominic Dellweg
- Klinik für Innere Medizin, Pneumologie und Gastroenterologie, Pius-Hospital Oldenburg, Universitätsmedizin Oldenburg
| | - Michael Dreher
- Klinik für Pneumologie und Internistische Intensivmedizin, Uniklinik RWTH Aachen
| | - Rolf Dubb
- Akademie der Kreiskliniken Reutlingen GmbH, Reutlingen
| | - Hans Fuchs
- Zentrum für Kinder- und Jugendmedizin, Neonatologie und pädiatrische Intensivmedizin, Universitätsklinikum Freiburg
| | | | - Hans Heppner
- Klinik für Geriatrie und Geriatrische Tagesklinik Klinikum Bayreuth, Medizincampus Oberfranken Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth
| | - Stefan Kluge
- Klinik für Intensivmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Matthias Kochanek
- Klinik I für Innere Medizin, Hämatologie und Onkologie, Universitätsklinikum Köln, Köln
| | - Philipp M Lepper
- Klinik für Innere Medizin V - Pneumologie, Allergologie und Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg
| | - F Joachim Meyer
- Lungenzentrum München - Bogenhausen-Harlaching) München Klinik gGmbH, München
| | - Bernhard Neumann
- Klinik für Neurologie, Donauisar Klinikum Deggendorf, und Klinik für Neurologie der Universitätsklinik Regensburg am BKH Regensburg, Regensburg
| | - Christian Putensen
- Klinik und Poliklinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, Bonn
| | - Dorit Schimandl
- Klinik für Pneumologie, Beatmungszentrum, Zentralklinik Bad Berka GmbH, Bad Berka
| | - Bernd Schönhofer
- Klinik für Innere Medizin, Pneumologie und Intensivmedizin, Evangelisches Klinikum Bethel, Universitätsklinikum Ost Westphalen-Lippe, Bielefeld
| | | | - Stephan Walterspacher
- Medizinische Klinik - Sektion Pneumologie, Klinikum Konstanz und Lehrstuhl für Pneumologie, Universität Witten-Herdecke, Witten
| | - Wolfram Windisch
- Lungenklinik, Kliniken der Stadt Köln gGmbH, Lehrstuhl für Pneumologie Universität Witten/Herdecke, Köln
| |
Collapse
|
3
|
Nakornnoi B, Tscheikuna J, Rittayamai N. The effects of real-time waveform analysis software on patient ventilator synchronization during pressure support ventilation: a randomized crossover physiological study. BMC Pulm Med 2024; 24:212. [PMID: 38693506 PMCID: PMC11064376 DOI: 10.1186/s12890-024-03039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Patient-ventilator asynchrony commonly occurs during pressure support ventilation (PSV). IntelliSync + software (Hamilton Medical AG, Bonaduz, Switzerland) is a new ventilation technology that continuously analyzes ventilator waveforms to detect the beginning and end of patient inspiration in real time. This study aimed to evaluate the physiological effect of IntelliSync + software on inspiratory trigger delay time, delta airway (Paw) and esophageal (Pes) pressure drop during the trigger phase, airway occlusion pressure at 0.1 s (P0.1), and hemodynamic variables. METHODS A randomized crossover physiologic study was conducted in 14 mechanically ventilated patients under PSV. Patients were randomly assigned to receive conventional flow trigger and cycling, inspiratory trigger synchronization (I-sync), cycle synchronization (C-sync), and inspiratory trigger and cycle synchronization (I/C-sync) for 15 min at each step. Other ventilator settings were kept constant. Paw, Pes, airflow, P0.1, respiratory rate, SpO2, and hemodynamic variables were recorded. The primary outcome was inspiratory trigger and cycle delay time between each intervention. Secondary outcomes were delta Paw and Pes drop during the trigger phase, P0.1, SpO2, and hemodynamic variables. RESULTS The time to initiate the trigger was significantly shorter with I-sync compared to baseline (208.9±91.7 vs. 301.4±131.7 msec; P = 0.002) and I/C-sync compared to baseline (222.8±94.0 vs. 301.4±131.7 msec; P = 0.005). The I/C-sync group had significantly lower delta Paw and Pes drop during the trigger phase compared to C-sync group (-0.7±0.4 vs. -1.2±0.8 cmH2O; P = 0.028 and - 1.8±2.2 vs. -2.8±3.2 cmH2O; P = 0.011, respectively). No statistically significant differences were found in cycle delay time, P0.1 and other physiological variables between the groups. CONCLUSIONS IntelliSync + software reduced inspiratory trigger delay time compared to the conventional flow trigger system during PSV mode. However, no significant improvements in cycle delay time and other physiological variables were observed with IntelliSync + software. TRIAL REGISTRATION This study was registered in the Thai Clinical Trial Registry (TCTR20200528003; date of registration 28/05/2020).
Collapse
Affiliation(s)
- Barnpot Nakornnoi
- Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jamsak Tscheikuna
- Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nuttapol Rittayamai
- Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
A randomized controlled trial comparing non-invasive ventilation delivered using neurally adjusted ventilator assist (NAVA) or adaptive support ventilation (ASV) in patients with acute exacerbation of chronic obstructive pulmonary disease. J Crit Care 2023; 75:154250. [PMID: 36680884 DOI: 10.1016/j.jcrc.2022.154250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/17/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE No study has compared neurally adjusted ventilator assist (NAVA) with adaptive support ventilation (ASV) during non-invasive ventilation (NIV) in subjects with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). MATERIALS AND METHODS In this randomized controlled trial, we compared NAVA-NIV with ASV-NIV for delivering NIV in consecutive subjects with AECOPD. The primary outcome was NIV failure rate (invasive mechanical ventilation). The key secondary outcomes were number of NIV manipulations, asynchrony index, and 90-day mortality. RESULTS We enrolled 76 subjects (NAVA-NIV, n = 36, ASV-NIV, n = 40; 74% males) with a mean ± SD age of 61.4 ± 8.2 years. We found no difference in NIV failure rates between the two arms (NAVA-NIV vs. ASV-NIV; 8/36 [22.2%] vs. 8/40 [20%]; p = 0.83). The median physician manipulations for NIV were significantly less in the ASV-NIV arm than in the NAVA-NIV arm (2 [0.8-4] vs. 3 [2-5]; p= 0.014) during the initial 24-h. We found no difference in median asynchrony index (NAVA-NIV vs. ASV-NIV, 16.6% vs. 16.4%, p = 0.5) and 90-day mortality (22.2% vs. 17.5%, p = 0.67). CONCLUSION The use of NAVA-NIV was not superior to ASV-NIV in reducing NIV failure rates in AECOPD. Both NAVA-NIV and ASV-NIV had similar asynchrony index and 90-day mortality. TRIAL REGISTRY www. CLINICALTRIALS gov (NCT04414891).
Collapse
|
5
|
Longhini F, Bruni A, Garofalo E, Tutino S, Vetrugno L, Navalesi P, De Robertis E, Cammarota G. Monitoring the patient-ventilator asynchrony during non-invasive ventilation. Front Med (Lausanne) 2023; 9:1119924. [PMID: 36743668 PMCID: PMC9893016 DOI: 10.3389/fmed.2022.1119924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Patient-ventilator asynchrony is a major issue during non-invasive ventilation and may lead to discomfort and treatment failure. Therefore, the identification and prompt management of asynchronies are of paramount importance during non-invasive ventilation (NIV), in both pediatric and adult populations. In this review, we first define the different forms of asynchronies, their classification, and the method of quantification. We, therefore, describe the technique to properly detect patient-ventilator asynchronies during NIV in pediatric and adult patients with acute respiratory failure, separately. Then, we describe the actions that can be implemented in an attempt to reduce the occurrence of asynchronies, including the use of non-conventional modes of ventilation. In the end, we analyzed what the literature reports on the impact of asynchronies on the clinical outcomes of infants, children, and adults.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy,*Correspondence: Federico Longhini,
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Simona Tutino
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care Unit, SS Annunziata Hospital, Chieti, Italy,Department of Medical, Oral and Biotechnological Sciences, “Gabriele D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Anaesthesia and Intensive Care, Padua Hospital, Department of Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
6
|
Kahan AC. [59/m-Community-acquired pneumonia, hypoxemic respiratory insufficiency : Preparation course anesthesiological intensive care medicine: case 13]. DIE ANAESTHESIOLOGIE 2022; 71:74-77. [PMID: 35925162 DOI: 10.1007/s00101-022-01136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- A-C Kahan
- Universitätsklinikum Augsburg, Augsburg, Deutschland.
| |
Collapse
|
7
|
SCARAMUZZO G, OTTAVIANI I, VOLTA CA, SPADARO S. Mechanical ventilation and COPD: from pathophysiology to ventilatory management. Minerva Med 2022; 113:460-470. [DOI: 10.23736/s0026-4806.22.07974-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Wu M, Yuan X, Liu L, Yang Y. Neurally Adjusted Ventilatory Assist vs. Conventional Mechanical Ventilation in Adults and Children With Acute Respiratory Failure: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:814245. [PMID: 35273975 PMCID: PMC8901502 DOI: 10.3389/fmed.2022.814245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patient-ventilator asynchrony is a common problem in mechanical ventilation (MV), resulting in increased complications of MV. Despite there being some pieces of evidence for the efficacy of improving the synchronization of neurally adjusted ventilatory assist (NAVA), controversy over its physiological and clinical outcomes remain. Herein, we conducted a systematic review and meta-analysis to determine the relative impact of NAVA or conventional mechanical ventilation (CMV) modes on the important outcomes of adults and children with acute respiratory failure (ARF). Methods Qualified studies were searched in PubMed, EMBASE, Medline, Web of Science, Cochrane Library, and additional quality evaluations up to October 5, 2021. The primary outcome was asynchrony index (AI); secondary outcomes contained the duration of MV, intensive care unit (ICU) mortality, the incidence rate of ventilator-associated pneumonia, pH, and Partial Pressure of Carbon Dioxide in Arterial Blood (PaCO2). A statistical heterogeneity for the outcomes was assessed using the I 2 test. A data analysis of outcomes using odds ratio (OR) for ICU mortality and ventilator-associated pneumonia incidence and mean difference (MD) for AI, duration of MV, pH, and PaCO2, with 95% confidence interval (CI), was expressed. Results Eighteen eligible studies (n = 926 patients) were eventually enrolled. For the primary outcome, NAVA may reduce the AI (MD = -18.31; 95% CI, -24.38 to -12.25; p < 0.001). For the secondary outcomes, the duration of MV in the NAVA mode was 2.64 days lower than other CMVs (MD = -2.64; 95% CI, -4.88 to -0.41; P = 0.02), and NAVA may decrease the ICU mortality (OR =0.60; 95% CI, 0.42 to 0.86; P = 0.006). There was no statistically significant difference in the incidence of ventilator-associated pneumonia, pH, and PaCO2 between NAVA and other MV modes. Conclusions Our study suggests that NAVA ameliorates the synchronization of patient-ventilator and improves the important clinical outcomes of patients with ARF compared with CMV modes.
