1
|
Chargo NJ, Neugebauer K, Guzior DV, Quinn RA, Parameswaran N, McCabe LR. Glucocorticoid-induced osteoporosis is prevented by dietary prune in female mice. Front Cell Dev Biol 2024; 11:1324649. [PMID: 38375074 PMCID: PMC10875082 DOI: 10.3389/fcell.2023.1324649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 02/21/2024] Open
Abstract
Glucocorticoid-induced osteoporosis (GIO) is a significant side effect of prolonged glucocorticoid (GC) treatment. Chronic GC treatment also leads to trabecular bone loss and gut microbiota dysbiosis in mice. The gut dysbiosis is mechanistically linked to GIO, which indicates that the microbiota can be targeted to prevent GIO. Prunes, a dried fruit and prebiotic, have emerged in the literature as an effective treatment for sex-steroid deficiency induced osteoporosis (primary osteoporosis). Prunes also significantly alter the composition of the gut microbiota in both rodent models and human studies. Therefore, we tested if dietary prune (DP) supplementation could prevent GC-induced bone loss and affect microbiota composition in an established model of GIO. Sixteen-week-old, skeletally mature, female C57BL/6J mice were treated with a subcutaneous 5 mg placebo or prednisolone pellet for 8 weeks and fed an AIN-93M control diet or a diet modified to include 5, 15, or 25% (w/w) dried California prune powder. As expected, GC treated mice developed significant trabecular bone loss in the distal femur. More importantly, as little as 5% DP supplementation effectively prevented trabecular bone loss. Further, dose dependent increases in trabecular bone volume fraction were observed in GC + 15% and GC + 25% DP mice. Amazingly, in the placebo (non-GC treated) groups, 25% DP supplementation caused a ∼3-fold increase in distal femur trabecular bone volume fraction; this sizable bone response has not been previously observed in healthy mice with gut targeted natural treatments. Along with the striking effect on bone health, GC treatment and 25% DP supplementation led to drastic shifts in gut microbiota composition and several specific changes are strongly associated with bone health. Taken together, these results are the first to demonstrate that DP supplementation effectively prevents the negative effects of prolonged GC therapy on trabecular bone health and strongly associates with shifts in the composition of the gut microbiota.
Collapse
Affiliation(s)
- Nicholas J. Chargo
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| | - Kerri Neugebauer
- Department of Plant Soil and Microbiology, Michigan State University, East Lansing, MI, United States
| | - Douglas V. Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Narayanan Parameswaran
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Laura R. McCabe
- Department of Physiology, Michigan State University, East Lansing, MI, United States
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
De Souza MJ, Strock NCA, Williams NI, Lee H, Koltun KJ, Rogers C, Ferruzzi MG, Nakatsu CH, Weaver C. Prunes preserve hip bone mineral density in a 12-month randomized controlled trial in postmenopausal women: the Prune Study. Am J Clin Nutr 2022; 116:897-910. [PMID: 35798020 DOI: 10.1093/ajcn/nqac189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Dietary consumption of prunes has favorable impacts on bone health, but more research is necessary to improve upon study designs and refine our understandings. OBJECTIVES We evaluated the effects of prunes (50 g or 100 g/d) on bone mineral density (BMD) in postmenopausal women during a 12-mo dietary intervention. Secondary outcomes include effects on bone biomarkers. METHODS The single-center, parallel-arm 12-mo randomized controlled trial tested the effects of 50 g and 100 g prunes compared with a control group on BMD (every 6 mo) and bone biomarkers in postmenopausal women. RESULTS In total, 235 women (age 62.1 ± 5.0 y) were randomly allocated into control (n = 78), 50-g prune (n = 79), or 100-g prune (n = 78) groups. Compliance was 90.2 ± 1.8% and 87.1 ± 2.1% in the 50-g and 100-g prune groups. Dropout was 22%; however, the dropout rate was 41% for the 100-g prune group (compared with other groups: 10%, control; 15%, 50 g prune; P < 0.001). A group × time interaction for total hip BMD was observed in control compared with 50-g prune groups (P < 0.05) but not in control compared with 100-g prune groups (P > 0.05). Total hip BMD decreased -1.1 ± 0.2% in the control group at 12 mo, whereas the 50-g prune group preserved BMD (-0.3 ± 0.2%) at 12 mo (P < 0.05). Although hip fracture risk (FRAX) worsened in the control group at 6 mo compared with baseline (10.3 ± 0.5% compared with 9.8 ± 0.5%, P < 0.05), FRAX score was maintained in the pooled (50 g + 100 g) prune groups. CONCLUSIONS A 50-g daily dose of prunes can prevent loss of total hip BMD in postmenopausal women after 6 mo, which persisted for 12 mo. Given that there was high compliance and retention at the 50-g dosage over 12 mo, we propose that the 50-g dose represents a valuable nonpharmacologic treatment strategy that can be used to preserve hip BMD in postmenopausal women and possibly reduce hip fracture risk. This trial was registered at clinicaltrials.gov as NCT02822378.
Collapse
Affiliation(s)
- Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nancy I Williams
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kristen J Koltun
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.,School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Connie Rogers
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Mario G Ferruzzi
- Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Connie Weaver
- Department of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
3
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
4
|
Smith BJ, Hatter B, Washburn K, Graef-Downard J, Ojo BA, El-Rassi GD, Cichewicz RH, Payton M, Lucas EA. Dried Plum's Polyphenolic Compounds and Carbohydrates Contribute to Its Osteoprotective Effects and Exhibit Prebiotic Activity in Estrogen Deficient C57BL/6 Mice. Nutrients 2022; 14:nu14091685. [PMID: 35565653 PMCID: PMC9102795 DOI: 10.3390/nu14091685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Evidence of dried plum’s benefits on bone continues to emerge. This study investigated the contribution of the fruit’s polyphenol (PP) and carbohydrate (CHO) components on a bone model of postmenopausal osteoporosis to explore their prebiotic activity. Osteopenic ovariectomized mice were fed diets supplemented with dried plum, a crude extract of dried plum’s polyphenolic compounds, or the PP or CHO fraction of the crude extract. The effects of treatments on the bone phenotype were assessed at 5 and 10 weeks as well as the prebiotic activity of the different components of dried plum. Both the CHO and PP fractions of the extract contributed to the effects on bone with the CHO suppressing bone formation and resorption, and the PP temporally down-regulating formation. The PP and CHO components also altered the gut microbiota and cecal short chain fatty acids. These findings demonstrate that the CHO as well as the PP components of dried plum have potential prebiotic activity, but they have differential roles in mediating the alterations in bone formation and resorption that protect bone in estrogen deficiency.
Collapse
Affiliation(s)
- Brenda J. Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (B.H.); (K.W.); (B.A.O.); (E.A.L.)
