1
|
Bachmeier AT, Euler E, Bader R, Böcker W, Thaller PH. Novel method for determining bone dimensions relevant for longitudinal and transverse distraction osteogenesis and application in the human tibia and fibula. Ann Anat 2020; 234:151656. [PMID: 33278581 DOI: 10.1016/j.aanat.2020.151656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND In distraction osteogenesis (DO) of long bones, new bone tissue is formed and distracted to lengthen limbs or reconstruct bone defects. However, certain anthropometric quantities relevant for biomechanical modelling of DO are unknown, such as areas where new bone tissue is formed. We developed a novel method to facilitate the determination of these distraction areas (DA), which we applied in the tibia and fibula of adults for longitudinal and transverse DO to advance knowledge of anatomical boundary conditions. METHODS CT data sets of 21 adult human tibiae and 24 fibulae were selected for investigation. Volumetric models were created utilizing image segmentation. The DA for longitudinal DO was determined in a CAD environment using the total bone cross section in the proximal, central and distal diaphysis of the tibia and fibula. Additionally, the medullary canal area was determined in the fibula. Furthermore, we measured the total DA and medullary canal DA for transverse distraction using a longitudinally split fibula with an osteotomy length of 8, 12, 16 and 20 cm. The osteotomy plane was oriented in medial and anteromedial direction. Finally, Spearman analyses were conducted to assess the correlation between bone length and DA. RESULTS For longitudinal DO, the mean total DAs were 878, 535 and 482 mm2 in the tibia and 132, 153, 124 mm2 in the fibula for the proximal, central and distal diaphysis, respectively. Regarding transverse distraction, the mean total DAs for a medial and anteromedial osteotomy plane orientation were 962, 1423, 1868 and 2306 mm2 as well as 925, 1387, 1844, 2279 mm2 for an osteotomy length of 8, 12, 16 and 20 cm, respectively. Weak, positive, and non-significant correlations were observed when correlating bone length and DA in the tibia and fibula. CONCLUSIONS Quantification of DAs and hence distracted callus tissue in DO advances anatomical knowledge and improves biomechanical modelling by adding a parameter which cannot be approximated based on bone length.
Collapse
Affiliation(s)
- A T Bachmeier
- 3D-Surgery, Department of General, Trauma and Reconstructive Surgery, University Hospital LMU Munich, Munich, Germany; Biomechanics and Implant Technology Research Laboratory, University Medicine Rostock, Rostock, Germany.
| | - E Euler
- Department of General, Trauma and Reconstructive Surgery, University Hospital LMU Munich, Munich, Germany
| | - R Bader
- Biomechanics and Implant Technology Research Laboratory, University Medicine Rostock, Rostock, Germany
| | - W Böcker
- Department of General, Trauma and Reconstructive Surgery, University Hospital LMU Munich, Munich, Germany
| | - P H Thaller
- 3D-Surgery, Department of General, Trauma and Reconstructive Surgery, University Hospital LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Bjørnerem Å, Bui M, Wang X, Ghasem-Zadeh A, Hopper JL, Zebaze R, Seeman E. Genetic and environmental variances of bone microarchitecture and bone remodeling markers: a twin study. J Bone Miner Res 2015; 30:519-27. [PMID: 25407438 DOI: 10.1002/jbmr.2365] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/05/2014] [Accepted: 09/18/2014] [Indexed: 12/30/2022]
Abstract
All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size - void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high-resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold-based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ∼18%) for the distal tibial total, cortical, and medullary cross-sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p < 0.001). For the corresponding distal radius traits, genetic factors accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross-twin cross-trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ = 0.49) than DZ (rDZ = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle-aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than differences in their environment.