Collapse
Affiliation(s)
- Mengfan Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xueyan Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Treussart C, Decobert F, Tauzin M, Bourgoin L, Danan C, Dassieu G, Carteaux G, Mekontso-Dessap A, Louis B, Durrmeyer X. Patient-Ventilator Synchrony in Extremely Premature Neonates during Non-Invasive Neurally Adjusted Ventilatory Assist or Synchronized Intermittent Positive Airway Pressure: A Randomized Crossover Pilot Trial. Neonatology 2022; 119:386-393. [PMID: 35504256 DOI: 10.1159/000524327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Synchronization of non-invasive ventilation is challenging in extremely premature infants. We compared patient-ventilator synchrony between non-invasive neurally adjusted ventilatory assist (NIV-NAVA) using transdiaphragmatic (Edi) catheter and synchronized intermittent positive airway pressure (SiPAP) using an abdominal trigger. METHODS This study was a monocentric, randomized, crossover trial in premature infants born before 28 weeks of gestation, aged 3 days or more, and below 32 weeks postmenstrual age. NIV-NAVA and SiPAP were applied in a random order for 2 h with analysis of data from the second hour. The primary outcome was the asynchrony index. RESULTS Fourteen patients were included (median [IQR] gestational age at birth 25.6 (25.3-26.4) weeks, median [IQR] birth weight 755 [680-824] g, median [IQR] postnatal age 26.5 [19.8-33.8] days). The median (IQR) asynchrony index was significantly lower in NIV-NAVA versus SiPAP (49.9% [44.1-52.6] vs. 85.8% [74.2-90.9], p < 0.001). Ineffective efforts and auto-triggering were significantly less frequent in NIV-NAVA versus SiPAP (3.0% vs. 32.0% p < 0.001 and 10.0% vs. 26.6%, p = 0.004, respectively). Double triggering was significantly less frequent in SiPAP versus NIV-NAVA (0.0% vs. 9.0%, p < 0.001). No significant difference was observed for premature cycling and late cycling. Peak Edi and swing Edi were significantly lower in NIV-NAVA as compared to SiPAP (7.7 [6.1-9.9] vs. 11.0 [6.7-14.5] μV, p = 0.006; 5.4 [4.2-7.6] vs. 7.6 [4.3-10.8] μV, p = 0.007, respectively). No significant difference was observed between NIV-NAVA and SiPAP for heart rate, respiratory rate, COMFORTneo scores, apnoea, desaturations, or bradycardias. DISCUSSION/CONCLUSION NIV-NAVA markedly improves patient-ventilator synchrony as compared to SiPAP in extremely premature infants.
Collapse
Affiliation(s)
| | - Fabrice Decobert
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Manon Tauzin
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France
| | - Laura Bourgoin
- Neonatal Intensive Care Unit, Assistance Publique, Hôpitaux de Marseille, Hôpital de La Conception, Marseille, France
| | - Claude Danan
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Gilles Dassieu
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Guillaume Carteaux
- INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France.,Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Henri Mondor, Créteil, France.,GRC CARMAS, IMRB, Université Paris Est Créteil, Faculté de Santé de Créteil, Créteil, France
| | - Armand Mekontso-Dessap
- Medical Intensive Care Unit, Assistance Publique-Hôpitaux de Paris, Centre Hospitalier Universitaire Henri Mondor, Créteil, France.,GRC CARMAS, IMRB, Université Paris Est Créteil, Faculté de Santé de Créteil, Créteil, France
| | - Bruno Louis
- INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France
| | - Xavier Durrmeyer
- Neonatal Intensive Care Unit, CHI Créteil, Créteil, France.,INSERM, CNRS ERL 7000, IMRB, Université Paris Est Creteil, Créteil, France.,GRC CARMAS, IMRB, Université Paris Est Créteil, Faculté de Santé de Créteil, Créteil, France
| |
Collapse
|
10
|
Ghorbi M, Rashidi M, Olapour A, Javaherforooshzadeh F, Akhondzadeh R. Effect of N-Acetylcysteine on the treatment of acute respiratory distress syndrome in mechanically ventilated patients admitted to the intensive care unit. Med J Islam Repub Iran 2021; 35:87. [PMID: 34291011 PMCID: PMC8285549 DOI: 10.47176/mjiri.35.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/03/2023] Open
Abstract
Background: N-acetylcysteine (NAC) is an antioxidant derived from the amino acid cysteine and is one of the drugs used in the treatment of respiratory diseases. The aim of this study was to investigate the effect of NAC on the treatment of acute respiratory distress syndrome in mechanically ventilated patients admitted to the intensive care unit. Methods: This study was a randomized clinical trial. Patients under mechanical ventilation admitted to the intensive care unit were examined. Patients in the intervention group received daily 150 mg/kg of NAC on the first day of admission and then 50 mg/kg up to the fourth day of admission. Patients in the control group received routine care. The vital signs, level of consciousness, and other important variables were recorded. Data were analyzed using statistical tests and SPSS software version 24. Results: There was no significant difference between MAP, heart rate, respiratory rate, O2Sat, APACHE II score, and pulmonary capacity of the patients in the two groups on the first, second, third and fourth days after the intervention (p>0.05 ). There was no significant difference between the level of consciousness (according to GCS criteria), respiratory index (PAO2/FIO2) and PEEP of patients in the two study groups within 1 to 2 days after the intervention (p>0.05). There was a significant difference between the level of consciousness (based on GCS criteria), respiratory index (PAO2/FIO2) and PEEP of patients in the two study groups within 3 to 4 days after the intervention (p<0.05). There was no significant difference between the duration of hospitalization in the ICU, the time required for mechanical ventilation and the mortality rate of the patients in the two groups (p>0.05). Conclusion: It seems that N-acetylcysteine has a positive effect on the treatment of acute respiratory distress syndrome in mechanically ventilated patients admitted to the intensive care unit.
Collapse
Affiliation(s)
- Mojtaba Ghorbi
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahbobe Rashidi
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Olapour
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Javaherforooshzadeh
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Akhondzadeh
- Department of Anesthesia, Ahvaz Anesthesiology and Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
11
|
Noninvasive Neurally Adjusted Ventilator Assist Ventilation in the Postoperative Period Produces Better Patient-Ventilator Synchrony but Not Comfort. Pulm Med 2020; 2020:4705042. [PMID: 32655950 PMCID: PMC7327603 DOI: 10.1155/2020/4705042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/26/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Background Noninvasive neurally adjusted ventilatory assist (NAVA) has been shown to improve patient-ventilator interaction in many settings. There is still scarce data with regard to postoperative patients indicated for noninvasive ventilation (NIV) which this study elates. The purpose of this trial was to evaluate postoperative patients for synchrony and comfort in noninvasive pressure support ventilation (NIV-PSV) vs. NIV-NAVA. Methods Twenty-two subjects received either NIV-NAVA or NIV-PSV in an object-blind, prospective, randomized, crossover fashion (observational trial). We evaluated blood gases and ventilator tracings throughout as well as comfort of ventilation at the end of each ventilation phase. Results There was an effective reduction in ventilator delays (p < 0.001) and negative pressure duration in NIV-NAVA as compared to NIV-PSV (p < 0.001). Although we used optimized settings in NIV-PSV, explaining the overall low incidence of asynchrony, NIV-NAVA led to reductions in the NeuroSync-index (p < 0.001) and all types of asynchrony except for double triggering that was significantly more frequent in NIV-NAVA vs. NIV-PSV (p = 0.02); ineffective efforts were reduced to zero by use of NIV-NAVA. In our population of previously lung-healthy subjects, we did not find differences in blood gases and patient comfort between the two modes. Conclusion In the postoperative setting, NIV-NAVA is well suitable for use and effective in reducing asynchronies as well as a surrogate for work of breathing. Although increased synchrony was not transferred into an increased comfort, there was an advantage with regard to patient-ventilator interaction. The trial was registered at the German clinical Trials Register (DRKS no.: DRKS00005408).
Collapse
|
12
|
Hansen KK, Jensen HI, Andersen TS, Christiansen CF. Intubation rate, duration of noninvasive ventilation and mortality after noninvasive neurally adjusted ventilatory assist (NIV-NAVA). Acta Anaesthesiol Scand 2020; 64:309-318. [PMID: 31651041 DOI: 10.1111/aas.13499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/20/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Asynchrony is a common problem in patients treated with noninvasive ventilation (NIV). Neurally adjusted ventilatory assist (NAVA) has shown to improve patient-ventilator interaction. However, it is unknown whether NIV-NAVA improves outcomes compared to noninvasive pressure support (NIV-PS). METHODS This observational cohort study included patients 18 years or older receiving noninvasive ventilation using an oro-nasal face mask for more than 2 hours in a Danish ICU. The study included a NIV-NAVA cohort (year 2013-2015) and two comparison cohorts: (a) a historical NIV-PS cohort (year 2011-2012) before the implementation of NIV-NAVA at the ICU in 2013, and (b) a concurrent NIV-PS cohort (year 2013-2015). Outcomes of NIV-NAVA (intubation rate, duration of NIV and 90-day mortality) were assessed and compared using multivariable linear and logistic regression adjusted for relevant confounders. RESULTS The study included 427 patients (91 in the NIV-NAVA, 134 in the historic NIV-PS and 202 in the concurrent NIV-PS cohort). Patients treated with NIV-NAVA did not have improved outcome after adjustment for measured confounders. Actually, there were statistically imprecise higher odds for intubation in NIV-NAVA patients compared with both the historical [OR 1.48, CI (0.74-2.97)] and the concurrent NIV-PS cohort [OR 1.67, CI (0.87-3.19)]. NIV-NAVA might also have a longer length of NIV [63%, CI (19%-125%)] and [139%, CI (80%-213%)], and might have a higher 90-day mortality [OR 1.24, CI (0.69-2.25)] and [OR 1.39, CI (0.81-2.39)]. Residual confounding cannot be excluded. CONCLUSION This present study found no improved clinical outcomes in patients treated with NIV-NAVA compared to NIV-PS.