- Correspondence:
| | - Bethany Hatter
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (B.H.); (K.W.); (B.A.O.); (E.A.L.)
| | - Karley Washburn
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (B.H.); (K.W.); (B.A.O.); (E.A.L.)
| | - Jennifer Graef-Downard
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA;
| | - Babajide A. Ojo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (B.H.); (K.W.); (B.A.O.); (E.A.L.)
| | | | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA;
| | - Mark Payton
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80134, USA;
| | - Edralin A. Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA; (B.H.); (K.W.); (B.A.O.); (E.A.L.)
| |
Collapse
|
5
|
George KS, Munoz J, Ormsbee LT, Akhavan NS, Foley EM, Siebert SC, Kim JS, Hickner RC, Arjmandi BH. The Short-Term Effect of Prunes in Improving Bone in Men. Nutrients 2022; 14:nu14020276. [PMID: 35057457 PMCID: PMC8779167 DOI: 10.3390/nu14020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoporosis is a major health concern in aging populations, where 54% of the U.S. population aged 50 and older have low bone mineral density (BMD). Increases in inflammation and oxidative stress play a major role in the development of osteoporosis. Men are at a greater risk of mortality due to osteoporosis-related fractures. Our earlier findings in rodent male and female models of osteoporosis, as well as postmenopausal women strongly suggest the efficacy of prunes (dried plum) in reducing inflammation and preventing/reversing bone loss. The objective of this study was to examine the effects of two doses of prunes, daily, on biomarkers of inflammation and bone metabolism in men with some degree of bone loss (BMD; t-score between −0.1 and −2.5 SD), for three months. Thirty-five men between the ages of 55 and 80 years were randomized into one of three groups: 100 g prunes, 50 g prunes, or control. Consumption of 100 g prunes led to a significant decrease in serum osteocalcin (p < 0.001). Consumption of 50 g prunes led to significant decreases in serum osteoprotegerin (OPG) (p = 0.003) and serum osteocalcin (p = 0.040), and an increase in the OPG:RANKL ratio (p = 0.041). Regular consumption of either 100 g or 50 g prunes for three months may positively affect bone turnover.
Collapse
Affiliation(s)
- Kelli S. George
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA;
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
| | - Joseph Munoz
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
| | - Lauren T. Ormsbee
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
| | - Neda S. Akhavan
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA;
| | - Elizabeth M. Foley
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Shalom C. Siebert
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
| | - Jeong-Su Kim
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA;
| | - Robert C. Hickner
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA;
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA
| | - Bahram H. Arjmandi
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL 32304, USA; (J.M.); (L.T.O.); (N.S.A.); (S.C.S.); (J.-S.K.)
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32304, USA;
- Correspondence:
| |
Collapse
|
6
|
Hooshmand S, Gaffen D, Eisner A, Fajardo J, Payton M, Kern M. Effects of 12 Months Consumption of 100 g Dried Plum (Prunes) on Bone Biomarkers, Density, and Strength in Men. J Med Food 2021; 25:40-47. [PMID: 34714130 DOI: 10.1089/jmf.2021.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several male animal studies have demonstrated bone-protective effects of dried plum; however, no human male study has evaluated the effect of dried plum on bone health. We conducted a randomized controlled clinical study to test if daily inclusion of 100 g of dried plum in the diet positively influenced bone mineral density (BMD), bone strength, and bone biomarkers in men. Sixty-six men were randomly assigned to one of two daily treatment groups: (1) control (0 g dried plum) or (2) 100 g dried plum. Blood samples were collected at baseline and after 3, 6, and 12 months to assess bone biomarkers. Bone was measured at baseline and after 6 and 12 months via dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Tartrate-resistant acid phosphatase-5b (TRAP5b) and C-terminal collagen cross-link (CTX) levels decreased significantly in the dried plum group at 3-, 6-, and 12-month intervals compared with baseline. No changes were observed in the control group for TRAP5b and CTX levels. Bone-specific alkaline phosphatase levels decreased significantly after 6 and 12 months in the control and dried plum groups. BMD for total body, spine (L1-L4), hip, and ulna did not change in the control and dried plum groups from baseline to 6 or 12 months. In the proximal tibia, endosteal circumferences increased significantly within the dried plum group during the course of treatment. The results suggest that daily consumption of 100 g dried plum for 12 months has modest bone-protective effects in men. ClinicalTrials.gov identifier: NCT04720833.
Collapse
Affiliation(s)
- Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Danielle Gaffen
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Ashley Eisner
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Jonnatan Fajardo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | - Mark Payton
- Department of Statistics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| |
Collapse
|
7
|
Słupski W, Jawień P, Nowak B. Botanicals in Postmenopausal Osteoporosis. Nutrients 2021; 13:nu13051609. [PMID: 34064936 PMCID: PMC8151026 DOI: 10.3390/nu13051609] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by reduced bone mass and the deterioration of bone microarchitecture leading to bone fragility and an increased risk of fractures. Conventional anti-osteoporotic pharmaceutics are effective in the treatment and prophylaxis of osteoporosis, however they are associated with various side effects that push many women into seeking botanicals as an alternative therapy. Traditional folk medicine is a rich source of bioactive compounds waiting for discovery and investigation that might be used in those patients, and therefore botanicals have recently received increasing attention. The aim of this review of literature is to present the comprehensive information about plant-derived compounds that might be used to maintain bone health in perimenopausal and postmenopausal females.
Collapse
|
8
|
Sakaki JR, Melough MM, Chun OK. Anthocyanins and anthocyanin-rich food as antioxidants in bone pathology. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Callahan AM, Dardick CD, Scorza R. Multilocation comparison of fruit composition for 'HoneySweet', an RNAi based plum pox virus resistant plum. PLoS One 2019; 14:e0213993. [PMID: 30901368 PMCID: PMC6430400 DOI: 10.1371/journal.pone.0213993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
'HoneySweet', a transgenic plum (Prunus domestica) resistant to plum pox virus through RNAi, was deregulated in the U.S. in 2011. The compositional study of 'HoneySweet' fruit was expanded to include locations outside of the US as well as utilizing a wide variety of comparators and different collection years to see the variability possible. The results revealed that plums have a wide variation in composition and that variation among locations was greater than variation among cultivars. This was also the case for different years at one location. The results supported the supposition that the transgene and insertion event had no significant effect on the composition of 'HoneySweet' fruit even under virus pressure, and that it fell in the normal range of composition of commercially grown plums. It also suggested that the effect of environment is as great as that of genetics on the fruit composition of plums.
Collapse
Affiliation(s)
- Ann M. Callahan
- United States Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| | - Chris D. Dardick
- United States Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| | - Ralph Scorza
- United States Department of Agriculture, Agriculture Research Service, Appalachian Fruit Research Station, Kearneysville, West Virginia, United States of America
| |
Collapse
|
10
|
Jayusman PA, Mohamed IN, Alias E, Mohamed N, Shuid AN. The Effects of Quassinoid-Rich Eurycoma longifolia Extract on Bone Turnover and Histomorphometry Indices in the Androgen-Deficient Osteoporosis Rat Model. Nutrients 2018; 10:E799. [PMID: 29933617 PMCID: PMC6073572 DOI: 10.3390/nu10070799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022] Open
Abstract
Male osteoporosis is associated with higher rates of disability and mortality. Hence the search for suitable intervention and treatment to prevent the degeneration of skeletal health in men is necessary. Eurycoma longifolia (EL), a traditional plant with aphrodisiac potential may be used to treat and prevent male osteoporosis. The skeletal protective effect of quassinoid-rich EL extract, which has a high content of eurycomanone, has not been studied. This study aimed to determine whether EL could prevent skeletal deteriorations in gonadal hormone-deficient male rats. Ninety-six male Sprague⁻Dawley rats were randomly assigned to baseline, sham-operated (Sham), orchidectomised or chemically castrated groups. Chemical castration was achieved via subcutaneous injection of degarelix at 2 mg/kg. The orchidectomised and degarelix-castrated rats were then divided into negative control groups (ORX, DGX), testosterone-treated groups (intramuscular injection at 7 mg/kg weekly) (ORX + TES, DGX + TES), and EL-supplemented groups receiving daily oral gavages at doses of 25 mg/kg (ORX + EL25, DGX + EL25), 50 mg/kg (ORX + EL50, DGX + EL50), and 100 mg/kg (ORX + EL100, DGX + EL100). Following 10 weeks of treatment, the rats were euthanized and their blood and femora were collected. Bone biochemical markers, serum testosterone, osteoprotegerin (OPG), and receptor activator of nuclear factor kappa β-ligand (RANKL) levels and histomorphometric indices were evaluated. Quassinoid-rich EL supplementation was found to reduce degenerative changes of trabecular structure by improving bone volume, trabecular number, and separation. A reduction in the percentage of osteoclast and increase in percentage of osteoblast on bone surface were also seen with EL supplementation. Dynamic histomorphometric analysis showed that the single-labeled surface was significantly decreased while the double-labeled surface was significantly increased with EL supplementations. There was a marginal but significant increase in serum testosterone levels in the ORX + EL25, DGX + EL50, and DGX + EL100 groups compared to their negative control groups. Quassinoid-rich EL extract was effective in reducing skeletal deteriorations in the androgen-deficient osteoporosis rat model.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Graef JL, Ouyang P, Wang Y, Rendina-Ruedy E, Lerner MR, Marlow D, Lucas EA, Smith BJ. Dried Plum Polyphenolic Extract Combined with Vitamin K and Potassium Restores Trabecular and Cortical Bone in Osteopenic Model of Postmenopausal Bone Loss. J Funct Foods 2018; 42:262-270. [PMID: 30319713 DOI: 10.1016/j.jff.2017.12.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dried plum has unique anabolic effects on bone, but the responsible bioactive components have remained unclear. This study investigated components of dried plum with potential osteoprotective activity utilizing aged, osteopenic Sprague Dawley rats fed diets supplemented with a crude polyphenol extract, potassium, vitamin K or their combination. Whole body and femoral bone mineral density were restored with the polyphenol and combination treatments to a similar extent as the dried fruit. The combination treatment reversed trabecular bone loss in the spine and cortical bone in the femur mid-diaphysis in a similar manner. Biomarkers of bone resorption were reduced by the polyphenol and combination treatments. The polyphenol extract accounted for most of the anabolic effect of dried plum on bone. This study is the first to show the bioactive components in dried plum responsible for restoring bone in vivo.
