1
|
Wolak T, Dicker D, Shifer Y, Grossman A, Rokach A, Shitrit M, Tal A. A safety evaluation of intermittent high-dose inhaled nitric oxide in viral pneumonia due to COVID-19: a randomised clinical study. Sci Rep 2024; 14:17201. [PMID: 39060420 PMCID: PMC11282178 DOI: 10.1038/s41598-024-68055-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
High-dose inhaled Nitric Oxide (iNO) has been shown to have anti-inflammatory, vasodilator, and antimicrobial properties, resulting in improved arterial oxygenation as well as a beneficial therapeutic effect on lower respiratory tract infections. This study evaluated the safety and efficacy of 150-ppm intermittent iNO administered with a novel iNO-generator, for treating adults hospitalised for viral pneumonia. In this prospective, open-label, multicenter study, subjects aged 18-80, diagnosed with viral pneumonia received either standard supportive treatment alone (Control-Group) or combined with iNO for 40 min, 4 times per day up to 7 days (Treatment-Group). Out of 40 recruited subjects, 35 were included in the intention-to-treat population (34 with COVID-19). Adverse Events rate was similar between the groups (56.3% vs. 42.1%; respectively). No treatment-related adverse events were reported, while 2 serious adverse events were accounted for by underlying pre-existing conditions. Among the Treatment-Group, oxygen support duration was reduced by 2.7 days (Hazard Ratio = 2.8; p = 0.0339), a greater number of subjects reached oxygen saturation ≥ 93% within hospitalisation period (Hazard Ratio = 5.4; p = 0.049), and a trend for earlier discharge was demonstrated. Intermittent 150-ppm iNO-treatment is well-tolerated, safe, and beneficial compared to usual care for spontaneously breathing hospitalised adults diagnosed with COVID-19 viral pneumonia.
Collapse
Affiliation(s)
- Talya Wolak
- Department of Internal Medicine D, Shaare Zedek Medical Center, 12 Bait Shmuel St, P.O. Box 3235, 9103102, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - D Dicker
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah-Tikva, Israel
- Tel Aviv University Faculty of Medicine, Tel Aviv, Israel
| | - Y Shifer
- Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - A Grossman
- Internal Medicine B, Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | - A Rokach
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - M Shitrit
- Respiratory Therapy Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - A Tal
- Beyond Air, Ltd, Rehovot, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
2
|
Kaplish D, Vagha JD, Meshram RJ, Lohiya S. A Comprehensive Review of Inhaled Nitric Oxide Therapy: Current Trends, Challenges, and Future Directions. Cureus 2024; 16:e53558. [PMID: 38445143 PMCID: PMC10913844 DOI: 10.7759/cureus.53558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/04/2024] [Indexed: 03/07/2024] Open
Abstract
This comprehensive review explores the multifaceted landscape of inhaled nitric oxide (iNO) therapy, tracing its historical evolution, mechanisms of action, clinical applications, challenges, and future directions. The nitric oxide signaling pathway, characterized by vasodilatory effects and anti-inflammatory properties, forms the foundation of iNO's therapeutic efficacy. Clinical applications are found in neonatal respiratory distress syndrome, pulmonary hypertension, and acute respiratory distress syndrome, showcasing its versatility. However, challenges, including cost considerations, technical intricacies, safety concerns, and resistance, highlight the nuanced landscape surrounding iNO therapy. Implications for clinical practice underscore the need for a tailored and evidence-based approach, considering individual patient characteristics and indications. Recommendations for future research emphasize ongoing exploration, novel indications, and the development of targeted therapies. In conclusion, this review positions iNO as a dynamic and adaptable intervention, poised to reshape therapeutic strategies and enhance patient outcomes in critical care.
Collapse
Affiliation(s)
- Divyanshi Kaplish
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Jayant D Vagha
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Revat J Meshram
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sham Lohiya
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
3
|
Rajendran R, Chathambath A, Al-Sehemi AG, Pannipara M, Unnikrishnan MK, Aleya L, Raghavan RP, Mathew B. Critical role of nitric oxide in impeding COVID-19 transmission and prevention: a promising possibility. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38657-38672. [PMID: 35258738 PMCID: PMC8902850 DOI: 10.1007/s11356-022-19148-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/06/2022] [Indexed: 05/06/2023]
Abstract
COVID-19 is a serious respiratory infection caused by a beta-coronavirus that is closely linked to SARS. Hypoxemia is a symptom of infection, which is accompanied by acute respiratory distress syndrome (ARDS). Augmenting supplementary oxygen may not always improve oxygen saturation; reversing hypoxemia in COVID-19 necessitates sophisticated means to promote oxygen transfer from alveoli to blood. Inhaled nitric oxide (iNO) has been shown to inhibit the multiplication of the respiratory coronavirus, a property that distinguishes it from other vasodilators. These findings imply that NO may have a crucial role in the therapy of COVID-19, indicating research into optimal methods to restore pulmonary physiology. According to clinical and experimental data, NO is a selective vasodilator proven to restore oxygenation by helping to normalize shunts and ventilation/perfusion mismatches. This study examines the role of NO in COVID-19 in terms of its specific physiological and biochemical properties, as well as the possibility of using inhaled NO as a standard therapy. We have also discussed how NO could be used to prevent and cure COVID-19, in addition to the limitations of NO.