Collapse
Affiliation(s)
- Kristina K. Hansen
- Department of Anaesthesiology and Intensive Care Vejle Hospital Vejle Denmark
| | - Hanne I. Jensen
- Department of Anaesthesiology and Intensive Care Vejle Hospital Vejle Denmark
- Institute of Regional Health Research University of Southern Odense Denmark
| | - Torben S. Andersen
- Department of Anaesthesiology and Intensive Care Vejle Hospital Vejle Denmark
| | | |
Collapse
|
13
|
Piquilloud L, Beloncle F, Richard JCM, Mancebo J, Mercat A, Brochard L. Information conveyed by electrical diaphragmatic activity during unstressed, stressed and assisted spontaneous breathing: a physiological study. Ann Intensive Care 2019; 9:89. [PMID: 31414251 PMCID: PMC6692797 DOI: 10.1186/s13613-019-0564-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Background The electrical activity of the crural diaphragm (Eadi), a surrogate of respiratory drive, can now be measured at the bedside in mechanically ventilated patients with a specific catheter. The expected range of Eadi values under stressed or assisted spontaneous breathing is unknown. This study explored Eadi values in healthy subjects during unstressed (baseline), stressed (with a resistance) and assisted spontaneous breathing. The relation between Eadi and inspiratory effort was analyzed. Methods Thirteen healthy male volunteers were included in this randomized crossover study. Eadi and esophageal pressure (Peso) were recorded during unstressed and stressed spontaneous breathing and under assisted ventilation delivered in pressure support (PS) at low and high assist levels and in neurally adjusted ventilatory assist (NAVA). Overall eight different situations were assessed in each participant (randomized order). Peak, mean and integral of Eadi, breathing pattern, esophageal pressure–time product (PTPeso) and work of breathing (WOB) were calculated offline. Results Median [interquartile range] peak Eadi at baseline was 17 [13–22] μV and was above 10 μV in 92% of the cases. Eadimax defined as Eadi measured at maximal inspiratory capacity reached 90 [63 to 99] μV. Median peak Eadi/Eadimax ratio was 16.8 [15.6–27.9]%. Compared to baseline, respiratory rate and minute ventilation were decreased during stressed non-assisted breathing, whereas peak Eadi and PTPeso were increased. During unstressed assisted breathing, peak Eadi decreased during high-level PS compared to unstressed non-assisted breathing and to NAVA (p = 0.047). During stressed breathing, peak Eadi was lower during all assisted ventilation modalities compared to stressed non-assisted breathing. During assisted ventilation, across the different conditions, peak Eadi changed significantly, whereas PTPeso and WOB/min were not significantly modified. Finally, Eadi signal was still present even when Peso signal was suppressed due to high assist levels. Conclusion Eadi analysis provides complementary information compared to respiratory pattern and to Peso monitoring, particularly in the presence of high assist levels. Trial registration The study was registered as NCT01818219 in clinicaltrial.gov. Registered 28 February 2013 Electronic supplementary material The online version of this article (10.1186/s13613-019-0564-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lise Piquilloud
- Medical Intensive Care Department, University Hospital of Angers, University of Angers, 4, Rue Larrey, 49100, Angers, France. .,Adult Intensive Care and Burn Unit, University Hospital and University of Lausanne, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| | - François Beloncle
- Medical Intensive Care Department, University Hospital of Angers, University of Angers, 4, Rue Larrey, 49100, Angers, France
| | - Jean-Christophe M Richard
- SAMU74, Emergency Department, General Hospital of Annecy, 1, Av de l'hôpital, 74370, Epagny Metz-Tessy, France.,INSERM, UMR 955, Créteil, France
| | - Jordi Mancebo
- Intensive Care Department, Sant Pau Hospital, Carrer de Sant Quinti 89, 08041, Barcelona, Spain
| | - Alain Mercat
- Medical Intensive Care Department, University Hospital of Angers, University of Angers, 4, Rue Larrey, 49100, Angers, France
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 209 Victoria Street, Toronto, ON, M5B 1T8, Canada
| |
Collapse
|
14
|
Chen C, Wen T, Liao W. Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:382. [PMID: 31555696 DOI: 10.21037/atm.2019.07.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The objective of this study was to conduct a meta-analysis comparing neurally adjusted ventilatory assist (NAVA) with pressure support ventilation (PSV) in adult ventilated patients with patient-ventilator interaction and clinical outcomes. Methods The PubMed, the Web of Science, Scopus, and Medline were searched for appropriate clinical trials (CTs) comparing NAVA with PSV for the adult ventilated patients. RevMan 5.3 was performed for comparing NAVA with PSV in asynchrony index (AI), ineffective efforts, auto-triggering, double asynchrony, premature asynchrony, breathing pattern (Peak airway pressure (Pawpeek), mean airway pressure (Pawmean), tidal volume (VT, mL/kg), minute volume (MV), respiratory muscle unloading (peak electricity of diaphragm (EAdipeak), P 0.1, VT/EAdi), clinical outcomes (ICU mortality, duration of ventilation days, ICU stay time, hospital stay time). Results Our meta-analysis included 12 studies involving a total of 331 adult ventilated patients, AI was significantly lower in NAVA group [mean difference (MD) -12.82, 95% confidence interval (CI): -21.20 to -4.44, I2=88%], and using subgroup analysis, grouped by mechanical ventilation, the results showed that NAVA also had lower AI than PSV (Mechanical ventilation, MD -9.52, 95% CI: -17.85 to -1.20, I2=87%), (Non-invasive ventilation (NIV), MD -24.55, 95% CI: -35.40 to -13.70, I2=0%). NAVA was significantly lower than the PSV in auto-triggering (MD -0.28, 95% CI: -0.51 to -0.05, I2=10%), and premature triggering (MD -2.49, 95% CI: -3.77 to -1.21, I2=29%). There were no significant differences in double triggering, ineffective efforts, breathing pattern (Pawmean, Pawpeak, VT, MV), and respiratory muscle unloading (EAdipeak, P 0.1, VT/EAdi). For clinical outcomes, NAVA was significantly lower than the PSV (MD -2.82, 95% CI: -5.55 to -0.08, I2=0%) in the duration of ventilation, but two groups did not show significant differences in ICU mortality, ICU stay time, and hospital stay time. Conclusions NAVA is more beneficial in patient-ventilator interaction than PSV, and could decrease the duration of ventilation.
Collapse
Affiliation(s)
- Chongxiang Chen
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Tianmeng Wen
- School of Public Health, Sun Yat-sen University, Guangzhou 510000, China
| | - Wei Liao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
15
|
Karagiannidis C, Strassmann S, Schwarz S, Merten M, Fan E, Beck J, Sinderby C, Windisch W. Control of respiratory drive by extracorporeal CO 2 removal in acute exacerbation of COPD breathing on non-invasive NAVA. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:135. [PMID: 31014366 PMCID: PMC6480839 DOI: 10.1186/s13054-019-2404-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/21/2019] [Indexed: 01/19/2023]
Abstract
Background Veno-venous extracorporeal CO2 removal (vv-ECCO2R) and non-invasive neurally adjusted ventilator assist (NIV-NAVA) are two promising techniques which may prevent complications related to prolonged invasive mechanical ventilation in patients with acute exacerbation of COPD. Methods A physiological study of the electrical activity of the diaphragm (Edi) response was conducted with varying degrees of extracorporeal CO2 removal to control the respiratory drive in patients with severe acute exacerbation of COPD breathing on NIV-NAVA. Results Twenty COPD patients (SAPS II 37 ± 5.6, age 57 ± 9 years) treated with vv-ECCO2R and supported by NIV-NAVA were studied during stepwise weaning of vv-ECCO2R. Based on dyspnea, tolerance, and blood gases, weaning from vv-ECCO2R was successful in 12 and failed in eight patients. Respiratory drive (measured via the Edi) increased to 19 ± 10 μV vs. 56 ± 20 μV in the successful and unsuccessful weaning groups, respectively, resulting in all patients keeping their CO2 and pH values stable. Edi was the best predictor for vv-ECCO2R weaning failure (ROC analysis AUC 0.95), whereas respiratory rate, rapid shallow breathing index, and tidal volume had lower predictive values. Eventually, 19 patients were discharged home, while one patient died. Mortality at 90 days and 180 days was 15 and 25%, respectively. Conclusions This study demonstrates for the first time the usefulness of the Edi signal to monitor and guide patients with severe acute exacerbation of COPD on vv-ECCO2R and NIV-NAVA. The Edi during vv-ECCO2R weaning was found to be the best predictor of tolerance to removing vv-ECCO2R. Electronic supplementary material The online version of this article (10.1186/s13054-019-2404-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christian Karagiannidis
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany.
| | - Stephan Strassmann
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Sarah Schwarz
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Michaela Merten
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Extracorporeal Life Support Program, Toronto General Hospital, Toronto, Canada
| | - Jennifer Beck
- Keenan Research Centre for Biomedical Science and Department of Critical Care Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science and Department of Critical Care Medicine, St. Michael's Hospital, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, Canada
| | - Wolfram Windisch
- Department of Pneumology and Critical Care Medicine, Cologne-Merheim Hospital, ARDS and ECMO Centre, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University Hospital, Ostmerheimer Strasse 200, D-51109, Cologne, Germany
| |
Collapse
|
16
|
Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P, Corrado S, Vetrugno L, Longhini F, Navalesi P. Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol 2019; 85:676-688. [PMID: 30762325 DOI: 10.23736/s0375-9393.19.13436-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Patient-ventilator asynchrony is considered a major clinical problem for mechanically ventilated patients. It occurs during partial ventilatory support, when the respiratory muscles and the ventilator interact to contribute generating the volume output. In this review article, we consider all studies published on patient-ventilator asynchrony in the last 25 years. EVIDENCE ACQUISITION We selected 62 studies. The different forms of asynchrony are first defined and classified. We also describe the methods used for detecting and quantifying asynchronies. We then outline the outcome variables considered for evaluating the clinical consequences of asynchronies. The methodology for detection and quantification of patient-ventilator asynchrony are quite heterogeneous. In particular, the Asynchrony Index is calculated differently among studies. EVIDENCE SYNTHESIS Sixteen studies established some relationship between asynchronies and one or more clinical outcomes, such as duration of mechanical ventilation (seven studies), mortality (five studies), length of intensive care and hospital stay (four studies), patient comfort (four studies), quality of sleep (three studies), and rate of tracheotomy (three studies). In patients with severe patient-ventilator asynchrony, four of seven studies (57%) report prolonged duration of mechanical ventilation, one of five (20%) increased mortality, one of four (25%) longer intensive care and hospital lengths of stay, four of four (100%) worsened comfort, three of four (75%) deteriorated quality of sleep, and one of three (33%) increased rate of tracheotomy. CONCLUSIONS Given the varying outcomes considered and the erratic results, it remains unclear whether asynchronies really affects patient outcome, and the relationship between asynchronies and outcome is causative or associative.
Collapse
Affiliation(s)
- Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Gianmaria Cammarota
- Unit of Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Paolo Murabito
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", "G. Rodolico" University Policlinic, University of Catania, Catania, Italy
| | - Silvia Corrado
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care, University of Udine, Udine, Italy
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy -
| | - Paolo Navalesi
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
17
|
Lamouret O, Crognier L, Vardon Bounes F, Conil JM, Dilasser C, Raimondi T, Ruiz S, Rouget A, Delmas C, Seguin T, Minville V, Georges B. Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation: patient-ventilator interaction during invasive ventilation delivered by tracheostomy. Crit Care 2019; 23:2. [PMID: 30616669 PMCID: PMC6323755 DOI: 10.1186/s13054-018-2288-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolonged weaning is a major issue in intensive care patients and tracheostomy is one of the last resort options. Optimized patient-ventilator interaction is essential to weaning. The purpose of this study was to compare patient-ventilator synchrony between pressure support ventilation (PSV) and neurally adjusted ventilatory assist (NAVA) in a selected population of tracheostomised patients. METHODS We performed a prospective, sequential, non-randomized and single-centre study. Two recording periods of 60 min of airway pressure, flow, and electrical activity of the diaphragm during PSV and NAVA were recorded in a random assignment and eight periods of 1 min were analysed for each mode. We searched for macro-asynchronies (ineffective, double, and auto-triggering) and micro-asynchronies (inspiratory trigger delay, premature, and late cycling). The number and type of asynchrony events per minute and asynchrony index (AI) were determined. The two respiratory phases were compared using the non-parametric Wilcoxon test after testing the equality of the two variances (F-Test). RESULTS Among the 61 patients analysed, the total AI was lower in NAVA than in PSV mode: 2.1% vs 14% (p < 0.0001). This was mainly due to a decrease in the micro-asynchronies index: 0.35% vs 9.8% (p < 0.0001). The occurrence of macro-asynchronies was similar in both ventilator modes except for double triggering, which increased in NAVA. The tidal volume (ml/kg) was lower in NAVA than in PSV (5.8 vs 6.2, p < 0.001), and the respiratory rate was higher in NAVA than in PSV (28 vs 26, p < 0.05). CONCLUSION NAVA appears to be a promising ventilator mode in tracheotomised patients, especially for those requiring prolonged weaning due to the decrease in asynchronies.
Collapse
Affiliation(s)
- Olivier Lamouret
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France. .,Department of Anaesthesiology and Critical Care Unit, University Hospital of Toulouse, 31059, Toulouse Cedex 9, France.
| | - Laure Crognier
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Fanny Vardon Bounes
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Jean-Marie Conil
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Caroline Dilasser
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Thibaut Raimondi
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Stephanie Ruiz
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Antoine Rouget
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Clément Delmas
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Thierry Seguin
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Vincent Minville
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Bernard Georges
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| |
Collapse
|
18
|
Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F, Navalesi P. Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018; 12:557-567. [DOI: 10.1080/17476348.2018.1480941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luisa Liparota
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicola Lombardo
- Otolaryngology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant’Andrea Hospital, Vercelli, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW This article describes and discusses the importance of monitoring patient-ventilator asynchrony, and the advantages and limitations of the specific techniques available at the bedside to evaluate it. RECENT FINDINGS Signals provided by esophageal catheters (pressure or electromyogram) are the most reliable and accurate instruments to detect asynchronies. Esophageal signals (providing electrical activity of the diaphragm or/and esophageal pressure) have allowed the recent description of reverse triggering, a new kind of asynchrony, in which mechanical insufflation repeatedly triggers diaphragmatic contractions. However, the use of esophageal catheters is not widespread, and data on the prevalence and consequences of asynchronies are still scarce. The development of software solutions that continuously and automatically record breathing waveforms from the ventilator recording is emerging. Using this technology, recent data support the fact that asynchronies are frequent and may be negatively associated with outcome. SUMMARY The prevalence and consequences of asynchronies may be largely underestimated because of a frequent lack of monitoring. Dedicated software solutions that continuously and automatically detect asynchronies may allow both clinical research and clinical applications aimed at determining the effects of asynchronies and minimizing their incidence among critically ill patients.