Collapse
Affiliation(s)
- Jennifer L Graef
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Ping Ouyang
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Yan Wang
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Elizabeth Rendina-Ruedy
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Megan R Lerner
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Denver Marlow
- Comparative Medicine Group, Kansas State University, Manhattan, KS 66506
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, 301 Human Sciences, Stillwater, OK 74078
| |
Collapse
|
12
|
Jayusman PA, Mohamed IN, Alias E, Dom SM, Shuid AN. Effects of standardized quassinoid-rich Eurycoma longifolia extract in a rat model of osteoporosis due to testosterone deficiency: A densitometric, morphometric and biomechanical study. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2018; 26:643-656. [PMID: 29689767 DOI: 10.3233/xst-17366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND Eurycoma longifolia (EL) is a well-known aphrodisiac herb for men. Recently, the crude extract of EL was reported to possess anti-osteoporotic activities. OBJECTIVE This study aims to determine the bone protective effects of the standardized quassinoid-rich EL extract in testosterone-deficient rat model. METHODS Ninety-six intact male Sprague-Dawley rats were randomized into baseline, sham, orchidectomized, and chemically castrated groups. Chemical castration was performed via subcutaneous injection of degarelix at 2 mg/kg. The orchidectomized and degarelix-induced rats were administered with vehicle, intramuscularly injected with testosterone once a week, or orally supplemented with EL extract at doses of 25 mg/kg, 50 mg/kg or 100 mg/kg daily for 10 weeks. Bone mass, microarchitecture and strength were analyzed by dual-energy x-ray absorptiometry (DEXA), micro-CT and three-point bending test. RESULTS Whole body bone mineral density and femoral bone mineral content significantly increased in testosterone groups (p < 0.05). Micro-CT analysis revealed that trabecular bone volume, number, separation and connectivity density were significantly improved by testosterone administration. However, the structural model index was only improved in degarelix group supplemented with 100 mg/kg EL extract (P < 0.05). The improvement of cortical thickness by EL extract was similar to that of testosterone groups (p < 0.05). Biomechanically, EL extract supplementation was able to improve stiffness, strain and modulus of elasticity in degarelix-induced groups, while stress parameter was significantly improved in orchidectomized groups (p < 0.05). CONCLUSION Quassinoid-rich EL extract enables to protect against bone loss due to testosterone deficiency. The protective effect on cortical thickness and biomechanical parameters is comparable to testosterone group.
Collapse
Affiliation(s)
- Putri Ayu Jayusman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Sulaiman Md Dom
- Department of Medical Imaging, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam, Selangor, Malaysia
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Mirza F, Lorenzo J, Drissi H, Lee FY, Soung DY. Dried plum alleviates symptoms of inflammatory arthritis in TNF transgenic mice. J Nutr Biochem 2017; 52:54-61. [PMID: 29149648 DOI: 10.1016/j.jnutbio.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/24/2017] [Accepted: 10/14/2017] [Indexed: 12/20/2022]
Abstract
Dried plum (DP), a rich source of polyphenols has been shown to have bone-preserving properties in both animal models of osteoporosis and postmenopausal women. We evaluated if DP alleviated the destruction of joints in transgenic mice (TG) that overexpress human tumor necrosis factor (TNF), a genetic model of rheumatoid arthritis (RA). A four-week treatment of 20% DP diet in TG slowed the onset of arthritis and reduced bone erosions in the joints compared to TG on a regular diet. This was associated with fewer tartrate-resistant acid phosphatase (TRAP) positive cells, suggesting decreased osteoclastogenesis. A DP diet also produced significant protection of articular cartilage and reduction of synovitis. Cultures of human synovial fibroblast in the presence of TNF showed a significant increase in inflammatory interleukin (IL)-1β, chemokines (monocyte chemoattractant protein-1: MCP1 & macrophage inflammatory protein-1 alpha: MIP1α), cartilage matrix metalloproteinases (MMP1&3), and an osteoclastogenic cytokine (receptor activator of nuclear factor-κB ligand: RANKL) compared to controls. Addition of neochlorogenic acid (NC), a major polyphenol in DP to these cultures resulted in down-regulation of these genes. In the cultures of mouse bone marrow macrophage, NC also repressed TNF-induced formation of osteoclasts and mRNA levels of cathepsin K and MMP9 through inhibition of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) expression and nuclear factor kappa B (NF-κB) activation. Our data suggested that dietary supplementation with DP inhibited TNF singling; leading to decreased erosions of bone and articular cartilage as well as synovitis.
Collapse
Affiliation(s)
- Faryal Mirza
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Joseph Lorenzo
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA; Orthopaedic Surgery, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Hicham Drissi
- Genetics and Genome Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA; Orthopaedic Surgery, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation, Yale University, 800 Howard Avenue, New Haven, CT 06519, USA
| | - Do Y Soung
- Department of Orthpaedic Surgery, Columbia University, 650 W. 168th Street, Black Building 14-1410, New York, NY 10032, USA.