Collapse
Affiliation(s)
- Åshild Bjørnerem
- Department of Health and Care Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
3
|
Sirola J, Kröger H. Similarities in acquired factors related to postmenopausal osteoporosis and sarcopenia. J Osteoporos 2011; 2011:536735. [PMID: 21904688 PMCID: PMC3166567 DOI: 10.4061/2011/536735] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/29/2011] [Accepted: 07/01/2011] [Indexed: 12/15/2022] Open
Abstract
Postmenopausal population is at increased risk of musculoskeletal impairments. Sarcopenia and osteoporosis are associated with significant morbidity and social and health-care costs. These two conditions are uniquely linked with similarities in pathophysiology and diagnostic methods. Uniform diagnostic criteria for sarcopenia are still evolving. Postmenopausal sarcopenia and osteoporosis share many environmental risk- and preventive factors. Moreover, geriatric frailty syndrome may result from interaction of osteoporosis and sarcopenia and may lead to increased mortality. The present paper reviews the factors in evolution of postmenopausal sarcopenia and osteoporosis.
Collapse
Affiliation(s)
- Joonas Sirola
- Department of Orthopedics, Traumatology and Hand Surgery, Kuopio University Hospital, 70211 Kuopio, Finland
- Bone and Cartilage Research Unit (BCRU), University of Eastern Finland, 70211 Kuopio, Finland
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand Surgery, Kuopio University Hospital, 70211 Kuopio, Finland
- Bone and Cartilage Research Unit (BCRU), University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
4
|
Zhang F, Tan LJ, Lei SF, Deng HW. The differences of femoral neck geometric parameters: effects of age, gender and race. Osteoporos Int 2010; 21:1205-14. [PMID: 19802512 PMCID: PMC2921984 DOI: 10.1007/s00198-009-1057-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 08/10/2009] [Indexed: 12/01/2022]
Abstract
UNLABELLED This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter, cross-sectional area, cortical thickness, sectional modulus, and buckling ratio and found that the three factors would influence the FNGPs. INTRODUCTION Bone geometry is one of the most important predictors of bone strength and osteoporotic fractures. This study aims at investigating the effects of age, sex, and ethnicity on five femoral neck geometric parameters (FNGPs): femoral neck periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), sectional modulus (Z), and buckling ratio (BR). METHODS In the studied 861 Caucasian subjects and 3,021 Chinese individuals, CSA, CT, and Z displayed trends of decrease with age, but W and BR showed increasing trends with age in both Chinese and Caucasian females and males (p < 0.05). W, CSA, CT, and Z were significantly higher (p <or= 0.001) in Caucasians than in Chinese and higher in males than in females except for BR between Chinese males and Chinese females. CONCLUSION In conclusion, the differences of FNGPs according to gender and ethnicity provide important implications in the different prevalence of osteoporotic fracture among different gender and ethnic groups.
Collapse
Affiliation(s)
- F. Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
| | - L.-J. Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China
| | - S.-F. Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China. Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes St., Room M3-C03, Kansas City, MO 64108-2792, USA
| | - H.-W. Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China. Center of Systematic Biomedical Research, Shanghai University of Science and Technology, Shanghai, China. Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri-Kansas City, 2411 Holmes St., Room M3-C03, Kansas City, MO 64108-2792, USA
| |
Collapse
|
5
|
Hong X, Arguelles LM, Liu X, Tsai HJ, Hsu YH, Wang B, Zhang S, Li Z, Tang G, Liu X, Yang J, Xu X, Langman C, Wang X. Percent fat mass is inversely associated with bone mass and hip geometry in rural Chinese adolescents. J Bone Miner Res 2010; 25:1544-54. [PMID: 20200956 PMCID: PMC3153997 DOI: 10.1002/jbmr.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was an attempt to examine the phenotypic, genetic, and environmental correlations between percent fat mass (PFM) and bone parameters, especially hip geometry, among 786 males and 618 females aged 13 to 21 years from a Chinese twin cohort. PFM, bone area (BA), bone mineral content (BMC), cross-sectional area (CSA), and section modulus (SM) were obtained by dual-energy X-ray absorptiometry. Multiple linear regression models were used to assess the PFM-bone relationships. A structural equation model for twin design was used to estimate genetic/environmental influences on individual phenotype and phenotypic correlations. After controlling for body weight and other pertinent covariates, we observed inverse associations between PFM and bone parameters: Compared with the lowest age- and gender-specific tertile of PFM, males in the highest tertile of PFM had lower measures of whole-body-less-head BA (WB-BA), lumbar spine BA (L(2)-L(4)-BA), total-hip BA (TH-BA), total-hip BMC, CSA, and SM (p < .005 for all, adjusted p < .05). Similar inverse associations were observed in females for all the preceding parameters except WB-BA and L2-L(4)-BA. These associations did not vary significantly by Tanner stages. In both genders, the estimated heritabilities were 80% to 86% for BMC, 67% to 80% for BA, 74% to 77% for CSA, and 64% for SM. Both shared genetics and environmental factors contributed to the inverse PFM-bone correlations. We conclude that in this sample of relatively lean Chinese adolescents, at a given body weight, PFM is inversely associated with BA, BMC, and hip geometry in both genders, and such associations are attributed to both shared genetic and environmental factors.