Collapse
|
20
|
Masip J, Peacock WF, Price S, Cullen L, Martin-Sanchez FJ, Seferovic P, Maisel AS, Miro O, Filippatos G, Vrints C, Christ M, Cowie M, Platz E, McMurray J, DiSomma S, Zeymer U, Bueno H, Gale CP, Lettino M, Tavares M, Ruschitzka F, Mebazaa A, Harjola VP, Mueller C. Indications and practical approach to non-invasive ventilation in acute heart failure. Eur Heart J 2018; 39:17-25. [PMID: 29186485 PMCID: PMC6251669 DOI: 10.1093/eurheartj/ehx580] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/11/2017] [Accepted: 10/01/2017] [Indexed: 12/19/2022] Open
Abstract
In acute heart failure (AHF) syndromes significant respiratory failure (RF) is essentially seen in patients with acute cardiogenic pulmonary oedema (ACPE) or cardiogenic shock (CS). Non-invasive ventilation (NIV), the application of positive intrathoracic pressure through an interface, has shown to be useful in the treatment of moderate to severe RF in several scenarios. There are two main modalities of NIV: continuous positive airway pressure (CPAP) and pressure support ventilation (NIPSV) with positive end expiratory pressure. Appropriate equipment and experience is needed for NIPSV, whereas CPAP may be administered without a ventilator, not requiring special training. Both modalities have shown to be effective in ACPE, by a reduction of respiratory distress and the endotracheal intubation rate compared to conventional oxygen therapy, but the impact on mortality is less conclusive. Non-invasive ventilation is also indicated in patients with AHF associated to pulmonary disease and may be considered, after haemodynamic stabilization, in some patients with CS. There are no differences in the outcomes in the studies comparing both techniques, but CPAP is a simpler technique that may be preferred in low-equipped areas like the pre-hospital setting, while NIPSV may be preferable in patients with significant hypercapnia. The new modality 'high-flow nasal cannula' seems promising in cases of AHF with less severe RF. The correct selection of patients and interfaces, early application of the technique, the achievement of a good synchrony between patients and the ventilator avoiding excessive leakage, close monitoring, proactive management, and in some cases mild sedation, may warrant the success of the technique.
Collapse
Affiliation(s)
- Josep Masip
- Department of Intensive Care, Consorci Sanitari Integral, University of Barcelona, Jacint Verdaguer 90, Sant Joan Despí, ES-08970 Barcelona, Spain
- Department of Cardiology, Hospital Sanitas CIMA, Barcelona, Manuel Girona 33, ES 08034 Barcelona, Spain
| | - W Frank Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Susanna Price
- Departments of Cardiology and Intensive Care, Royal Brompton & Harefield NHS Foundation Trust, London, UK
| | - Louise Cullen
- Department of Emergency Medicine, Royal Brisbane and Women’s Hospital. Faculty of Health, Queensland University of Technology and University of Queensland, Brisbane, Australia
| | - F Javier Martin-Sanchez
- Department of Emergency, Hospital Clínico San Carlos. Instituto de Investigacıón Sanitaria (IdISSC), Madrid, Spain
| | - Petar Seferovic
- Department of Internal Medicine, Belgrade University School of Medicine and Heart Failure Centre, Belgrade University Medical Centre, Belgrade, Serbia
| | - Alan S Maisel
- Coronary Care Unit and Heart Failure Program, Department of Cardiology, VA San Diego, USA
| | - Oscar Miro
- Department of Emergency, Hospital Clínic, “Processes and Pathologies, Emergencies Research Group” IDIBAPS, University of Barcelona, Catalonia, Spain
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Christiaan Vrints
- Faculty of Medicine and Health Sciences at University of Antwerp, Antwerp, Belgium
| | - Michael Christ
- Department of Emergency Medicine, Luzerner Katonsspital, Lucerne, Switzerland
| | - Martin Cowie
- Department of Cardiology, Imperial College London (Royal Brompton Hospital & Harefield Foundation Trust), London, UK
| | - Elke Platz
- Department of Emergency Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - John McMurray
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Salvatore DiSomma
- Department of Emergency, Sant’Andrea Hospital. II Faculty of Medicine and Psychology, “LaSapienza”, Rome University, Rome, Italy
| | - Uwe Zeymer
- Institut für Herzinfarktforschung Ludwigshafen, Klinikum Ludwigshafen, Germany
| | - Hector Bueno
- Centro Nacional de Investigaciones Cardiovasculares, Department of Cardiology, Hospital 12 de Octubre, Madrid, Universidad Complutense de Madrid, Madrid, Spain
| | - Chris P Gale
- Department of Cardiology, York Teaching Hospital, Medical Research Council Bioinformatics Centre, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, York, UK
| | | | - Mucio Tavares
- Department of Emergency, Heart Institute (InCor), University of São Paulo Medical School, Brazil
| | - Frank Ruschitzka
- Department of Cardiology, Heart Failure Clinic and Transplantation, University Heart Centre Zurich, Zurich, Switzerland
| | - Alexandre Mebazaa
- Department of Anesthesiology and Critical Care, U942 Inserm, APHP Hôpitaux Universitaires Saint Louis Lariboisiére, Université Paris Diderot and Hospital Lariboisiére, Paris, France
| | - Veli-Pekka Harjola
- Department of Emergency Medicine and Services, Helsinki University, Helsinki University Hospital, Helsinki, Finland
| | - Christian Mueller
- Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
21
|
Hadda V, Shah TH, Madan K, Mohan A, Khilnani GC, Guleria R. Noninvasive ventilation-neurally adjusted ventilator assist for management of acute exacerbation of chronic obstructive pulmonary disease. Lung India 2018; 35:62-65. [PMID: 29319038 PMCID: PMC5760872 DOI: 10.4103/lungindia.lungindia_97_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Patient-ventilator asynchrony is common with noninvasive ventilation (NIV) used for management of acute exacerbation of chronic obstructive pulmonary disease (COPD). Neurally adjusted ventilator assist (NAVA) is a mode of ventilatory support which can minimize the patient-ventilator asynchrony. Delivering NIV with NAVA (NIV-NAVA) during acute exacerbation of COPD seems a logical approach and may be useful in reducing patient-ventilator asynchrony. However, there are no published reports which describe the use of NIV-NAVA for management of acute exacerbation of COPD. We describe the successful management of a 56-year-old gentleman presenting to the emergency department of our hospital with acute exacerbation of COPD with hypercapnic respiratory failure with NIV-NAVA.
Collapse
Affiliation(s)
- Vijay Hadda
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Tajamul Hussain Shah
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Karan Madan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Anant Mohan
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Gopi C Khilnani
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
22
|
Longhini F, Colombo D, Pisani L, Idone F, Chun P, Doorduin J, Ling L, Alemani M, Bruni A, Zhaochen J, Tao Y, Lu W, Garofalo E, Carenzo L, Maggiore SM, Qiu H, Heunks L, Antonelli M, Nava S, Navalesi P. Efficacy of ventilator waveform observation for detection of patient-ventilator asynchrony during NIV: a multicentre study. ERJ Open Res 2017; 3:00075-2017. [PMID: 29204431 PMCID: PMC5703352 DOI: 10.1183/23120541.00075-2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to assess ability to identify asynchronies during noninvasive ventilation (NIV) through ventilator waveforms according to experience and interface, and to ascertain the influence of breathing pattern and respiratory drive on sensitivity and prevalence of asynchronies. 35 expert and 35 nonexpert physicians evaluated 40 5-min NIV reports displaying flow–time and airway pressure–time tracings; identified asynchronies were compared with those ascertained by three examiners who evaluated the same reports displaying, additionally, tracings of diaphragm electrical activity. We determined: 1) sensitivity, specificity, and positive and negative predictive values; 2) the correlation between the double true index (DTI) of each report (i.e., the ratio between the sum of true positives and true negatives, and the overall breath count) and the corresponding asynchrony index (AI); and 3) the influence of breathing pattern and respiratory drive on both AI and sensitivity. Sensitivities to detect asynchronies were low either according to experience (0.20 (95% CI 0.14–0.29) for expert versus 0.21 (95% CI 0.12–0.30) for nonexpert, p=0.837) or interface (0.28 (95% CI 0.17–0.37) for mask versus 0.10 (95% CI 0.05–0.16) for helmet, p<0.0001). DTI inversely correlated with the AI (r2=0.67, p<0.0001). Breathing pattern and respiratory drive did not affect prevalence of asynchronies and sensitivity. Patient–ventilator asynchrony during NIV is difficult to recognise solely by visual inspection of ventilator waveforms. Detection of patient–ventilator asynchrony during NIV by visual inspection of ventilator waveforms is difficulthttp://ow.ly/3ce930eGdn6
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Davide Colombo
- Anesthesia and Intensive Care, "Maggiore Della Carità" Hospital, Novara, Italy
| | - Lara Pisani
- Alma Mater University, Dept of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesco Idone
- Dept of Anesthesiology and Intensive Care, Agostino Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pan Chun
- Dept of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, Nanjing, China
| | - Jonne Doorduin
- Dept of Intensive Care Medicine and Neurology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Liu Ling
- Dept of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, Nanjing, China
| | - Moreno Alemani
- Dept of Anesthesiology and Intensive Care, Ospedale Civile "G. Fornaroli", Magenta, Italy
| | - Andrea Bruni
- Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Jin Zhaochen
- Dept of Critical Care Medicine, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Yu Tao
- Dept of Critical Care Medicine, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Weihua Lu
- Dept of Critical Care Medicine, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Eugenio Garofalo
- Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luca Carenzo
- Anesthesia and Intensive Care, "Maggiore Della Carità" Hospital, Novara, Italy
| | - Salvatore Maurizio Maggiore
- Dept of Anesthesiology, Perioperative Care and Intensive Care, "S.S. Annunziata" Hospital, "Gabriele d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Haibo Qiu
- Dept of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, Nanjing, China
| | - Leo Heunks
- Dept of Intensive Care Medicine, VU University Medical Centre, Amsterdam, the Netherlands
| | - Massimo Antonelli
- Dept of Anesthesiology and Intensive Care, Agostino Gemelli Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Nava
- Alma Mater University, Dept of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, S. Orsola-Malpighi Hospital, Bologna, Italy
| | - Paolo Navalesi
- Dept of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
23
|
Zhang Y, Ding S, Li C, Wang Y, Chen Z, Wang Z. Effects of N-acetylcysteine treatment in acute respiratory distress syndrome: A meta-analysis. Exp Ther Med 2017; 14:2863-2868. [PMID: 28928799 PMCID: PMC5590037 DOI: 10.3892/etm.2017.4891] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/28/2017] [Indexed: 01/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of acute lung injury. Severe systemic inflammation is the main cause of multiple organ dysfunction and high mortality. Removal of reactive oxygen species by anti-oxidants has been applied in clinical practice. N-acetylcysteine (NAC) is the most commonly used anti-oxidant. However, the benefit of anti-oxidant therapy was not consistently demonstrated by previous studies. In the present study, a meta-analysis was performed to evaluate the effects of NAC for adult patients with ARDS. The PubMed, Cochrane and EMBASE databases were searched to retrieve all of the available randomized controlled trials (RCTs) published until October 2015. Quality evaluation of included studies was performed according to the modified Jadad scale score. The Cochrane Collaboration Review Manager 5.3 software was used to perform the meta-analysis. Five RCTs comprising 183 patients were found to be eligible for inclusion in the meta-analysis. Pooled analysis showed that NAC did not contribute to reduce short-term mortality [risk ratio (RR)=0.73; 95% confidence interval (CI): 0.50–1.07; P=0.10] or 30-day mortality (RR=0.72; 95% CI: 0.44–1.19; P=0.20) when compared with those in the control group. However, duration of intensive care unit (ICU) stay in the NAC group was shortened [weighted mean difference (WMD), −4.56; 95% CI: (−7.32 to −1.80); P=0.001]. There was no significant difference in the ratio of partial arterial oxygen pressure to the fraction of inspired oxygen between the two groups [WMD, 54.34; 95% CI: (−30.50 to 139.17); P=0.21]. No severe adverse reactions were observed in the patients included. Although the duration of ICU stay was shortened, the clinical benefits of NAC were limited for ARDS based on the present meta-analysis. As the number of included trials and patients was small, additional trials are required to provide sufficient evidence for the efficacy of NAC in ARDS.