| |
Collapse
|
14
|
Graef JL, Rendina-Ruedy E, Crockett EK, Ouyang P, Wu L, King JB, Cichewicz RH, Lin D, Lucas EA, Smith BJ. Osteoclast Differentiation is Downregulated by Select Polyphenolic Fractions from Dried Plum via Suppression of MAPKs and Nfatc1 in Mouse C57BL/6 Primary Bone Marrow Cells. Curr Dev Nutr 2017; 1:e000406. [PMID: 29955675 PMCID: PMC5998775 DOI: 10.3945/cdn.117.000406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/08/2017] [Accepted: 09/06/2017] [Indexed: 02/04/2023] Open
Abstract
Background: Clinical and preclinical studies have shown that dietary supplementation with dried plum improves bone health. These osteoprotective effects are a result, in part, of the antiresorptive properties of the fruit, which appear to be mediated by its polyphenolic compounds. Objective: This study was designed to determine if certain fractions of the polyphenolic compounds in dried plums are responsible for the antiresorptive effects and whether they alter mitogen-activated protein kinase (MAPK) and calcium signaling, which are essential to osteoclast differentiation and activity, under normal and inflammatory conditions. Methods: Six polyphenolic fractions were derived from the total polyphenolic extract of dried plum based on solubility. Initial screening, with the use of the Raw 264.7 monocyte and macrophage cell line, showed that 3 fractions had the most marked capacity to downregulate osteoclast differentiation. This response was confirmed in 2 of the fractions by using primary bone marrow-derived cultures and in all subsequent experiments to determine how osteoclast differentiation and function were altered with a focus on these 2 fractions in primary cultures. Data were analyzed by using ANOVA followed by post hoc analyses. Results: Both of the polyphenol fractions decreased osteoclast differentiation and activity coincident with downregulating nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1 (Nfatc1), which is required for osteoclast differentiation. Calcium signaling, essential for the auto-amplification of Nfatc1, was suppressed by the polyphenolic fractions under normal conditions as indicated by suppressed mRNA expression of costimulatory receptors osteoclast-associated receptor (Oscar), signaling regulatory protein β1 (Sirpb1), and triggering receptor expressed on myeloid cells 2 (Trem2). In contrast, in the presence of tumor necrosis factor α (TNF-α), only Sirpb1 was downregulated. In addition to calcium signaling, phosphorylation of extracellular signal-regulated kinase (Erk) and p38 MAPK, involved in the expression and activation of Nfatc1, was also suppressed by the polyphenolic fractions. Conclusion: These results show that certain types of polyphenolic compounds from dried plum downregulate calcium and MAPK signaling, resulting in suppression of Nfatc1 expression, which ultimately decreases osteoclast formation and activity.
Collapse
Affiliation(s)
- Jennifer L Graef
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| | | | - Erica K Crockett
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| | - Ping Ouyang
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| | - Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| | - Jarrod B King
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK
| |
Collapse
|
15
|
Delgado Cuenca P, Almaiman L, Schenk S, Kern M, Hooshmand S. Dried Plum Ingestion Increases the Osteoblastogenic Capacity of Human Serum. J Med Food 2017; 20:653-658. [PMID: 28445075 DOI: 10.1089/jmf.2016.0158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In cell culture studies, dried plum (Prunus domestica L.) polyphenols increased osteoblast alkaline phosphatase (ALP) activity, mineralized nodule formation, and the expression of the bone marker genes runt-related transcription factor 2 (RUNX2) and osterix. The purpose of this study was to determine whether human serum collected 1 and 2 h after dried plum ingestion influenced osteoblast cell activity and gene expression. Five healthy women ingested 100 g of dried plum, and serum samples were collected at baseline (before dried plum ingestion) and 1 and 2 h postingestion of dried plum. MC3T3-E1 osteoblast cells were treated (2% of medium) with these serum samples for 3 or 9 days. Intracellular and extracellular ALP activities were significantly increased after 3 or 9 days of treatment with serum both postingestion time points, with no effect seen in baseline samples. Also, serum obtained 1 and 2 h postingestion significantly increased the mRNA expression of bone markers RUNX2 and connexin43 (CX43) after both 3 and 9 days of incubation periods. Finally, serum obtained 1 and 2 h postingestion increased the mRNA expression of β-catenin after 9 days of incubation. We conclude that osteoblast activity and function are increased by dried plum ingestion, which may, in part, explain its beneficial effects on bone health.
Collapse
Affiliation(s)
- Paulina Delgado Cuenca
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| | - Lama Almaiman
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| | - Simon Schenk
- 2 Department of Orthopedic Surgery, University of California San Diego , La Jolla, California, USA
| | - Mark Kern
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| | - Shirin Hooshmand
- 1 School of Exercise and Nutritional Sciences, San Diego State University , San Diego, California, USA
| |
Collapse
|
16
|
Mzid M, Badraoui R, Khedir SB, Sahnoun Z, Rebai T. Protective effect of ethanolic extract of Urtica urens L. against the toxicity of imidacloprid on bone remodeling in rats and antioxidant activities. Biomed Pharmacother 2017; 91:1022-1041. [DOI: 10.1016/j.biopha.2017.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022] Open
|
17
|
Wallace TC. Dried Plums, Prunes and Bone Health: A Comprehensive Review. Nutrients 2017; 9:nu9040401. [PMID: 28422064 PMCID: PMC5409740 DOI: 10.3390/nu9040401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/23/2023] Open
Abstract
The 2015–2020 Dietary Guidelines for Americans advocate for increasing fruit intake and replacing energy-dense foods with those that are nutrient-dense. Nutrition across the lifespan is pivotal for the healthy development and maintenance of bone. The National Osteoporosis Foundation estimates that over half of Americans age 50+ have either osteoporosis or low bone mass. Dried plums, also commonly referred to as prunes, have a unique nutrient and dietary bioactive profile and are suggested to exert beneficial effects on bone. To further elucidate and summarize the potential mechanisms and effects of dried plums on bone health, a comprehensive review of the scientific literature was conducted. The PubMed database was searched through 24 January 2017 for all cell, animal, population and clinical studies that examined the effects of dried plums and/or extracts of the former on markers of bone health. Twenty-four studies were included in the review and summarized in table form. The beneficial effects of dried plums on bone health may be in part due to the variety of phenolics present in the fruit. Animal and cell studies suggest that dried plums and/or their extracts enhance bone formation and inhibit bone resorption through their actions on cell signaling pathways that influence osteoblast and osteoclast differentiation. These studies are consistent with clinical studies that show that dried plums may exert beneficial effects on bone mineral density (BMD). Long-term prospective cohort studies using fractures and BMD as primary endpoints are needed to confirm the effects of smaller clinical, animal and mechanistic studies. Clinical and prospective cohort studies in men are also needed, since they represent roughly 29% of fractures, and likewise, diverse race and ethnic groups. No adverse effects were noted among any of the studies included in this comprehensive review. While the data are not completely consistent, this review suggests that postmenopausal women may safely consume dried plums as part of their fruit intake recommendations given their potential to have protective effects on bone loss.
Collapse
Affiliation(s)
- Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA.
- Think Healthy Group, Inc., Washington, DC 20001, USA.
| |
Collapse
|
18
|
Michalska A, Wojdyło A, Łysiak GP, Figiel A. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations. Int J Mol Sci 2017; 18:ijms18010176. [PMID: 28106740 PMCID: PMC5297808 DOI: 10.3390/ijms18010176] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 01/31/2023] Open
Abstract
Among popular crops, plum (Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar “Valor”) juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders.