Collapse
Affiliation(s)
- Xiumei Hong
- Mary Ann and J Milburn Smith Child Health Research Program, Department of Pediatrics, Northwestern University Feinberg School of Medicine and Children's Memorial Hospital and Children's Memorial Research Center, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu XH, Xiong DH, Liu XG, Guo Y, Chen Y, Zhao J, Recker RR, Deng HW. Association analyses of vitamin D-binding protein gene with compression strength index variation in Caucasian nuclear families. Osteoporos Int 2010; 21:99-107. [PMID: 19543766 PMCID: PMC2914268 DOI: 10.1007/s00198-009-0929-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 03/06/2009] [Indexed: 10/20/2022]
Abstract
UNLABELLED This study was conducted to test whether there exists an association between vitamin D-binding protein (DBP) gene and compression strength index (CSI) phenotype. Candidate gene association analyses were conducted in total sample, male subgroup, and female subgroup, respectively. Two single-nucleotide polymorphisms (SNPs) with significant association results were found in males, suggesting the importance of DBP gene polymorphisms on the variation in CSI especially in Caucasian males. INTRODUCTION CSI of the femoral neck (FN) is a newly developed phenotype integrating information about bone size, body size, and bone mineral density. It is considered to have the potential to improve the performance of risk assessment for hip fractures because it is based on a combination of phenotypic traits influencing hip fractures rather than a single trait. CSI is under moderate genetic determination (with a heritability of approximately 44% found in this study), but the relevant genetic study is still rather scarce. METHODS Based on the known physiological role of DBP in bone biology and the relatively high heritability of CSI, we tested 12 SNPs of the DBP gene for association with CSI variation in 405 Caucasian nuclear families comprising 1,873 subjects from the Midwestern US. Association analyses were performed in the total sample, male and female subgroups, respectively. RESULTS Significant associations with CSI were found with two SNPs (rs222029, P = 0.0019; rs222020, P = 0.0042) for the male subgroup. Haplotype-based association tests corroborated the single-SNP results. CONCLUSIONS Our findings suggest that the DBP gene might be one of the genetic factors influencing CSI phenotype in Caucasians, especially in males.
Collapse
Affiliation(s)
- X-H Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dong SS, Liu XG, Chen Y, Guo Y, Wang L, Zhao J, Xiong DH, Xu XH, Recker RR, Deng HW. Association analyses of RANKL/RANK/OPG gene polymorphisms with femoral neck compression strength index variation in Caucasians. Calcif Tissue Int 2009; 85:104-12. [PMID: 19458885 PMCID: PMC2916082 DOI: 10.1007/s00223-009-9255-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 04/09/2009] [Indexed: 01/17/2023]
Abstract
Femoral neck compression strength index (fCSI), a novel phenotypic parameter that integrates bone density, bone size, and body size, has significant potential to improve hip fracture risk assessment. The genetic factors underlying variations in fCSI, however, remain largely unknown. Given the important roles of the receptor activator of the nuclear factor-kappaB ligand/receptor activator of the nuclear factor-kappaB/osteoprotegerin (RANKL/RANK/OPG) pathway in the regulation of bone remodeling, we tested the associations between RANKL/RANK/OPG polymorphisms and variations in fCSI as well as its components (femoral neck bone mineral density [fBMD], femoral neck width [FNW], and weight). This was accomplished with a sample comprising 1873 subjects from 405 Caucasian nuclear families. Of the 37 total SNPs studied in these three genes, 3 SNPs, namely, rs12585014, rs7988338, and rs2148073, of RANKL were significantly associated with fCSI (P = 0.0007, 0.0007, and 0.0005, respectively) after conservative Bonferroni correction. Moreover, the three SNPs were approximately in complete linkage disequilibrium. Haplotype-based association tests corroborated the single-SNP results since haplotype 1 of block 1 of the RANKL gene achieved an even more significant association with fCSI (P = 0.0003) than any of the individual SNPs. However, we did not detect any significant associations of these genes with fBMD, FNW, or weight. In summary, our findings suggest that the RANKL gene may play an important role in variation in fCSI, independent of fBMD and non-fBMD components.