Collapse
Affiliation(s)
- Ying Zhang
- Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Caifeng Li
- Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yifeng Wang
- Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhe Chen
- Department of Cadre Health, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhiqiang Wang
- Intensive Care Unit, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
24
|
Longhini F, Pan C, Xie J, Cammarota G, Bruni A, Garofalo E, Yang Y, Navalesi P, Qiu H. New setting of neurally adjusted ventilatory assist for noninvasive ventilation by facial mask: a physiologic study. Crit Care 2017; 21:170. [PMID: 28683763 PMCID: PMC5501553 DOI: 10.1186/s13054-017-1761-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Noninvasive ventilation (NIV) is generally delivered using pneumatically-triggered and cycled-off pressure support (PSP) through a mask. Neurally adjusted ventilatory assist (NAVA) is the only ventilatory mode that uses a non-pneumatic signal, i.e., diaphragm electrical activity (EAdi), to trigger and drive ventilator assistance. A specific setting to generate neurally controlled pressure support (PSN) was recently proposed for delivering NIV by helmet. We compared PSN with PSP and NAVA during NIV using a facial mask, with respect to patient comfort, gas exchange, and patient-ventilator interaction and synchrony. Methods Three 30-minute trials of NIV were randomly delivered to 14 patients immediately after extubation to prevent post-extubation respiratory failure: (1) PSP, with an inspiratory support ≥8 cmH2O; (2) NAVA, adjusting the NAVA level to achieve a comparable peak EAdi (EAdipeak) as during PSP; and (3) PSN, setting the NAVA level at 15 cmH2O/μV with an upper airway pressure (Paw) limit to obtain the same overall Paw applied during PSP. We assessed patient comfort, peak inspiratory flow (PIF), time to reach PIF (PIFtime), EAdipeak, arterial blood gases, pressure-time product of the first 300 ms (PTP300-index) and 500 ms (PTP500-index) after initiation of patient effort, inspiratory trigger delay (DelayTR-insp), and rate of asynchrony, determined as asynchrony index (AI%). The categorical variables were compared using the McNemar test, and continuous variables by the Friedman test followed by the Wilcoxon test with Bonferroni correction for multiple comparisons (p < 0.017). Results PSN significantly improved patient comfort, compared to both PSP (p = 0.001) and NAVA (p = 0.002), without differences between the two latter (p = 0.08). PIF (p = 0.109), EAdipeak (p = 0.931) and gas exchange were similar between modes. Compared to PSP and NAVA, PSN reduced PIFtime (p < 0.001), and increased PTP300-index (p = 0.004) and PTP500-index (p = 0.001). NAVA and PSN significantly reduced DelayTR-insp, as opposed to PSP (p < 0.001). During both NAVA and PSN, AI% was <10% in all patients, while AI% was ≥10% in 7 patients (50%) with PSP (p = 0.023 compared with both NAVA and PSN). Conclusions Compared to both PSP and NAVA, PSN improved comfort and patient-ventilator interaction during NIV by facial mask. PSN also improved synchrony, as opposed to PSP only. Trial registration ClinicalTrials.gov, NCT03041402. Registered (retrospectively) on 2 February 2017.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy
| | - Chun Pan
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Gianmaria Cammarota
- Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Andrea Bruni
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Paolo Navalesi
- Intensive Care Unit, University Hospital Mater Domini, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Haibo Qiu
- Department of Critical Care Medicine, Nanjing Zhong-Da Hospital, Southeast University School of Medicine, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
25
|
Costa R, Navalesi P, Cammarota G, Longhini F, Spinazzola G, Cipriani F, Ferrone G, Festa O, Antonelli M, Conti G. Remifentanil effects on respiratory drive and timing during pressure support ventilation and neurally adjusted ventilatory assist. Respir Physiol Neurobiol 2017; 244:10-16. [PMID: 28673877 DOI: 10.1016/j.resp.2017.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
We assessed the effects of varying doses of remifentanil on respiratory drive and timing in patients receiving Pressure Support Ventilation (PSV) and Neurally Adjusted Ventilatory Assist (NAVA). Four incrementing remifentanil doses were randomly administered to thirteen intubated patients (0.03, 0.05, 0.08, and 0.1μg·Kg-1·min-1) during both PSV and NAVA. We measured the patient's (Ti/Ttotneu) and ventilator (Ti/Ttotmec) duty cycle, the Electrical Activity of the Diaphragm (EAdi), the inspiratory (Delaytrinsp) and expiratory (Delaytrexp) trigger delays and the Asynchrony Index (AI). Increasing doses of remifentanil did not modify EAdi, regardless the ventilatory mode. In comparison to baseline, remifentanil infusion >0.05μg/Kg-1/min-1 produced a significant reduction of Ti/Ttotneu and Ti/Ttotmec, by prolonging the expiratory time. Delaytrinsp and Delaytrexp were significantly shorter in NAVA, respect to PSV. AI was not influenced by the different doses of remifentanil, but it was significantly lower during NAVA, compared to PSV. In conclusion remifentanil did not affect the respiratory drive, but only respiratory timing, without differences between modes.
Collapse
Affiliation(s)
- Roberta Costa
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Paolo Navalesi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Gianmaria Cammarota
- Anesthesia and Intensive Care, "Maggiore Della Carità" Hospital, Novara, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant'Andrea Hospital, ASL VC, Vercelli, Italy.
| | - Giorgia Spinazzola
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Flora Cipriani
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Giuliano Ferrone
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Olimpia Festa
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| | - Giorgio Conti
- Department of Anesthesia and Intensive Care, Catholic University of Rome, Largo Agostino Gemelli 1, 00135 Rome, Italy
| |
Collapse
|
26
|
New Setting of Neurally Adjusted Ventilatory Assist during Noninvasive Ventilation through a Helmet. Anesthesiology 2017; 125:1181-1189. [PMID: 27649505 DOI: 10.1097/aln.0000000000001354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Compared to pneumatically controlled pressure support (PSP), neurally adjusted ventilatory assist (NAVA) was proved to improve patient-ventilator interactions, while not affecting comfort, diaphragm electrical activity (EAdi), and arterial blood gases (ABGs). This study compares neurally controlled pressure support (PSN) with PSP and NAVA, delivered through two different helmets, in hypoxemic patients receiving noninvasive ventilation for prevention of extubation failure. METHODS Fifteen patients underwent three (PSP, NAVA, and PSN) 30-min trials in random order with both helmets. Positive end-expiratory pressure was always set at 10 cm H2O. In PSP, the inspiratory support was set at 10 cm H2O above positive end-expiratory pressure. NAVA was adjusted to match peak EAdi (EAdipeak) during PSP. In PSN, the NAVA level was set at maximum matching the pressure delivered during PSP by limiting the upper pressure. The authors assessed patient comfort, EAdipeak, rates of pressurization (i.e., airway pressure-time product [PTP] of the first 300 and 500 ms after the initiation of patient effort, indexed to the ideal pressure-time products), and measured ABGs. RESULTS PSN significantly increased comfort to (median [25 to 75% interquartile range]) 8 [7 to 8] and 9 [8 to 9] with standard and new helmets, respectively, as opposed to both PSP (5 [5 to 6] and 7 [6 to 7]) and NAVA (6 [5 to 7] and 7 [6 to 8]; P < 0.01 for all comparisons). Regardless of the interface, PSN also decreased EAdipeak (P < 0.01), while increasing PTP of the first 300 ms from the onset of patient effort, indexed to the ideal PTP (P < 0.01) and PTP of the first 500 ms from the onset of patient effort, indexed to the ideal PTP (P < 0.001). ABGs were not different among trials. CONCLUSIONS When delivering noninvasive ventilation by helmet, compared to PSP and NAVA, PSN improves comfort and patient-ventilator interactions, while not ABGs. (Anesthesiology 2016; 125:1181-9).
Collapse
|
27
|
Beloncle F, Piquilloud L, Rittayamai N, Sinderby C, Rozé H, Brochard L. A diaphragmatic electrical activity-based optimization strategy during pressure support ventilation improves synchronization but does not impact work of breathing. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:21. [PMID: 28137269 PMCID: PMC5282691 DOI: 10.1186/s13054-017-1599-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022]
Abstract
Background Poor patient-ventilator synchronization is often observed during pressure support ventilation (PSV) and has been associated with prolonged duration of mechanical ventilation and poor outcome. Diaphragmatic electrical activity (Eadi) recorded using specialized nasogastric tubes is a surrogate of respiratory brain stem output. This study aimed at testing whether adapting ventilator settings during PSV using a protocolized Eadi-based optimization strategy, or Eadi-triggered and -cycled assisted pressure ventilation (or PSVN) could (1) improve patient-ventilator interaction and (2) reduce or normalize patient respiratory effort as estimated by the work of breathing (WOB) and the pressure time product (PTP). Methods This was a prospective cross-over study. Patients with a known chronic pulmonary obstructive or restrictive disease, asynchronies or suspected intrinsic positive end-expiratory pressure (PEEP) who were ventilated using PSV were enrolled in the study. Four different ventilator settings were sequentially applied for 15 minutes (step 1: baseline PSV as set by the clinician, step 2: Eadi-optimized PSV to adjust PS level, inspiratory trigger, and cycling settings, step 3: step 2 + PEEP adjustment, step 4: PSVN). The same settings as step 3 were applied again after step 4 to rule out a potential effect of time. Breathing pattern, trigger delay (Td), inspiratory time in excess (Tiex), pressure-time product (PTP), and work of breathing (WOB) were measured at the end of each step. Results Eleven patients were enrolled in the study. Eadi-optimized PSV reduced Td without altering Tiex in comparison with baseline PSV. PSVN reduced Td and Tiex in comparison with baseline and Eadi-optimized PSV. Respiratory pattern did not change during the four steps. The improvement in patient-ventilator interaction did not lead to changes in WOB or PTP. Conclusions Eadi-optimized PSV allows improving patient ventilator interaction but does not alter patient effort in patients with mild asynchrony. Trial registration Clinicaltrials.gov identifier: NCT 02067403. Registered 7 February 2014. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1599-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francois Beloncle
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada.,Medical Intensive Care Unit, Hospital of Angers, University of Angers, Angers, France
| | - Lise Piquilloud
- Medical Intensive Care Unit, Hospital of Angers, University of Angers, Angers, France.,Adult Intensive Care and Burn Unit, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Nuttapol Rittayamai
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada.,Division of Respiratory Diseases and Tuberculosis, Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Christer Sinderby
- Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada
| | - Hadrien Rozé
- CHU de Bordeaux, Service d'Anesthesie-Reanimation 2, Pessac, 33600, France
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada. .,Keenan Research Centre and Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond St, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
28
|
Abstract
Ventilatory muscle fatigue is a reversible loss of the ability to generate force or velocity of contraction in response to increased elastic and resistive loads. Mechanical ventilation should provide support without imposing additional loads from the ventilator (dys-synchrony). Interactive breaths optimize this relationship but require that patient effort and the ventilator response be synchronous during breath initiation, flow delivery, and termination. Proper delivery considers all 3 phases and uses clinical data, ventilator graphics, and sometimes a trial-and-error approach to optimize patient-ventilator interactions. Newer modes optimize interactions but await good clinical outcome data before routine use.