Collapse
Affiliation(s)
- Anna Michalska
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Cereals Technology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| | | | - Adam Figiel
- Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland.
| |
Collapse
|
19
|
Hooshmand S, Kern M, Metti D, Shamloufard P, Chai SC, Johnson SA, Payton ME, Arjmandi BH. The effect of two doses of dried plum on bone density and bone biomarkers in osteopenic postmenopausal women: a randomized, controlled trial. Osteoporos Int 2016; 27:2271-2279. [PMID: 26902092 DOI: 10.1007/s00198-016-3524-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Daily consumption of 50 g of dried plum (equivalent to 5-6 dried plums) for 6 months may be as effective as 100 g of dried plum in preventing bone loss in older, osteopenic postmenopausal women. To some extent, these results may be attributed to the inhibition of bone resorption with the concurrent maintenance of bone formation. INTRODUCTION The objective of our current study was to examine the possible dose-dependent effects of dried plum in preventing bone loss in older osteopenic postmenopausal women. METHODS Forty-eight osteopenic women (65-79 years old) were randomly assigned into one of three treatment groups for 6 months: (1) 50 g of dried plum; (2) 100 g of dried plum; and (3) control. Total body, hip, and lumbar bone mineral density (BMD) were evaluated at baseline and 6 months using dual-energy X-ray absorptiometry. Blood biomarkers including bone-specific alkaline phosphatase (BAP), tartrate-resistant acid phosphatase (TRAP-5b), high-sensitivity C-reactive protein (hs-CRP), insulin-like growth factor-1 (IGF-1), and sclerostin were measured at baseline, 3 months, and 6 months. Osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), calcium, phosphorous, and vitamin D were measured at baseline and 6 months. RESULTS Both doses of dried plum were able to prevent the loss of total body BMD compared with that of the control group (P < 0.05). TRAP-5b, a marker of bone resorption, decreased at 3 months and this was sustained at 6 months in both 50 and 100 g dried plum groups (P < 0.01 and P < 0.04, respectively). Although there were no significant changes in BAP for either of the dried plum groups, the BAP/TRAP-5b ratio was significantly (P < 0.05) greater at 6 months in both dried plum groups whereas there were no changes in the control group. CONCLUSIONS These results confirm the ability of dried plum to prevent the loss of total body BMD in older osteopenic postmenopausal women and suggest that a lower dose of dried plum (i.e., 50 g) may be as effective as 100 g of dried plum in preventing bone loss in older, osteopenic postmenopausal women. This may be due, in part, to the ability of dried plums to inhibit bone resorption. This clinical trial was registered at ClinicalTrials.gov: NCT02325895 .
Collapse
Affiliation(s)
- S Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-7251, USA.
| | - M Kern
- School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-7251, USA
| | - D Metti
- School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-7251, USA
| | - P Shamloufard
- School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-7251, USA
| | - S C Chai
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE, USA
| | - S A Johnson
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - M E Payton
- Department of Statistics, Oklahoma State University, Stillwater, OK, USA
| | - B H Arjmandi
- Center for Advancing Exercise and Nutrition Research on Aging, Florida State University, Tallahassee, FL, USA
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
20
|
Shahnazari M, Turner RT, Iwaniec UT, Wronski TJ, Li M, Ferruzzi MG, Nissenson RA, Halloran BP. Dietary dried plum increases bone mass, suppresses proinflammatory cytokines and promotes attainment of peak bone mass in male mice. J Nutr Biochem 2016; 34:73-82. [PMID: 27239754 DOI: 10.1016/j.jnutbio.2016.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/09/2022]
Abstract
Nutrition is an important determinant of bone health and attainment of peak bone mass. Diets containing dried plum (DP) have been shown to increase bone volume and strength. These effects may be linked to the immune system and DP-specific polyphenols. To better understand these relationships, we studied DP in skeletally mature (6-month-old) and growing (1- and 2-month-old) C57Bl/6 male mice. In adult mice, DP rapidly (<2 weeks) increased bone volume (+32%) and trabecular thickness (+24%). These changes were associated with decreased osteoclast surface (Oc.S/BS) and decreased serum CTX, a marker of bone resorption. The reduction in Oc.S/BS was associated with a reduction in the osteoclast precursor pool. Osteoblast surface (Ob.S/BS) and bone formation rate were also decreased suggesting that the gain in bone in adult mice is a consequence of diminished bone resorption and formation, but resorption is reduced more than formation. The effects of DP on bone were accompanied by a decline in interleukins, TNF and MCP-1, suggesting that DP is acting in part through the immune system to suppress inflammatory activity and reduce the size of the osteoclast precursor pool. Feeding DP was accompanied by an increase in plasma phenolics, some of which have been shown to stimulate bone accrual. In growing and young adult mice DP at levels as low as 5% of diet (w/w) increased bone volume. At higher levels (DP 25%), bone volume was increased by as much as 94%. These data demonstrate that DP feeding dramatically increases peak bone mass during growth.
Collapse
Affiliation(s)
- Mohammad Shahnazari
- Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA.
| | - Russell T Turner
- Skeletal Biology Laboratory, College of Public Health and Human Science, Oregon State University, Corvallis, OR
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, College of Public Health and Human Science, Oregon State University, Corvallis, OR
| | - Thomas J Wronski
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Min Li
- Departments of Food Science and Nutrition Science, Purdue University, West Lafayette, IN
| | - Mario G Ferruzzi
- Departments of Food Science and Nutrition Science, Purdue University, West Lafayette, IN
| | - Robert A Nissenson
- Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA
| | - Bernard P Halloran
- Veterans Affairs Medical Center, and Department of Medicine, University of California, San Francisco, CA
| |
Collapse
|
21
|
Igwe EO, Charlton KE. A Systematic Review on the Health Effects of Plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30:701-31. [PMID: 26992121 DOI: 10.1002/ptr.5581] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/30/2015] [Accepted: 01/09/2016] [Indexed: 12/16/2022]
Abstract
In recent times, plums have been described as foods with health-promoting properties. Research on the health effects of plum continue to show promising results on its antiinflammatory, antioxidant and memory-improving characteristics. The increased interest in plum research has been attributed to its high phenolic content, mostly the anthocyanins, which are known to be natural antioxidants. A systematic review of literature was carried out to summarize the available evidence on the impact of plums (Prunus species; domestica and salicina) on disease risk factors and health outcomes. A number of databases were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for relevant studies on plum health effects in vitro, animal studies and clinical trials. A total of 73 relevant peer-reviewed journal articles were included in this review. The level of evidence remains low. Of the 25 human studies, 6 were confirmatory studies of moderate quality, while 19 were exploratory. Plums have been shown to possess antioxidant and antiallergic properties, and consumption is associated with improved cognitive function, bone health parameters and cardiovascular risk factors. Most of the human trials used the dried version of plums rather than fresh fruit, thus limiting translation to dietary messages of the positioning of plums in a healthy diet. Evidence on the health effect of plums has not been extensively studied, and the available evidence needs further confirmation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ezinne O Igwe
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| | - Karen E Charlton
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
22
|
|
23
|
Hooshmand S, Kumar A, Zhang JY, Johnson SA, Chai SC, Arjmandi BH. Evidence for anti-inflammatory and antioxidative properties of dried plum polyphenols in macrophage RAW 264.7 cells. Food Funct 2016; 6:1719-25. [PMID: 25921826 DOI: 10.1039/c5fo00173k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study presents the anti-inflammatory and antioxidative properties of dried plum (Prunus domestica L.) polyphenols in macrophage RAW 264.7 cells. We hypothesized that dried plum polyphenols have strong anti-inflammatory and antioxidant properties against lipopolysaccharide (LPS)-induced production of the pro-inflammatory markers, nitric oxide (NO) and cyclooxygenase-2 (COX-2), and the lipid peroxidation product, malondialdehyde, in activated macrophage RAW 264.7 cells. To test this hypothesis, macrophage RAW 264.7 cells were stimulated with either 1 μg ml(-1) (for measurement of NO production) or 1 ng ml(-1) (for measurement of COX-2 expression) of LPS to induce inflammation and were treated with different doses of dried plum polyphenols (0.0, 0.1, 1, 10, 100 and 1000 μg ml(-1)). Dried plum polyphenols at a dose of 1000 μg ml(-1) was able to significantly (P < 0.05) reduce NO production by 43%. Additionally, LPS-induced expression of COX-2 was significantly (P < 0.05) reduced by 100 and 1000 μg ml(-1) dried plum polyphenols. To investigate the antioxidant activity of dried plum polyphenols, macrophage RAW 264.7 cells were stimulated with 100 μg ml(-1) of FeSO4 + 1 mM ml(-1) of H2O2 to induce lipid peroxidation. Dried plum polyphenols at a dose of 1000 μg ml(-1) showed a 32% reduction in malondialdehyde production. These findings indicate that dried plum polyphenols are potent anti-inflammatory and antioxidative agents in vitro.