Collapse
Affiliation(s)
- Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Xiao-Gang Liu
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Yuan Chen
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Liang Wang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Jian Zhao
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Dong-Hai Xiong
- Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri—Kansas City, Kansas City, MO 64108, USA
| | - Xiang-Hong Xu
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Robert R. Recker
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, NE 68131, USA
| | - Hong-Wen Deng
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- College of Life Sciences and Engineering, Beijing Jiao Tong University, Beijing 100044, People’s Republic of China
- Departments of Orthopedic Surgery and Basic Medical Sciences, University of Missouri—Kansas City, 2411 Holmes Street, Room M3-C03, Kansas City, MO 64108-2792, USA,
| |
Collapse
|
8
|
Genetic and environmental influence on structural strength of weight-bearing and non-weight-bearing bone: a twin study. J Bone Miner Res 2008; 23:492-8. [PMID: 18072876 DOI: 10.1359/jbmr.071205] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED A bivariate genetic analysis among 217 older female twin pairs showed that, although the structural strength of tibia and radius are mainly regulated by same genetic and environmental factors, the tibia is more affected by environment. INTRODUCTION The habitual loading environment of the bone may modulate the relative contribution of genetic and environmental factors to bone structure. The purpose of this study was to estimate the contribution of the common and site-specific genetic and environmental factors to interindividual variation in compressive structural strength of the weight-bearing tibia and non-weight-bearing radius. MATERIALS AND METHODS pQCT scans were obtained from both members of 103 monozygotic (MZ) and 114 dizygotic (DZ) 63- to 76-yr-old female twin pairs to estimate the compressive strength of the distal tibia and distal radius. Quantitative genetic models were used to decompose the phenotypic variance into additive genetic, shared environmental, and individual environmental effects at each bone site and to study whether these bone sites share genetic or environmental effects. RESULTS The MZ and DZ twins did not differ in mean age, height, weight, or bone structural strength. The age-adjusted Cholesky model showed that additive genetic factors accounted for 83% (95% CI, 77-88%) of the variance in radial strength and 61% (95% CI, 52-69%) of the variance in tibial strength, and these were fully correlated. A shared environmental factor accounted for 15% (95% CI, 10-20%) of tibial strength. An individual environmental factor accounted for 17% (95% CI, 12-23%) of the variance in radial strength and 10% (95% CI, 5-17%) of the variance in tibial strength. The relative contribution of an individual environmental factor specific to tibial strength was 14% (95% CI, 11-18%). CONCLUSIONS The results suggest that, in older women, the majority of the individual differences in the compressive structural strength of the forearm and leg are regulated by genetic and environmental factors that are common to both bone sites. However, the relative importance of environmental factors was greater for the weight-bearing tibia than for the non-weight-bearing radius. Thus, the heritability of bone strength seems to vary between skeletal sites according to differences in the typical loading environment.