Collapse
Affiliation(s)
- Daniel Gilstrap
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Box 102355, Hanes House Room 101, Durham, NC 27710, USA.
| | - John Davies
- Respiratory Care Services, Duke University Hospital, Box 3911 Duke North, Erwin Road, Durham, NC 27710, USA
| |
Collapse
|
29
|
Comparison Between Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation Levels in Terms of Respiratory Effort. Crit Care Med 2016; 44:503-11. [PMID: 26540399 DOI: 10.1097/ccm.0000000000001418] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To understand the potential equivalence between neurally adjusted ventilatory assist and pressure support ventilation levels in terms of respiratory muscle unloading. To compare the respiratory pattern, variability, synchronization, and neuromuscular coupling within comparable ranges of assistance. DESIGN Prospective single-center physiologic study. SETTING A 13-bed university medical ICU. PATIENTS Eleven patients recovering from respiratory failure. INTERVENTIONS The following levels of assistance were consecutively applied in a random order: neurally adjusted ventilatory assist levels: 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, and 7 cm H2O/μvolt; pressure support levels: 7, 10, 15, 20, and 25 cm H2O. MEASUREMENTS AND MAIN RESULTS Flow, airway pressure, esophageal pressures, and peak electrical activity of the diaphragm were continuously recorded. Breathing effort was calculated. To express the percentage of assist assumed by the ventilator, the total pressure including muscular and ventilator pressure was calculated. The median percentage of assist ranged from 33% (24-47%) to 82% (72-90%) between pressure support 7 and 25 cm H2O. Similar levels of unloading were observed for neurally adjusted ventilatory assist levels from 0.5 cm H2O/μvolt (46% [40-51%]) to 2.5 cm H2O/μvolt (80% [74-84%]). Tidal variability was higher during neurally adjusted ventilatory assist and ineffective efforts appeared only in pressure support. In neurally adjusted ventilatory assist, double triggering occurred sometimes when electrical activity of the diaphragm signal depicted a biphasic aspect, and an abnormal oscillatory pattern was frequently observed from 4 cm H2O/μvolt. For both modes, the relationship between peak electrical activity of the diaphragm and muscle pressure depicted a curvilinear profile. CONCLUSIONS In patients recovering from acute respiratory failure, levels of neurally adjusted ventilatory assist between 0.5 and 2.5 cm H2O/μvolt are comparable to pressure support levels ranging from 7 to 25 cm H2O in terms of respiratory muscle unloading. Neurally adjusted ventilatory assist provides better patient-ventilator interactions but can be sometimes excessively sensitive to electrical activity of the diaphragm in terms of triggering.
Collapse
|
30
|
Zhang J, Luo Q, Zhang H, Chen R. Physiological Significance of Well-tolerated Inspiratory Pressure to Chronic Obstructive Pulmonary Disease Patient with Hypercapnia During Noninvasive Pressure Support Ventilation. COPD 2016; 13:734-740. [PMID: 27383083 DOI: 10.1080/15412555.2016.1196658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The inspiratory pressure is often set by tolerance of chronic obstructive pulmonary disease (COPD) patient during noninvasive pressure support ventilation (PSV). However, physiological effects of this setting remain unclear. This study was undertaken to assess the physiological effect of highest tolerated assist level on COPD patient. The baseline inspiratory pressure (PS) was titrated by tolerance in 15 severe COPD patients with hypercapnia during acute exacerbation. In addition to the baseline PS, an additional decrease by 25% (PS- = 75% PS) or increase by 25% (PS+ = 125% PS) of PS was applied to the patients. Each level lasted at least 20 minutes. Respiratory rate (RR), tidal volume (Vt), inspiratory effort (PTPpesin/min), and neuro-ventilatory coupling (VE/RMS%) were measured. Asynchrony Index (AI) was calculated. The Vt and VE/RMS% were significantly increased by PS level (Vt: 561 ± 102 ml, VE/RMS%: 1.06 ± 0.42 L/%, comfort score: 7.5 ± 1.1). The inspiratory muscles were sufficiently unloaded (PTPpesin/min 56.67 ± 32.71 cmH2O.S/min). In comparison with PS, PS+ resulted in a further increase in Vt, VE/RMS% and AI (P < 0.01), with no further reduction in neural drive (RMS) and respiratory muscle activity (P > 0.05). Increasing inspiratory pressure significantly enhances the VE/RMS% and Vt. However, the inspiratory pressure higher than COPD patient's most tolerated level cannot lead to further reduction in respiratory muscle load and RMS, but more asynchrony events. Physiological data can monitor the patient's responses and the ventilator-patient interaction, which may provide objective criterion to ventilator setting.
Collapse
Affiliation(s)
- Jianheng Zhang
- a State Key Laboratory of Respiratory Disease, Guangzhou Medical University , Guangzhou , China.,b The First Affiliated Hospital of Guangzhou Medical College , Guangdong , China
| | - Qun Luo
- a State Key Laboratory of Respiratory Disease, Guangzhou Medical University , Guangzhou , China.,b The First Affiliated Hospital of Guangzhou Medical College , Guangdong , China
| | - Huijin Zhang
- a State Key Laboratory of Respiratory Disease, Guangzhou Medical University , Guangzhou , China.,b The First Affiliated Hospital of Guangzhou Medical College , Guangdong , China
| | - Rongchang Chen
- a State Key Laboratory of Respiratory Disease, Guangzhou Medical University , Guangzhou , China.,b The First Affiliated Hospital of Guangzhou Medical College , Guangdong , China
| |
Collapse
|
31
|
New versus Conventional Helmet for Delivering Noninvasive Ventilation: A Physiologic, Crossover Randomized Study in Critically Ill Patients. Anesthesiology 2016; 124:101-8. [PMID: 26528774 DOI: 10.1097/aln.0000000000000910] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The helmet is a well-tolerated interface for noninvasive ventilation, although it is associated with poor patient-ventilator interaction. A new helmet (NH) has proven to attenuate this limitation of the standard helmet (SH) in both bench study and healthy volunteers. The authors compared a NH and a SH in intensive care unit patients receiving noninvasive ventilation for prevention of postextubation respiratory failure; both helmets were also compared with the endotracheal tube in place before extubation. METHODS Fourteen patients underwent 30-min trials in pressure support during invasive ventilation and then with a SH and a NH in a random order. The authors measured comfort, triggering delays, rates of pressurization (airway pressure-time product [PTP] of the first 300 [PTP(300-index)] and 500 [PTP(500-index)] ms from the onset of effort, and the first 200 ms from the onset of insufflation [PTP200]), time of synchrony between effort and assistance (Time(synch)/Ti(neu)), respiratory drive and frequency, arterial blood gases (ABGs), and rate of asynchrony. RESULTS Compared with SH, NH improved comfort (5.5 [5.0 to 6.0] vs. 8.0 [7.8 to 8.0]), respectively, P < 0.001), inspiratory trigger delay (0.31 [0.22 to 0.43] vs. 0.25 [0.18 to 0.31] s, P = 0.007), and pressurization (PTP(300-index): 0.8 [0.1 to 1.8] vs. 2.7 [7.1 to 10.0]%; PTP(500-index): 4.8 [2.5 to 9.9] vs. 27.3 [16.2 to 34.8]%; PTP200: 13.6 [10.1 to 19.6] vs. 30.4 [24.9 to 38.4] cm H2O/s, P < 0.01 for all comparisons) and Time(synch)/Ti(neu) (0.64 [0.48 to 0.72] vs. 0.71 [0.61 to 0.81], P = 0.007). Respiratory drive and frequency, ABGs, and rate of asynchrony were not different between helmets. Endotracheal tube outperformed both helmets with respect to all variables, except for respiratory rate, ABGs, and asynchronies. CONCLUSIONS Compared with a SH, a NH improved comfort and patient-ventilator interaction.
Collapse
|
32
|
Hodgson LE, Murphy PB. Update on clinical trials in home mechanical ventilation. J Thorac Dis 2016; 8:255-67. [PMID: 26904266 PMCID: PMC4739968 DOI: 10.3978/j.issn.2072-1439.2016.01.53] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
Abstract
Home mechanical ventilation (HMV) is an increasingly common intervention and is initiated for a range of pathological processes, including neuromuscular disease (NMD), chronic obstructive pulmonary disease (COPD) and obesity related respiratory failure. There have been important recent data published in this area, which helps to guide practice by indicating which populations may benefit from this intervention and the optimum method of setting up and controlling sleep disordered breathing. Recent superficially conflicting data has been published regarding HMV in COPD, with a trial in post-exacerbation patients suggesting no benefit, but in stable chronic hypercapnic patients suggesting a clear and sustained mortality benefit. The two studies are critiqued and the potential reasons for the differing results are discussed. Early and small trial data is frequently contradicted with larger randomised controlled trials and this has been the case with diaphragm pacing being shown to be potentially harmful in the latest data, confirming the importance of non-invasive ventilation (NIV) in NMD such as motor neurone disease. Advances in ventilator technology have so far appeared quicker than the clinical data to support their use; although small and often unblinded, the current data suggests equivalence to standard modes of NIV, but with potential comfort benefits that may enhance adherence. The indications for NIV have expanded since its inception, with an effort to treat sleep disordered breathing as a result of chronic heart failure (HF). The SERVE-HF trial has recently demonstrated no clear advantage to this technology and furthermore detected a potentially deleterious effect, with a worsening of all cause and cardiovascular mortality in the treated group compared to controls. The review serves to provide the reader with a critical review of recent advances in the field of sleep disordered breathing and HMV.
Collapse
|
33
|
Baudin F, Pouyau R, Cour-Andlauer F, Berthiller J, Robert D, Javouhey E. Neurally adjusted ventilator assist (NAVA) reduces asynchrony during non-invasive ventilation for severe bronchiolitis. Pediatr Pulmonol 2015; 50:1320-7. [PMID: 25488197 DOI: 10.1002/ppul.23139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/08/2014] [Accepted: 10/30/2014] [Indexed: 11/07/2022]
Abstract
BACKGROUND To determine the prevalence of main inspiratory asynchrony events during non-invasive intermittent positive-pressure ventilation (NIV) for severe bronchiolitis. Ventilator response time and asynchrony were compared in neurally adjusted ventilator assist (NAVA) and in pressure assist/control (PAC) modes. METHODS This prospective physiological study was performed in a university hospital's paediatric intensive care unit and included 11 children (aged 35.2 ± 23 days) with respiratory syncytial virus bronchiolitis with failure of nCPAP. Patients received NIV for 2 hr in PAC mode followed by 2 hr in NAVA mode. Electrical activity of the diaphragm and pressure curves were recorded for 10 min. Trigger delay, main asynchronies (auto-triggering, double triggering, or non-triggered breaths) were analyzed, and the asynchrony index was calculated for each period. RESULTS The asynchrony index was lower during NAVA than during PAC (3 ± 3% vs. 38 ± 21%, P < 0.0001), and the trigger delay was shorter (43.9 ± 7.2 vs. 116.0 ± 38.9 ms, P < 0.0001). Ineffective efforts were significantly less frequent in NAVA mode (0.54 ± 1.5 vs. 21.8 ± 16.5 events/min, P = 0.01). Patient respiratory rates were similar, but the ventilator rate was higher in NAVA than in PAC mode (59.5 ± 17.9 vs. 49.8 ± 8.5/min, P = 0.03). The TcPCO2 baselines values (64 ± 12 mmHg vs. 62 ± 9 mmHg during NAVA, P = 0.30) were the same and their evolution over the 2 hr study period (-6 ± 10 mmHg vs. -12 ± 17 mmHg during NAVA, P = 0.36) did not differ. CONCLUSION Patient-ventilator inspiratory asynchronies and trigger delay were dramatically lower in NAVA mode than in PAC mode during NIV in infants with severe bronchiolitis.