Collapse
Affiliation(s)
- Rajalakshmi Rajendran
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Anjana Chathambath
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mehboobali Pannipara
- Research Center for Advanced Materials Science, King Khalid University, Abha, 61413, Saudi Arabia
- Department of Chemistry, King Khalid University, Abha, 61413, Saudi Arabia
| | | | - Lotfi Aleya
- Laboratoire Chrono-Environment, Universite de Bourgogne Franche-Comte, CNRS6249, Besancon, France
| | - Roshni Pushpa Raghavan
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| |
Collapse
|
4
|
Brown CJ, Rubel N, Lai J, Ward C, McLean J, Wheelock M, Steuerwald M, Cathers A. Initiation of Inhaled Nitric Oxide by Air Transport Team in Adult COVID-19 Respiratory Failure. Air Med J 2022; 41:406-410. [PMID: 35750450 PMCID: PMC8907015 DOI: 10.1016/j.amj.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused a significant increase in the volume of critical care flight transports between outlying referral hospitals and tertiary care facilities. Because of the tropism of severe acute respiratory syndrome coronavirus 2, flight crews are often asked to transport mechanically ventilated patients in refractory hypoxemic respiratory failure. The authors present a case series of 5 patients with COVID-19 acute respiratory distress syndrome (ARDS) who were initiated on inhaled nitric oxide (iNO) by the transport team before rotor wing transport and survived the journey in stable or improved condition upon arrival. Previously, no case reports have described adults with COVID-19 ARDS transported after iNO initiation by the transport team. This case series shows the feasibility of iNO initiation by trained air medical transport teams and suggests a short-term stabilizing effect of iNO in patients with ARDS from COVID-19.
Collapse
Affiliation(s)
- Connor J Brown
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI.
| | - Nicolas Rubel
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| | - Jason Lai
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| | - Christen Ward
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| | - Justin McLean
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| | - Martin Wheelock
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| | - Michael Steuerwald
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| | - Andrew Cathers
- BerbeeWalsh University of Wisconsin Department of Emergency Medicine, Madison, WI; University of Wisconsin MedFlight, BerbeeWalsh Department of Emergency Medicine, Madison, WI
| |
Collapse
|
5
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Maternal Diabetes Mellitus and Persistent Pulmonary Hypertension of the Newborn: Accumulated Evidence From Observational Studies. Can J Diabetes 2020; 44:327-334.e3. [PMID: 31902718 DOI: 10.1016/j.jcjd.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Maternal diabetes mellitus (including pre-existing and gestational diabetes mellitus) is linked with adverse infant outcomes. However, the question of whether maternal diabetes increases the risk of persistent pulmonary hypertension of the newborn (PPHN) is unclear. Herein, we conducted a systematic review and meta-analysis to summarize clinical evidence to determine the association between maternal diabetes mellitus and PPHN. METHODS In this systematic review and meta-analysis, we systematically searched PubMed, Embase, Cochrane Library, Web of Science and Google Scholar to identify relevant studies according to predefined criteria. Data from selected studies were extracted, and meta-analysis was performed using fixed effects modelling. RESULTS In all, we included 7 unique studies with aggregated data on 2 million individuals and >5,000 cases of PPHN. Maternal diabetes was significantly associated with a higher risk of PPHN (risk ratio [RR], 1.37; 95% confidence interval [CI], 1.23 to 1.51). Both case-control and cohort studies exhibited that the presence of maternal diabetes increased the risk of PPHN (case-control: RR, 1.91; 95% CI, 1.02 to 2.79; cohort: RR, 1.36; 95% CI, 1.22 to 1.50). By omitting 1 study at a time, sensitivity analysis made sure that no individual study was entirely responsible for the combined results. CONCLUSIONS Maternal diabetes was associated with increased risk of PPHN. For babies with refractory hypoxemia, with mothers with diabetes, PPHN should be taken into consideration in clinical practice.