Collapse
Affiliation(s)
- Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92101, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Ir J Med Sci 2015; 185:581-587. [DOI: 10.1007/s11845-015-1309-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
|
25
|
Jarvis N, O'Bryan CA, Ricke SC, Crandall PG. The functionality of plum ingredients in meat products: A review. Meat Sci 2015; 102:41-8. [DOI: 10.1016/j.meatsci.2014.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 10/24/2022]
|
26
|
Al-Obaidi MMJ, Al-Bayaty FH, Al Batran R, Hassandarvish P, Rouhollahi E. Protective effect of ellagic acid on healing alveolar bone after tooth extraction in rat—A histological and immunohistochemical study. Arch Oral Biol 2014; 59:987-99. [DOI: 10.1016/j.archoralbio.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 04/26/2014] [Accepted: 06/01/2014] [Indexed: 11/28/2022]
|
27
|
Pawlowski J, Martin BR, McCabe G, Ferruzzi MG, Weaver CM. Plum and soy aglycon extracts superior at increasing bone calcium retention in ovariectomized Sprague Dawley rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6108-17. [PMID: 24894797 PMCID: PMC4082398 DOI: 10.1021/jf403310q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 05/09/2014] [Accepted: 06/04/2014] [Indexed: 05/07/2023]
Abstract
Plant-derived polyphenols have been shown to influence bone turnover and bone properties in the estrogen-depleted state. We used a crossover design in ovariectomized rats (n = 16 rats for each diet) to investigate the effect of supplementation of two doses each of blueberry, plum, grape, grape seed extract, and resveratrol on bone. We tested the aglycon and glucoside forms of genistein to quantify differences in efficacy on bone calcium retention. Rats were given an intravenous dose of ⁴⁵Ca to prelabel bone, and bone calcium retention was assessed by urinary excretion of ⁴⁵Ca:Ca ratio during an intervention period compared with nonintervention. Genistein aglycon increased bone calcium retention significantly (p<0.05) more than the glucoside (22% vs 13%, respectively). Plum extract (0.45% w/w total dietary polyphenols) and resveratrol (0.2% w/w total dietary polyphenols) were also effective, increasing bone calcium retention by 20% (p=0.0153) and 14% (p=0.0012), respectively. Several polyphenolic-rich diets improved bone calcium retention.
Collapse
Affiliation(s)
- Jessica
W. Pawlowski
- Department
of Nutrition Science, College of Health and Human Sciences, Purdue University, 700 West State Street, West Lafayette, Indiana 47907, United States
| | - Berdine R. Martin
- Department
of Nutrition Science, College of Health and Human Sciences, Purdue University, 700 West State Street, West Lafayette, Indiana 47907, United States
| | - George
P. McCabe
- Department
of Statistics, College of Science, Purdue
University, 250 North
University Street, West Lafayette, Indiana 47907, United
States
| | - Mario G. Ferruzzi
- Department
of Nutrition Science, College of Health and Human Sciences, Purdue University, 700 West State Street, West Lafayette, Indiana 47907, United States
| | - Connie M. Weaver
- Department
of Nutrition Science, College of Health and Human Sciences, Purdue University, 700 West State Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
The effect of dried plum on serum levels of receptor activator of NF-κB ligand, osteoprotegerin and sclerostin in osteopenic postmenopausal women: a randomised controlled trial. Br J Nutr 2014; 112:55-60. [PMID: 24780728 DOI: 10.1017/s0007114514000671] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although several studies have confirmed the bone-protective properties of dried plum, its exact mechanisms of action remain unclear. Recent research has shown that osteocytes may control bone formation via the production of sclerostin and bone resorption via the receptor activator of NF-κB ligand (RANKL) and its inhibitor osteoprotegerin (OPG). To investigate the mechanism of action of dried plum in reversing bone loss, we measured serum levels of RANKL, OPG and sclerostin in osteopenic postmenopausal women (n 160). Participants were randomly assigned to the treatment group of either 100 g dried plum/d or 75 g dried apple/d (comparative control) for 1 year. All participants received 500 mg Ca plus 400 IU (10 μg) vitamin D daily. Bone mineral densities (BMD) of the lumbar spine, forearm, hip and whole body were assessed at baseline and at the end of the study using dual-energy X-ray absorptiometry. Blood samples were collected at baseline and after 12 months to assess bone biomarkers. Dried plum significantly increased the BMD of the ulna and spine in comparison with the control group. In comparison with corresponding baseline values, dried plum increased the RANKL levels by only +1·99 v. +18·33% and increased the OPG levels by +4·87 v. - 2·15% in the control group. Serum sclerostin levels were reduced by - 1·12% in the dried plum group v. +3·78% in the control group. Although percentage changes did not reach statistical significance (P≤ 0·05), these preliminary data may indicate that the positive effects of dried plum on bone are in part due to the suppression of RANKL production, the promotion of OPG and the inhibition of sclerostin.
Collapse
|
29
|
Stacewicz-Sapuntzakis M. Dried plums and their products: composition and health effects--an updated review. Crit Rev Food Sci Nutr 2014; 53:1277-302. [PMID: 24090144 DOI: 10.1080/10408398.2011.563880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper describes composition of dried plums and their products (prune juice and dried plum powder) with special attention to possibly bioactive compounds. Dried plums contain significant amounts of sorbitol, quinic acid, chlorogenic acids, vitamin K1, boron, copper, and potassium. Synergistic action of these and other compounds, which are also present in dried plums in less conspicuous amounts, may have beneficial health effects when dried plums are regularly consumed. Snacking on dried plums may increase satiety and reduce the subsequent intake of food, helping to control obesity, diabetes, and related cardiovascular diseases. Despite their sweet taste, dried plums do not cause large postprandial rise in blood glucose and insulin. Direct effects in the gastrointestinal tract include prevention of constipation and possibly colon cancer. The characteristic phenolic compounds and their metabolites may also act as antibacterial agents in both gastrointestinal and urinary tracts. The indirect salutary effects on bone turnover are supported by numerous laboratory studies with animals and cell cultures. Further investigation of phenolic compounds in dried plums, particularly of high molecular weight polymers, their metabolism and biological actions, alone and in synergy with other dried plum constituents, is necessary to elucidate the observed health effects and to indicate other benefits.
Collapse
Affiliation(s)
- M Stacewicz-Sapuntzakis
- a Department of Kinesiology and Nutrition , University of Illinois at Chicago , Chicago , Illinois , USA
| |
Collapse
|
30
|
Smith BJ, Graef JL, Wronski TJ, Rendina E, Williams AA, Clark KA, Clarke SL, Lucas EA, Halloran BP. Effects of dried plum supplementation on bone metabolism in adult C57BL/6 male mice. Calcif Tissue Int 2014; 94:442-53. [PMID: 24357047 PMCID: PMC3950615 DOI: 10.1007/s00223-013-9819-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/07/2013] [Indexed: 11/12/2022]
Abstract
Dietary supplementation of dried plum (DP) prevents bone loss and restores bone mass in osteopenic animal models. This study was designed to determine the effects of DP supplementation on bone metabolic activity over time using adult (6-month-old) male C57BL/6 mice (n = 40) receiving control (CON = AIN93 M) or CON+DP 25 % (w/w) diets for 4 or 12 weeks. After 4 weeks of treatment, animals consuming the DP diet had a higher whole-body bone mineral density, vertebral trabecular bone volume (BV/TV), and femoral cortical thickness compared to the CON animals. In the distal metaphysis of the femur, BV/TV was increased in the DP-treated animals, but only after 12 weeks. Bone histomorphometric analyses revealed that DP decreased osteoblast surface (67 %) and osteoclast surface (62 %) at 4 weeks, but these surfaces normalized to the CON animals by 12 weeks. Coincident with these changes, the mineralizing surface (MS/BS) and cancellous bone formation rate (BFR/BS) were reduced at 4 weeks in the DP group compared to the CON, but by 12 weeks of DP supplementation, BFR/BS (~twofold) and MS/BS (~1.7-fold) tended to be increased (p < 0.10). The relative abundance of RNA for key regulators of osteoblast and osteoclast differentiation and indicators of osteoblast activity were reduced in the DP group at 4 weeks with no difference between groups at 12 weeks. These results indicate that supplementing the diet with DP initially suppressed cancellous bone turnover, but a biphasic response occurs over time, resulting in a positive effect on bone mass and structure.