Collapse
Affiliation(s)
- Florent Baudin
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Robin Pouyau
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - Fleur Cour-Andlauer
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Pôle Information Médicale Evaluation Recherche, Hospices Civils de Lyon, Bron, France
| | - Julien Berthiller
- Pôle Information Médicale Evaluation Recherche, Hospices Civils de Lyon, Bron, France.,Epidémiologie, Pharmacologie, Investigation Clinique, Equipe d'Accueil 4129, Hospices Civils de Lyon & Université Claude Bernard Lyon 1, Lyon, France
| | | | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.,Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
34
|
Abstract
Purpose of review Compared with the conventional forms of partial support, neurally adjusted ventilatory assist was repeatedly shown to improve patient–ventilator synchrony and reduce the risk of overassistance, while guaranteeing adequate inspiratory effort and gas exchange. A few animal studies also suggested the potential of neurally adjusted ventilatory assist in averting the risk of ventilator-induced lung injury. Recent work adds new information on the physiological effects of neurally adjusted ventilatory assist. Recent findings Compared with pressure support, neurally adjusted ventilatory assist has been shown to improve patient–ventilator interaction and synchrony in patients with the most challenging respiratory system mechanics, such as very low compliance consequent to severe acute respiratory distress syndrome and high resistance and air trapping due to chronic airflow obstruction; enhance redistribution of the ventilation in the dependent lung regions; avert the risk of patient–ventilator asynchrony due to sedation; avoid central apneas; limit the risk of high (injurious) tidal volumes in patients with acute respiratory distress syndrome of varied severity; and improve patient–ventilator interaction and synchrony during noninvasive ventilation, irrespective of the interface utilized. Summary Several studies nowadays prove the physiological benefits of neurally adjusted ventilatory assist, as opposed to the conventional modes of partial support. Whether these advantages translate into improvement of clinical outcomes remains to be determined.
Collapse
|
35
|
Nasef N, El-Gouhary E, Schurr P, Reilly M, Beck J, Dunn M, Ng E. High-flow nasal cannulae are associated with increased diaphragm activation compared with nasal continuous positive airway pressure in preterm infants. Acta Paediatr 2015; 104:e337-43. [PMID: 25759095 DOI: 10.1111/apa.12998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/30/2014] [Accepted: 03/09/2015] [Indexed: 11/28/2022]
Abstract
AIM High-flow nasal cannulae (HFNC) are increasingly used for respiratory management of preterm infants. However, their ability to provide support compared to nasal continuous positive airway pressure (CPAP) has been questioned. We compared the effect of HFNC versus nasal CPAP on diaphragm electrical activity (EAdi) in preterm infants. METHODS Preterm infants ≤1500 g were randomised in a crossover design to receive 2 hours of either Infant Flow(®) CPAP (IF-CPAP) at 5-6 cmH2 O or HFNC with the flow rate adjusted to achieve an equivalent pharyngeal pressure. A feeding catheter with miniaturised sensors was inserted for continuous EAdi measurement. RESULTS The study comprised ten infants. Physiologic parameters and oxygen requirements were not different between the two modes. However, seven infants demonstrated a higher EAdi peak and six showed a higher EAdi tonic on HFNC, even though the mean group data showed no difference between HFNC and IF-CPAP. Neural inspiratory time was significantly longer with HFNC than IF-CPAP (0.55 ± 0.11 versus 0.48 ± 0.06 seconds, p = 0.018). CONCLUSION In this cohort of preterm infants, the majority exhibited greater diaphragm activation, as assessed by neural breathing patterns, when supported with HFNC than IF-CPAP, suggesting that nasal CPAP may provide more effective respiratory support.
Collapse
Affiliation(s)
- Nehad Nasef
- Women and Babies Program; Sunnybrook Health Sciences Centre; Toronto ON Canada
| | - Enas El-Gouhary
- Women and Babies Program; Sunnybrook Health Sciences Centre; Toronto ON Canada
| | - Patti Schurr
- Women and Babies Program; Sunnybrook Health Sciences Centre; Toronto ON Canada
| | - Maureen Reilly
- Women and Babies Program; Sunnybrook Health Sciences Centre; Toronto ON Canada
| | - Jennifer Beck
- Keenan Research Centre for Biomedical Science; Department of Critical Care; St. Michael's Hospital; Toronto ON Canada
| | - Michael Dunn
- Women and Babies Program; Sunnybrook Health Sciences Centre; Toronto ON Canada
- Division of Neonatology; Department of Paediatrics; University of Toronto; Toronto ON Canada
| | - Eugene Ng
- Women and Babies Program; Sunnybrook Health Sciences Centre; Toronto ON Canada
- Division of Neonatology; Department of Paediatrics; University of Toronto; Toronto ON Canada
| |
Collapse
|
36
|
Kacmarek RM, Pirrone M, Berra L. Assisted mechanical ventilation: the future is now! BMC Anesthesiol 2015; 15:110. [PMID: 26215886 PMCID: PMC4517541 DOI: 10.1186/s12871-015-0092-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 02/07/2023] Open
Abstract
Assisted ventilation is a highly complex process that requires an intimate interaction between the ventilator and the patient. The complexity of this form of ventilation is frequently underappreciated by the bedside clinician. In assisted mechanical ventilation, regardless of the specific mode, the ventilator's gas delivery pattern and the patient's breathing pattern must match near perfectly or asynchrony between the patient and the ventilator occurs. Asynchrony can be categorized into four general types: flow asynchrony; trigger asynchrony; cycle asynchrony; and mode asynchrony. In an article recently published in BMC Anesthesiology, Hodane et al. have demonstrated reduced asynchrony during assisted ventilation with Neurally Adjusted Ventilatory Assist (NAVA) as compared to pressure support ventilation (PSV). These findings add to the growing volume of data indicating that modes of ventilation that provide proportional assistance to ventilation - e.g., NAVA and Proportional Assist Ventilation (PAV) - markedly reduce asynchrony. As it becomes more accepted that the respiratory center of the patient in most circumstances is the most appropriate determinant of ventilatory pattern and as the negative outcome effects of patient-ventilator asynchrony become ever more recognized, we can expect NAVA and PAV to become the preferred modes of assisted ventilation!
Collapse
Affiliation(s)
- Robert M Kacmarek
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Massimiliano Pirrone
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | - Lorenzo Berra
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
37
|
Gregoretti C, Pisani L, Cortegiani A, Ranieri VM. Noninvasive Ventilation in Critically Ill Patients. Crit Care Clin 2015; 31:435-57. [DOI: 10.1016/j.ccc.2015.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Jurickova I, Roubík K, Muller M. Delivery of heliox with a semi-closed circuit during spontaneous breathing: a comparative economic theoretical study. BMC Pulm Med 2015; 15:65. [PMID: 26059111 PMCID: PMC4460863 DOI: 10.1186/s12890-015-0060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heliox is a mixture of oxygen and helium which reduces airway resistance in patients with airway obstruction. In clinical practice, patients breathing spontaneously receive heliox via an open circuit. Recently, a semi-closed circuit for heliox administration has been proposed which minimizes consumption of heliox and therefore cost of the heliox therapy; although, the semi-closed circuit is associated with additional costs. The aim of the study is to conduct an economical analysis comparing total cost of heliox therapy using an open versus a semi-closed circuit in spontaneously breathing patients with airway obstruction. METHODS Four different systems for heliox administration were analyzed: an open circuit and three alternatives of a semi-closed circuit involving a custom made semi-closed circuit and two standard anesthesia machines. Total costs of heliox therapy were calculated for all the systems. For calculation of gas consumption, the clinical procedures limiting continuous heliox therapy including the aerosol therapy, personal hygiene and nutrition were taken into account. A sensitivity analysis was conducted for main input variables that may influence the results of the study. RESULTS Price of gases consumed by a semi-closed system represents less than 20 % of price of gases when a standard open circuit is used. This represents a saving of approximately 540 EUR per patient. The initial cost of the custom-made semi-closed circuit recuperates after treatment of 18 patients. The corresponding number of patients is 32 when a low-cost anesthesia machine is initially acquired and rises to 69 when a highly advanced anesthesia machine is considered. CONCLUSIONS Heliox therapy in spontaneously breathing patients using a semi-closed circuit becomes more cost-effective compared to the open circuit, currently used in clinical practice, when applied in a sufficient number of cases. The impact of finding a cheaper way of heliox administration on the clinical practice needs to be ascertained.
Collapse
Affiliation(s)
- Ivana Jurickova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic.
| | - Karel Roubík
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic.
| | - Martin Muller
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic. .,Department of Anesthesiology, Resuscitation and Intensive Care Medicine, First Faculty of Medicine Charles University in Prague and the Military University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
39
|
Liu L, Liu S, Xie J, Yang Y, Slutsky AS, Beck J, Sinderby C, Qiu H. Assessment of patient-ventilator breath contribution during neurally adjusted ventilatory assist in patients with acute respiratory failure. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:43. [PMID: 25882607 PMCID: PMC4339109 DOI: 10.1186/s13054-015-0775-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION We previously showed in animals that the ratio of inspired tidal volume (Vtinsp) to inspiratory peak electrical activity of the diaphragm (EAdipk) can be used to quantify the respective patient and ventilator breath contributions (PVBCs) during neurally adjusted ventilatory assist (NAVA). The PVBC index has not been tested clinically. METHODS We studied 12 intubated and mechanically ventilated patients with acute respiratory failure and measured EAdipk, airway (Paw) and inspiratory esophageal pressure (Pes) and Vtinsp. We applied 11 different NAVA levels, increasing them every 3 minutes in steps of 0.3 cm H₂O/μV from 0 to 3.0 cmH₂O/μV. At each NAVA level, one breath was non-assisted (NAVA level 0). PVBC indices were calculated by relating Vtinsp/EAdipk of the non-assisted breath to Vtinsp/EAdipk of the assisted breath(s) using one ((N1)PVBC) or the mean value of five preceding assisted breaths ((X5)PVBC). During assisted breaths, inspiratory changes in Pes (∆Pes) and transpulmonary (ΔPtp) pressures were used to calculate the relative contribution of patient to total inspiratory lung-distending pressures (ΔPes/ΔPtp). Matching of respiratory drive indices and squaring of the PVBC was evaluated for their effect on the correlation between PVBC and ΔPes/ΔPtp. Linear regression analysis and Bland-Altman analysis were applied to compare indices. RESULTS Using an average of five assisted breaths prior to the non-assisted breath and squaring the PVBC ((X5)PVBC(2)) improved determination coefficients (P <0.05), adjusted the regression slope and intercept between PVBC and ΔPes/ΔPtp toward identity (P <0.05) and reduced bias (P <0.05). Matching EAdipk between non-assisted and assisted breaths within the range of 0.77 to 1.30 improved the relationship between (X5)PVBC(2) and ΔPes/ΔPtp (P <0.05) and abolished the need for EAdi normalization in the PVBC calculation (R(2) = 0.96; bias = 0.16 ± 0.06; precision = 0.33 ± 0.08 (mean and 95% confidence interval)). CONCLUSIONS This clinical study confirms previous experimental results showing that the PVBC(2) predicts the contribution of the inspiratory muscles versus that of the ventilator during NAVA, when differences in effort (EAdi) between non-assisted and assisted breaths are limited. PVBC could help to quantify and standardize the adjustment of the level of assist, and hence reduce the risks of excessive ventilatory assist in patients. TRIAL REGISTRATION ClinicalTrials.gov NCT01663480. Registered 9 August 2012.