Collapse
|
7
|
Albuquerque AAS, Margarido EA, Menardi AC, Scorzoni A, Celotto AC, Rodrigues AJ, Vicente WVA, Evora PRB. Methylene Blue to Treat Protamine-induced Anaphylaxis Reactions. An Experimental Study in Pigs. Braz J Cardiovasc Surg 2017; 31:226-231. [PMID: 27737405 PMCID: PMC5062710 DOI: 10.5935/1678-9741.20160054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/30/2016] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE: To examine if methylene blue (MB) can counteract or prevent protamine (P)
cardiovascular effects. METHODS: The protocol included five heparinized pig groups: Group Sham -without any
drug; Group MB - MB 3 mg/kg infusion; Group P - protamine; Group P/MB - MB
after protamine; Group MB/P - MB before protamine. Nitric oxide levels were
obtained by the nitric oxide/ozone chemiluminescence method, performed using
the Nitric Oxide Analizer 280i (Sievers, Boulder, CO, USA). Malondialdehyde
plasma levels were estimated using the thiobarbiturate technique. RESULTS: 1) Groups Sham and MB presented unchanged parameters; 2) Group P - a)
Intravenous protamine infusion caused mean arterial pressure decrease and
recovery trend after 25-30 minutes, b) Cardiac output decreased and remained
stable until the end of protamine injection, and c) Sustained systemic
vascular resistance increased until the end of protamine injection; 3)
Methylene blue infusion after protamine (Group P/MB) - a) Marked mean
arterial pressure decreased after protamine, but recovery after methylene
blue injection, b) Cardiac output decreased after protamine infusion,
recovering after methylene blue infusion, and c) Sustained systemic vascular
resistance increased after protamine infusion and methylene blue injections;
4) Methylene blue infusion before protamine (Group MB/P) - a) Mean arterial
pressure decrease was less severe with rapid recovery, b) After methylene
blue, there was a progressive cardiac output increase up to protamine
injection, when cardiac output decreased, and c) Sustained systemic vascular
resistance decreased after protamine, followed by immediate Sustained
systemic vascular resistance increase; 5) Plasma nitrite/nitrate and
malondialdehyde values did not differ among the experimental groups. CONCLUSION: Reviewing these experimental results and our clinical experience, we suggest
methylene blue safely prevents and treats hemodynamic protamine
complications, from the endothelium function point of view.
Collapse
Affiliation(s)
- Agnes Afrodite S Albuquerque
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Edson A Margarido
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Antonio Carlos Menardi
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Adilson Scorzoni
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Andrea Carla Celotto
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Alfredo J Rodrigues
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Walter Vilella A Vicente
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| | - Paulo Roberto B Evora
- Laboratory of Endothelium and Cardiovascular Function; Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), SP, Brazil
| |
Collapse
|
8
|
Alayash AI. Oxidative pathways in the sickle cell and beyond. Blood Cells Mol Dis 2017; 70:78-86. [PMID: 28554826 DOI: 10.1016/j.bcmd.2017.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023]
Abstract
Polymerization of deoxy sickle cell hemoglobin (HbS) is well recognized as the primary event that triggers the classic cycles of sickling/unsickling of patients red blood cells (RBCs). RBCs are also subjected to continuous endogenous and exogenous oxidative onslaughts resulting in hemolytic rate increases which contribute to the evolution of vasculopathies associated with this disease. Compared to steady-state conditions, the occurrences of vaso-occlusive crises increase the levels of both RBC-derived microparticles as well as extracellular Hb in circulation. Common byproduct resulting from free Hb oxidation and from Hb-laden microparticles is heme (now recognized as damage associated molecular pattern (DAMP) molecule) which has been shown to initiate inflammatory responses. This review provides new insights into the interplay between microparticles, free Hb and heme focusing on Hb's pseudoperoxidative activity that drives RBC's cytosolic, membrane changes as well as oxidative toxicity towards the vascular system. Emerging antioxidative strategies that include the use of protein and heme scavengers in controlling Hb oxidative pathways are discussed.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| |
Collapse
|
9
|
Wang X, Yang Y, Yang D, Tong G, Lv S, Lin X, Chen C, Dong W. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. J Vasc Surg 2017; 64:1468-1477. [PMID: 26527422 DOI: 10.1016/j.jvs.2015.