Collapse
Affiliation(s)
- B J Smith
- Department of Nutritional Sciences, 420 College of Human Sciences, Oklahoma State University, Stillwater, OK, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith BJ, Bu SY, Wang Y, Rendina E, Lim YF, Marlow D, Clarke SL, Cullen DM, Lucas EA. A comparative study of the bone metabolic response to dried plum supplementation and PTH treatment in adult, osteopenic ovariectomized rat. Bone 2014; 58:151-9. [PMID: 24125756 DOI: 10.1016/j.bone.2013.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/28/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023]
Abstract
Dried plum has been reported to have potent effects on bone in osteopenic animal models, but the mechanisms through which bone metabolism is altered in vivo remain unclear. To address this issue, a study comparing the metabolic response of dried plum to the anabolic agent, parathyroid hormone (PTH), was undertaken. Six month-old female Sprague Dawley rats (n=84) were sham-operated (SHAM) or ovariectomized (OVX) and maintained on a control diet for 6wks until osteopenia was confirmed. Treatments were initiated consisting of a control diet (AIN-93M) supplemented with dried plum (0, 5, 15 or 25%; w/w) or a positive control group receiving PTH. At the end of 6wks of treatment, whole body and femoral bone mineral density (BMD) were restored by the two higher doses of dried plum to the level of the SHAM group. Trabecular bone volume and cortical thickness were also improved with these two doses of dried plum. Dried plum suppressed the OVX-induced increase in bone turnover as indicated by systemic biomarkers of bone metabolism, N-terminal procollagen type 1 (P1NP) and deoxypyridinoline (DPD). Dynamic bone histomorphometric analysis of the tibial metaphysis revealed that dried plum restored the OVX-induced increase in cancellous bone formation rate (BFR) and mineralizing surface (MS/BS) to the SHAM group, but some doses of dried plum increased endocortical mineral apposition rate (MAR). As expected, PTH significantly increased endocortical MAR and BFR, periosteal BFR, and trabecular MAR and BFR beyond that of the OVX and maintained the accelerated rate of bone resorption associated with OVX. Dried plum up-regulated bone morphogenetic protein 4 (Bmp4) and insulin-like growth factor 1 (Igf1) while down-regulating nuclear factor T cell activator 1 (Nfatc1). These findings demonstrate that in the adult osteopenic OVX animal, the effects of dried plum differ from that of PTH in that dried plum primarily suppressed bone turnover with the exception of the indices of bone formation at the endocortical surface.
Collapse
Affiliation(s)
- Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tamjidipoor A, Tavafi M, Ahmadvand H. Effect of dimethyl sulfoxide on inhibition of post-ovariectomy osteopenia in rats. Connect Tissue Res 2013; 54:426-31. [PMID: 24020358 DOI: 10.3109/03008207.2013.841678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is increasing evidence that oxidative stress, due to estrogen deficiency, leads to osteopenia. In this study, dimethyl sulfoxide (DMSO), an antioxidant solvent, was used against post-ovariectomy osteopenia (PO) in rats. Forty female rats were divided into 5 groups randomly as follows: Sham, control group; OVX, ovariectomized group; DMSO1, ovariectomized injected DMSO (0.5 ml/kg/d ip); DMSO2, ovariectomized injected DMSO (1 ml/kg/day ip) and DMSO3, ovariectomized injected DMSO (2 ml/kg/d ip). DMSO therapy started 1 week after ovariectomy and continued for 13 weeks. After 13th weeks, sera were prepared, and then L4 vertebrae and right tibial bones rinsed in fixative. Serum bone alkaline phosphatase (BALP), osteocalcin, pyridinoline, malondialdehyde (MDA) and glutathione (GSH) were measured. Trabecular volume density, trabecular and cortex thickness were estimated. Osteoclast and osteoblast numbers were counted morphometrically. The data were analyzed by ANOVA and then post hoc Tukey test at p < 0.05. The increase of pyridinoline and decrease of BALP in DMSO injected groups were inhibited compared with OVX group (p < 0.05). In DMSO injected groups, decrease of bone density, trabecular volume density, thickness of trabecular and tibial cortex were inhibited compared with OVX group (p < 0.05). MDA decreased significantly in DMSO injected groups compared with OVX group. Osteoclast number decreased in DMSO injected groups compared with OVX group (p < 0.05). Osteoblast number did not show significant change in DMSO groups compared with OVX group. In conclusion, DMSO ameliorates PO through decrease of osteoclast number, osteoclast inhibition and osteoblast activation. These effects may probably be mediated via antioxidant property of DMSO.
Collapse
Affiliation(s)
- Ahmad Tamjidipoor
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences , Khorramabad , Iran and
| | | | | |
Collapse
|
33
|
Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model. PLoS One 2013; 8:e60569. [PMID: 23555991 PMCID: PMC3612052 DOI: 10.1371/journal.pone.0060569] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.
Collapse
|
34
|
Sacco SM, Horcajada MN, Offord E. Phytonutrients for bone health during ageing. Br J Clin Pharmacol 2013; 75:697-707. [PMID: 23384080 PMCID: PMC3575936 DOI: 10.1111/bcp.12033] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 11/08/2012] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis is a skeletal disease characterized by a decrease in bone mass and bone quality that predispose an individual to an increased risk of fragility fractures. Evidence demonstrating a positive link between certain dietary patterns (e.g. Mediterranean diet or high consumption of fruits and vegetables) and bone health highlights an opportunity to investigate their potential to protect against the deterioration of bone tissue during ageing. While the list of these phytonutrients is extensive, this review summarizes evidence on some which are commonly consumed and have gained increasing attention over recent years, including lycopene and various polyphenols (e.g. polyphenols from tea, grape seed, citrus fruit, olive and dried plum). Evidence to define a clear link between these phytonutrients and bone health is currently insufficient to generate precise dietary recommendations, owing to mixed findings or a scarcity in clinical data. Moreover, their consumption typically occurs within the context of a diet consisting of a mix of phytonutrients and other nutrients rather than in isolation. Future clinical trials that can apply a robust set of outcome measurements, including the determinants of bone strength, such as bone quantity (i.e. bone mineral density) and bone quality (i.e. bone turnover and bone microarchitecture), will help to provide a more comprehensive outlook on how bone responds to these various phytonutrients. Moreover, future trials that combine these phytonutrients with established bone nutrients (i.e. calcium and vitamin D) are needed to determine whether combined strategies can produce more robust effects on skeletal health.