Collapse
Affiliation(s)
- Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| | - Arthur S Slutsky
- Keenan Research Centre for Biomedical Science and Department of Critical Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada. .,Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Suit RFE3-805, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Jennifer Beck
- Keenan Research Centre for Biomedical Science and Department of Critical Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada. .,Department of Pediatrics, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Christer Sinderby
- Keenan Research Centre for Biomedical Science and Department of Critical Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, M5B1W8, Canada. .,Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Suit RFE3-805, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University, School of Medicine, 87 Dingjiaqiao Street, Nanjing, 210009, China.
| |
Collapse
|
40
|
Neurally adjusted ventilatory assist (NAVA) allows patient-ventilator synchrony during pediatric noninvasive ventilation: a crossover physiological study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:44. [PMID: 25886793 PMCID: PMC4342194 DOI: 10.1186/s13054-015-0770-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/23/2015] [Indexed: 11/16/2022]
Abstract
Introduction The need for intubation after a noninvasive ventilation (NIV) failure is frequent in the pediatric intensive care unit (PICU). One reason is patient-ventilator asynchrony during NIV. Neurally adjusted ventilatory assist (NAVA) is a mode of ventilation controlled by the patient’s neural respiratory drive. The aim of this study was to assess the feasibility and tolerance of NIV-NAVA in children and to evaluate its impact on synchrony and respiratory effort. Methods This prospective, physiologic, crossover study included 13 patients requiring NIV in the PICU of Sainte-Justine’s Hospital from October 2011 to May 2013. Patients were successively ventilated in conventional NIV as prescribed by the physician in charge (30 minutes), in NIV-NAVA (60 minutes), and again in conventional NIV (30 minutes). Electrical activity of the diaphragm (EAdi) and airway pressure were simultaneously recorded to assess patient-ventilator synchrony. Results NIV-NAVA was feasible and well tolerated in all patients. One patient asked to stop the study because of anxiety related to the leak-free facial mask. Inspiratory trigger dys-synchrony and cycling-off dys-synchrony were significantly shorter in NIV-NAVA versus initial and final conventional NIV periods (both P <0.05). Wasted efforts were also decreased in NIV-NAVA (all values expressed as median and interquartile values) (0 (0 to 0) versus 12% (4 to 20) and 6% (2 to 22), respectively; P <0.01). As a whole, total time spent in asynchrony was reduced to 8% (6 to 10) in NIV-NAVA, versus 27% (19 to 56) and 32% (21 to 38) in conventional NIV before and after NIV-NAVA, respectively (P =0.05). Conclusion NIV-NAVA is feasible and well tolerated in PICU patients and allows improved patient-ventilator synchronization. Larger controlled studies are warranted to evaluate the clinical impact of these findings. Trial registration ClinicalTrials.gov NCT02163382. Registered 9 June 2014.
Collapse
|
41
|
Arca MJ, Uhing M, Wakeham M. Current concepts in acute respiratory support for neonates and children. Semin Pediatr Surg 2015; 24:2-7. [PMID: 25639802 DOI: 10.1053/j.sempedsurg.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Current trends in mechanical respiratory support are evolving toward gentle approaches to avoid short- and long-term problems that are historically associated with mechanical ventilation. These ventilator-associated issues include the need for long-term sedation, muscle deconditioning, ventilator-associated lung injury (VALI), and ventilator-associated pneumonia (VAP). This article will describe recent trends of ventilatory support in neonates and children: (1) utilization of volume ventilation in infants, (2) synchrony and improving patient-ventilator interaction specifically using neurally adjusted ventilatory assist (NAVA), and (3) use of noninvasive ventilation techniques. When applicable, their uses in the surgical newborn and pediatric patients are described.
Collapse
Affiliation(s)
- Marjorie J Arca
- Division of Pediatric Surgery, Department of Surgery, Children׳s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin; Division of Critical Care, Department of Pediatrics, Children׳s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Michael Uhing
- Division of Neonatology, Department of Pediatrics, Children׳s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Martin Wakeham
- Division of Critical Care, Department of Pediatrics, Children׳s Hospital of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
42
|
Inspiratory Muscle Activity in Neurally Adjusted Ventilatory Assist. Anesthesiology 2014; 121:916-8. [DOI: 10.1097/aln.0000000000000433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Doorduin J, Sinderby CA, Beck J, van der Hoeven JG, Heunks LMA. Automated patient-ventilator interaction analysis during neurally adjusted non-invasive ventilation and pressure support ventilation in chronic obstructive pulmonary disease. Crit Care 2014; 18:550. [PMID: 25307894 PMCID: PMC4207887 DOI: 10.1186/s13054-014-0550-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/22/2014] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Delivering synchronous assist during non-invasive ventilation (NIV) is challenging with flow- or pressure-controlled ventilators, especially in patients with chronic obstructive pulmonary disease (COPD). Neurally adjusted ventilatory assist (NAVA) uses diaphragm electrical activity (EAdi) to control the ventilator. We evaluated patient-ventilator interaction in patients with COPD during NIV with pressure support ventilation (PSV) and NAVA using a recently introduced automated analysis. METHODS Twelve COPD patients underwent three 30-minute trials: 1) PSV with dedicated NIV ventilator (NIV-PSVVision), 2) PSV with intensive care unit (ICU) ventilator (NIV-PSVServo-I), and 3) with NIV-NAVA. EAdi, flow, and airway pressure were recorded. Patient-ventilator interaction was evaluated by comparing airway pressure and EAdi waveforms with automated computer algorithms. The NeuroSync index was calculated as the percentage of timing errors between airway pressure and EAdi. RESULTS The NeuroSync index was higher (larger error) for NIV-PSVVision (24 (IQR 15 to 30) %) and NIV-PSVServo-I (21 (IQR 15 to 26) %) compared to NIV-NAVA (5 (IQR 4 to 7) %; P <0.001). Wasted efforts, trigger delays and cycling-off errors were less with NAVA (P <0.05 for all). The NeuroSync index and the number of wasted efforts were strongly correlated (r2 = 0.84), with a drastic increase in wasted efforts after timing errors reach 20%. CONCLUSIONS In COPD patients, non-invasive NAVA improves patient-ventilator interaction compared to PSV, delivered either by a dedicated or ICU ventilator. The automated analysis of patient-ventilator interaction allowed for an objective detection of patient-ventilator interaction during NIV. In addition, we found that progressive mismatch between neural effort and pneumatic timing is associated with wasted efforts.
Collapse
|
44
|
Abstract
After the institution of positive-pressure ventilation, the use of noninvasive ventilation (NIV) through an interface substantially increased. The first technique was continuous positive airway pressure; but, after the introduction of pressure support ventilation at the end of the 20th century, this became the main modality. Both techniques, and some others that have been recently introduced and which integrate some technological innovations, have extensively demonstrated a faster improvement of acute respiratory failure in different patient populations, avoiding endotracheal intubation and facilitating the release of conventional invasive mechanical ventilation. In acute settings, NIV is currently the first-line treatment for moderate-to-severe chronic obstructive pulmonary disease exacerbation as well as for acute cardiogenic pulmonary edema and should be considered in immunocompromised patients with acute respiratory insufficiency, in difficult weaning, and in the prevention of postextubation failure. Alternatively, it can also be used in the postoperative period and in cases of pneumonia and asthma or as a palliative treatment. NIV is currently used in a wide range of acute settings, such as critical care and emergency departments, hospital wards, palliative or pediatric units, and in pre-hospital care. It is also used as a home care therapy in patients with chronic pulmonary or sleep disorders. The appropriate selection of patients and the adaptation to the technique are the keys to success. This review essentially analyzes the evidence of benefits of NIV in different populations with acute respiratory failure and describes the main modalities, new devices, and some practical aspects of the use of this technique.
Collapse
Affiliation(s)
- Arantxa Mas
- Critical Care Department, Consorci Sanitari Integral (CSI), Hospital Sant Joan Despí Moisès Broggi and Hospital General de l’Hospitalet, University of Barcelona, Barcelona, Spain
| | - Josep Masip
- Critical Care Department, Consorci Sanitari Integral (CSI), Hospital Sant Joan Despí Moisès Broggi and Hospital General de l’Hospitalet, University of Barcelona, Barcelona, Spain
| |
Collapse
|
45
|
Garzando M, Ferrandis R, Garrigues B, Soro M, Belda FJ. Neurally adjusted ventilatory assist: An update. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2014. [DOI: 10.1016/j.tacc.2014.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
|
47
|
Abstract
PURPOSE OF THE REVIEW Noninvasive respiratory support for neonates is growing in popularity as clinicians increasingly recognize the dangers of prolonged invasive ventilation. The purpose of this review is to critically evaluate the existing evidence for safety and efficacy of these modes of respiratory support in neonates. RECENT FINDINGS In recent years, multiple randomized controlled trials (RCTs) have evaluated several modes of noninvasive support, most importantly nasal intermittent positive pressure ventilation and high flow nasal cannulae, in comparison to the standard therapy of continuous positive airway pressure (CPAP). The three largest RCTs were recently published in 2013. One demonstrated no difference in death or survival with bronchopulmonary dysplasia between nasal intermittent positive pressure ventilation and CPAP, both when used as primary support and as postextubation support. Two others demonstrated that high flow nasal cannulae are noninferior to or no better than CPAP when used to support preterm infants after extubation. These trials showed no serious safety concerns with current modalities. SUMMARY The optimal forms of noninvasive respiratory support for neonates remain to be determined. Continued evaluation of these technologies with large, well-designed RCTs is warranted.
Collapse
|
48
|
Suarez-Sipmann F. New modes of assisted mechanical ventilation. Med Intensiva 2014; 38:249-60. [PMID: 24507472 DOI: 10.1016/j.medin.2013.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 10/22/2013] [Accepted: 10/27/2013] [Indexed: 10/25/2022]
Abstract
Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes.
Collapse
Affiliation(s)
- F Suarez-Sipmann
- Servicio de Medicina Intensiva, Hospital Universitario de Uppsala, Laboratorio Hedenstierna, Departamento de Ciencias Quirúrgicas, Universidad de Uppsala, Uppsala, Suecia.
| | | |
Collapse
|
49
|
Abstract
Neurally adjusted ventilatory assist (NAVA) uses the electrical activity of the diaphragm (Edi) as a neural trigger to synchronize mechanical ventilatory breaths with the patient's neural respiratory drive. Using this signal enables the ventilator to proportionally support the patient's instantaneous drive on a breath-by-breath basis. Synchrony can be achieved even in the presence of significant air leaks, which make this an attractive choice for invasive and non-invasive ventilation of the neonate. This paper describes the Edi signal, neuroventilatory coupling, and patient-ventilator synchrony including the functional concept of NAVA. Safety features, NAVA terminology, and clinical application of NAVA to unload respiratory musculature are presented. The use of the Edi signal as a respiratory vital sign for conventional ventilation is discussed. The results of animal and adult studies are briefly summarized and detailed descriptions of all NAVA-related research in pediatric and neonatal patients are provided. Further studies are needed to determine whether NAVA will have significant impact on the overall outcomes of neonates.
Collapse
|
50
|
One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Med 2014; 40:388-96. [PMID: 24435201 PMCID: PMC3943651 DOI: 10.1007/s00134-013-3186-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/02/2013] [Indexed: 01/20/2023]
Abstract
PURPOSE Advances in supportive care and ventilator management for acute respiratory distress syndrome (ARDS) have resulted in declines in short-term mortality, but risks of death after survival to hospital discharge have not been well described. Our objective was to quantify the difference between short-term and long-term mortality in ARDS and to identify risk factors for death and causes of death at 1 year among hospital survivors. METHODS This multi-intensive care unit, prospective cohort included patients with ARDS enrolled between January 2006 and February 2010. We determined the clinical characteristics associated with in-hospital and 1-year mortality among hospital survivors and utilized death certificate data to identify causes of death. RESULTS Of 646 patients hospitalized with ARDS, mortality at 1 year was substantially higher (41 %, 95% CI 37-45%) than in-hospital mortality (24%, 95% CI 21-27%), P < 0.0001. Among 493 patients who survived to hospital discharge, the 110 (22%) who died in the subsequent year were older (P < 0.001) and more likely to have been discharged to a nursing home, other hospital, or hospice compared to patients alive at 1 year (P < 0.001). Important predictors of death among hospital survivors were comorbidities present at the time of ARDS, and not living at home prior to admission. ARDS-related measures of severity of illness did not emerge as independent predictors of mortality in hospital survivors. CONCLUSIONS Despite improvements in short-term ARDS outcomes, 1-year mortality is high, mostly because of the large burden of comorbidities, which are prevalent in patients with ARDS.
Collapse
|