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a fatal disease characterized by a persistent elevation of pulmonary artery pressure and ventricular hypertrophy. Tetrandrine is a bisbenzylisoquinoline alkaloid that can decrease blood pressure, inhibit the proliferation of vascular smooth muscle cells, and block cardiac hypertrophy, but whether it has a therapeutic effect on PAH remains poorly defined. This study was undertaken to investigate the efficacy of tetrandrine on PAH. METHODS Forty-eight male Sprague-Dawley rats were randomly and equally divided into four groups. The control group was injected with normal saline; the others were injected with monocrotaline (MCT) to induce PAH, then treated with saline, tetrandrine, and vardenafil, respectively, from day 21 to day 42. On day 43, we measured the mean pulmonary artery pressure under general anesthesia, dissected the rat, and calculated the right ventricular hypertrophy index [right ventricle/(left ventricle plus septum)]. Later we observed the changes in the pulmonary vascular wall; measured the expression of cyclic guanosine monophosphate-dependent protein kinase type 1 and inducible nitric oxide synthase; measured the levels of superoxide dismutase, glutathione, malondialdehyde, and catalase; and then compared the results among groups. RESULTS Compared with the MCT group, rats treated with tetrandrine had attenuated mean pulmonary artery pressure (20.48 ± 1.49 vs 30.07 ± 1.51; P < .01) and right ventricular hypertrophy index (49.19 ± 2.45 vs 68.50 ± 1.95; P < .01), inhibited proliferation of pulmonary artery smooth muscle cells, and improved endothelial function. Tetrandrine also upregulated the expression of protein kinase type 1 (90.86 ± 1.95 vs 67.34 ± 1.50; P < .01); downregulated the expression of inducible nitric oxide synthase (74.76 ± 1.48 vs 80.19 ± 0.28; P < .01); increased levels of superoxide dismutase (245.54 ± 12.98 vs 166.16 ± 21.42; P < .01), glutathione (0.699 ± 0.032 vs 0.514 ± 0.056; P < .01), and catalase (32.13 ± 2.33 vs 27.19 ± 2.72; P < .01); and decreased malondialdehyde (1.027 ± 0.039 vs 1.462 ± 0.055; P < .01). CONCLUSIONS Tetrandrine alleviated MCT-induced PAH through regulation of nitric oxide signaling pathway and antioxidant and antiproliferation effects.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Yongchao Yang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Science/Guangdong General Hospital, Guangzhou, Guangdong, China
| | - Dongpeng Yang
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Guang Tong
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Shanshan Lv
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Xi Lin
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Changfu Chen
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China
| | - Wenpeng Dong
- Department of Cardiovascular Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
James C, Millar J, Horton S, Brizard C, Molesworth C, Butt W. Nitric oxide administration during paediatric cardiopulmonary bypass: a randomised controlled trial. Intensive Care Med 2016; 42:1744-1752. [DOI: 10.1007/s00134-016-4420-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/09/2016] [Indexed: 12/24/2022]
|
11
|
Abstract
OBJECTIVES The purpose of this chapter is to outline the causes, physiology, pathophysiology, and management strategies for hydrostatic and permeability pulmonary edema and hypoxic respiratory failure. DATA SOURCE MEDLINE and PubMed. CONCLUSION The pulmonary parenchyma and vasculature are at high risk in conditions where injury occurs to the lung and or heart. A targeted approach that uses strategies that optimize the particular pathophysiology of the parenchyma and vasculature is required.
Collapse
|
12
|
Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock 2016; 43:504-11. [PMID: 25643010 DOI: 10.1097/shk.0000000000000316] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Inhaled nitric oxide (NO) has been reported to ameliorate ALI. However, reactive nitrogen species produced by NO can cause lung injury. Because hydrogen gas (H2) is reported to eliminate peroxynitrite, it is expected to reduce the adverse effects of NO. Moreover, we have found that H2 inhalation can attenuate lung injury. Therefore, we hypothesized that combination therapy with NO and H2 might afford more potent therapeutic strategies for ALI. In the present study, a mouse model of ALI was induced by intratracheal administration of lipopolysaccharide (LPS). The animals were treated with inhaled NO (20 ppm), H2 (2%), or NO + H2, starting 5 min after LPS administration for 3 h. We found that LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology and histologic scores, wet-to-dry weight ratio, and oxygenation index (ratio of oxygen tension to inspired oxygen fraction [Pao2/Fio2]), as well as total protein in the bronchoalveolar lavage fluid (BALF), which was attenuated by NO or H2 treatment alone. Combination therapy with NO and H2 had a more beneficial effect with significant interaction between the two. While the nitrotyrosine level in lung tissue was prominent after NO inhalation alone, it was significantly eliminated after breathing a mixture of NO with H2. Furthermore, NO or H2 treatment alone markedly attenuated LPS-induced lung neutrophil recruitment and inflammation, as evidenced by downregulation of lung myeloperoxidase activity, total cells, and polymorphonuclear neutrophils in BALF, as well as proinflammatory cytokines (tumor necrosis factor α, interleukins 1β and 6, and high-mobility group box 1) and chemokines (keratinocyte-derived chemokine, macrophage inflammatory proteins 1α and 2, and monocyte chemoattractant protein 1) in BALF. Combination therapy with NO and H2 had a more beneficial effect against lung inflammatory response. Moreover, combination therapy with NO and H2 could more effectively inhibit LPS-induced pulmonary early and late nuclear factor κB activation as well as pulmonary cell apoptosis. In addition, combination treatment with inhaled NO and H2 could also significantly attenuate lung injury in polymicrobial sepsis. Combination therapy with subthreshold concentrations of NO and H2 still had a significantly beneficial effect against lung injury induced by LPS and polymicrobial sepsis. Collectively, these results demonstrate that combination therapy with NO and H2 provides enhanced therapeutic efficacy for ALI.