Collapse
|
9
|
Zhang ZL, He JW, Qin YJ, Hu YQ, Li M, Zhang H, Hu WW, Liu YJ, Gu JM. Association between myostatin gene polymorphisms and peak BMD variation in Chinese nuclear families. Osteoporos Int 2008; 19:39-47. [PMID: 17703271 DOI: 10.1007/s00198-007-0435-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/01/2007] [Indexed: 12/15/2022]
Abstract
UNLABELLED We identified 17 polymorphisms in myostatin by sequencing, and three informative single nucleotide polymorphisms (SNPs) were selected for further observation for their association with peak BMD of women in 401 Chinese nuclear families. Our results suggest that genetic polymorphisms in myostatin likely play a role in attainment of peak BMD in Chinese women. INTRODUCTION Myostatin is a TGF-beta family member that is a negative regulator of skeletal muscle growth. MATERIALS AND METHODS We identified SNPs in myostatin by direct sequencing. Furthermore, using a quantitative transmission disequilibrium test (QTDT). we tested and further test whether SNPs were associated with peak bone mineral density (BMD) variation at the spines and hips of 401 Chinese nuclear families. We identified 17 polymorphisms in myostatin by sequencing. Next, we selected three informative SNPs for further observation of an association with peak BMD of premenopausal women in 401 Chinese nuclear families. RESULTS Using QTDT for the within-family association, we found significant association between rs2293284 and total hip, femoral neck, and trochanter BMD (all p < 0.05), while rs7570532 was associated with total hip and trochanter BMD (p = 0.034 and p = 0.035, respectively). The within-family association was significant between BMI and +2278G > A (p = 0.022). Subsequent permutations were in agreement with these significant within-family association results. Moreover, analyses of the haplotypes confer further evidence for association of rs2293284 and rs7570532 with hip peak BMD variation. CONCLUSIONS These results suggest, for the first time, the genetic polymorphisms in myostatin likely play a role in attainment of peak BMD in Chinese women.
Collapse
Affiliation(s)
- Z-L Zhang
- The Department of Osteoporosis, Osteoporosis Research Unit, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 600 Yi-Shan Rd, Shanghai, 200233, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Karasik D, Dupuis J, Cupples LA, Beck TJ, Mahaney MC, Havill LM, Kiel DP, Demissie S. Bivariate linkage study of proximal hip geometry and body size indices: the Framingham study. Calcif Tissue Int 2007; 81:162-73. [PMID: 17674073 PMCID: PMC2376749 DOI: 10.1007/s00223-007-9052-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 06/13/2007] [Indexed: 02/05/2023]
Abstract
Femoral geometry and body size are both characterized by substantial heritability. The purpose of this study was to discern whether hip geometry and body size (height and body mass index, BMI) share quantitative trait loci (QTL). Dual-energy X-ray absorptiometric scans of the proximal femur from 1,473 members in 323 pedigrees (ages 31-96 years) from the Framingham Osteoporosis Study were studied. We measured femoral neck length, neck-shaft angle, subperiosteal width (outer diameter), cross-sectional bone area, and section modulus, at the narrowest section of the femoral neck (NN), intertrochanteric (IT), and femoral shaft (S) regions. In variance component analyses, genetic correlations (rho ( G )) between hip geometry traits and height ranged 0.30-0.59 and between hip geometry and BMI ranged 0.11-0.47. In a genomewide linkage scan with 636 markers, we obtained nominally suggestive linkages (bivariate LOD scores > or =1.9) for geometric traits and either height or BMI at several chromosomes (4, 6, 9, 15, and 21). Two loci, on chr. 2 (80 cM, BMI/shaft section modulus) and chr. X (height/shaft outer diameter), yielded bivariate LOD scores > or =3.0; although these loci were linked in univariate analyses with a geometric trait, neither was linked with either height or BMI. In conclusion, substantial genetic correlations were found between the femoral geometric traits, height and BMI. Linkage signals from bivariate linkage analyses of bone geometric indices and body size were similar to those obtained in univariate linkage analyses of femoral geometric traits, suggesting that most of the detected QTL primarily influence geometry of the hip.
Collapse
Affiliation(s)
- D Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, 1200 Centre Street, Boston, MA 02131, USA.
| | | | | | | | | | | | | | | |
Collapse
|