Collapse
|
13
|
Cardio-Pulmonary-Renal Interactions: A Multidisciplinary Approach. J Am Coll Cardiol 2015; 65:2433-48. [PMID: 26046738 DOI: 10.1016/j.jacc.2015.04.024] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 12/16/2022]
Abstract
Over the past decade, science has greatly advanced our understanding of interdependent feedback mechanisms involving the heart, lung, and kidney. Organ injury is the consequence of maladaptive neurohormonal activation, oxidative stress, abnormal immune cell signaling, and a host of other mechanisms that precipitate adverse functional and structural changes. The presentation of interorgan crosstalk may include an acute, chronic, or acute on chronic timeframe. We review the current, state-of-the-art understanding of cardio-pulmonary-renal interactions and their related pathophysiology, perpetuating nature, and cycles of increased susceptibility and reciprocal progression. To this end, we present a multidisciplinary approach to frame the diverse spectrum of published observations on the topic. Assessment of organ functional reserve and use of biomarkers are valuable clinical strategies to screen and detect disease, assist in diagnosis, assess prognosis, and predict recovery or progression to chronic disease.
Collapse
|
14
|
Inhaled nitric oxide in cardiac surgery: Evidence or tradition? Nitric Oxide 2015; 49:67-79. [PMID: 26186889 DOI: 10.1016/j.niox.2015.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/08/2015] [Accepted: 06/25/2015] [Indexed: 12/15/2022]
Abstract
Inhaled nitric oxide (iNO) therapy as a selective pulmonary vasodilator in cardiac surgery has been one of the most significant pharmacological advances in managing pulmonary hemodynamics and life threatening right ventricular dysfunction and failure. However, this remarkable story has experienced a roller-coaster ride with high hopes and nearly universal demonstration of physiological benefits but disappointing translation of these benefits to harder clinical outcomes. Most of our understanding on the iNO field in cardiac surgery stems from small observational or single centre randomised trials and even the very few multicentre trials fail to ascertain strong evidence base. As a consequence, there are only weak clinical practice guidelines on the field and only European expert opinion for the use of iNO in routine and more specialised cardiac surgery such as heart and lung transplantation and left ventricular assist device (LVAD) insertion. In this review the authors from a specialised cardiac centre in the UK with a very high volume of iNO usage provide detailed information on the early observations leading to the European expert recommendations and reflect on the nature and background of these recommendations. We also provide a summary of the progress in each of the cardiac subspecialties for the last decade and initial survey data on the views of senior anaesthetic and intensive care colleagues on these recommendations. We conclude that the combination of high price tag associated with iNO therapy and lack of substantial clinical evidence is not sustainable on the current field and we are risking loosing this promising therapy from our daily practice. Overcoming the status quo will not be easy as there is not much room for controlled trials in heart transplantation or in the current atmosphere of LVAD implantation. However, we call for international cooperation to conduct definite studies to determine the place of iNO therapy in lung transplantation and high risk mitral surgery. This will require new collaboration between the pharmaceutical companies, national grant agencies and the clinical community. Until these trials are realized we should gather multi-institutional experience from large retrospective studies and prospective data from a new international registry. We must step up international efforts if we wish to maintain the iNO modality in the armamentarium of hemodynamic tools for the perioperative management of our high risk cardiac surgical patients.
Collapse
|
15
|
Year in review in Intensive Care Medicine 2014: II. ARDS, airway management, ventilation, adjuvants in sepsis, hepatic failure, symptoms assessment and management, palliative care and support for families, prognostication, organ donation, outcome, organisation and research methodology. Intensive Care Med 2015. [PMCID: PMC4383811 DOI: 10.1007/s00134-015-3707-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|