Collapse
|
35
|
Monsefi M, Parvin F, Farzaneh M. Effects of plum extract on skeletal system of fetal and newborn mice. Med Princ Pract 2013; 22:351-6. [PMID: 23406627 PMCID: PMC5586747 DOI: 10.1159/000346625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 12/13/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the effects of Prunus domestica L. extracts on fetuses and neonatal skeletal systems. MATERIALS AND METHODS A total of 32 pregnant mice (Mus musculus) received vehicle and plum hydroalcoholic extract at gestational days 1-18 and during the entire gestational period as well as 10 days postpartum, respectively. A total of 30 nonpregnant mice were fed plum hydroalcoholic extract and plum juice extract for 30 days. Bone calcium content and serum concentrations of calcium, magnesium and alkaline phosphatase were measured. The skeletal systems of their fetuses and neonates were stained with Alcian blue and alizarin red S and the length of femur, tibia, and their ossification center were measured. RESULTS Crown-rump length of the newborn mice from mothers treated with plum extract (4.61 ± 0.25 mm) was higher compared to the control group (4.48 ± 0.31 mm, p = 0.001), and the femur osteogenesis index of newborn mice from mothers treated with plum extract was also higher (0.87 ± 0.09) compared to the control group (0.81 ± 0.06, p = 0.007). CONCLUSION The findings showed that pregnant mice treated with plum extract had fetuses and newborn mice with higher osteogenesis index than those of the controls.
Collapse
Affiliation(s)
- Malihezaman Monsefi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | | | | |
Collapse
|
36
|
Weaver CM, Alekel DL, Ward WE, Ronis MJ. Flavonoid intake and bone health. J Nutr Gerontol Geriatr 2012; 31:239-53. [PMID: 22888840 DOI: 10.1080/21551197.2012.698220] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Flavonoids, found in a wide diversity of plant foods from fruits and vegetables, herbs and spices, essential oils, and beverages, have the most potential of dietary components for promotion of bone health beyond calcium and vitamin D. Recent epidemiological studies show flavonoid consumption to have a stronger association with bone than general fruit and vegetable consumption. Bioactive flavonoids are being assessed for properties beyond their chemical antioxidant capacity, including anti-inflammatory actions. Some have been reported to enhance bone formation and to inhibit bone resorption through their action on cell signaling pathways that influence osteoblast and osteoclast differentiation. Future research is needed to determine which of the flavonoids and their metabolites are most effective and at what dose, as well as the mechanism of modulating cellular events, in order to set priorities for clinical trials.
Collapse
Affiliation(s)
- Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907-2059, USA.
| | | | | | | |
Collapse
|
37
|
Shen CL, von Bergen V, Chyu MC, Jenkins MR, Mo H, Chen CH, Kwun IS. Fruits and dietary phytochemicals in bone protection. Nutr Res 2012; 32:897-910. [DOI: 10.1016/j.nutres.2012.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/13/2022]
|
38
|
Banu J, Varela E, Fernandes G. Alternative therapies for the prevention and treatment of osteoporosis. Nutr Rev 2012; 70:22-40. [PMID: 22221214 DOI: 10.1111/j.1753-4887.2011.00451.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Osteoporosis is a medical condition that affects millions of men and women. People with this condition have low bone mass, which places them at increased risk for bone fracture after minor trauma. The surgeries and treatments required to repair and heal bone fractures involve long recovery periods and can be expensive. Because osteoporosis occurs frequently in the elderly, the financial burden it places on society is likely to be large. In the United States, the Food and Drug Administration has approved several drugs for use in the prevention and treatment of osteoporosis. However, all of the currently available agents have severe side effects that limit their efficacy and underscore the urgent need for new treatment options. One promising approach is the development of alternative (nonpharmaceutical) strategies for bone maintenance, as well as for the prevention and treatment of osteoporosis. This review examines the currently available nonpharmaceutical alternatives that have been evaluated in in vitro and in vivo studies. Certain plants from the following families have shown the greatest benefits on bone: Alliceae, Asteraceae, Thecaceae, Fabaceae, Oleaceae, Rosaceae, Ranunculaceae, Vitaceae, Zingiberaceae. The present review discusses the most promising findings from studies of these plant families.
Collapse
Affiliation(s)
- Jameela Banu
- Division of Clinical Immunology and Rheumatology, Department of Medicine, San Antonio, Texas, USA.
| | | | | |
Collapse
|
39
|
Abstract
With an increase in the average life span especially in the Western hemisphere, there is renewed interest in treating maladies of old age including osteoporosis. Age-related bone loss and resultant osteoporosis substantially increase risk of fractures and morbidity in the geriatric population leading to both a decline in the quality of life for the elderly as well as a substantial burden on the health care system. Herein, we review recent research in murine and rodent models looking at how both extrinsic and intrinsic factors such as hormones, biochemicals, neuromodulators, inflammatory cytokines, oxidative stress, nutrition, and exercise influence the skeleton with age. Recent studies on the relationship between bone and fat in the marrow, and the fate of the marrow mesenchymal stromal cell population, which can give rise to either bone-forming osteoblasts or fat-forming adipocytic cells as a function of age, have also been highlighted. An appreciable range of studies using aging murine as well as cellular models are discussed, as these studies have broadened our understanding of the pathways and players in the aging bone. Impactful information regarding aging and the bone may then allow the application of better pharmacologic as well as nonpharmacologic regimens to alleviate bone loss due to aging.
Collapse
Affiliation(s)
- Farhan A Syed
- Abbott Bioresearch Center, Worcester, MA 01545, USA.
| | | |
Collapse
|
40
|
Abstract
Aside from existing drug therapies, certain lifestyle and nutritional factors are known to reduce the risk of osteoporosis. Among the nutritional factors, dried plum or prunes (Prunus domestica L.) is the most effective fruit in both preventing and reversing bone loss. The objective of the present study was to examine the extent to which dried plum reverses bone loss in osteopenic postmenopausal women. We recruited 236 women, 1-10 years postmenopausal, not on hormone replacement therapy or any other prescribed medication known to influence bone metabolism. Qualified participants (n 160) were randomly assigned to one of the two treatment groups: dried plum (100 g/d) or dried apple (comparative control). Participants received 500 mg Ca plus 400 IU (10 μg) vitamin D daily. Bone mineral density (BMD) of lumbar spine, forearm, hip and whole body was assessed at baseline and at the end of the study using dual-energy X-ray absorptiometry. Blood samples were collected at baseline, 3, 6 and 12 months to assess bone biomarkers. Physical activity recall and 1-week FFQ were obtained at baseline, 3, 6 and 12 months to examine physical activity and dietary confounders as potential covariates. Dried plum significantly increased BMD of ulna and spine in comparison with dried apple. In comparison with corresponding baseline values, only dried plum significantly decreased serum levels of bone turnover markers including bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase-5b. The findings of the present study confirmed the ability of dried plum in improving BMD in postmenopausal women in part due to suppressing the rate of bone turnover.
Collapse
|
41
|
Rendina E, Lim YF, Marlow D, Wang Y, Clarke SL, Kuvibidila S, Lucas EA, Smith BJ. Dietary supplementation with dried plum prevents ovariectomy-induced bone loss while modulating the immune response in C57BL/6J mice. J Nutr Biochem 2011; 23:60-8. [PMID: 21414765 DOI: 10.1016/j.jnutbio.2010.10.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/13/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
This study was designed to investigate the effects of dried plum on the changes in bone metabolism and the immune response associated with ovarian hormone deficiency. Adult female C57BL/6J mice were either sham-operated (Sham) and fed AIN-93 diet (control) or ovariectomized (OVX) and fed a control diet with 0%, 5%, 15% or 25% dried plum (w/w), corresponding to control, low- (LDP), medium- (MDP) and high (HDP)-dose dried plum. Four weeks of HDP supplementation prevented the decrease in spine bone mineral density and content induced by OVX. The OVX compromise in trabecular bone of the vertebra and proximal tibia was prevented by the higher doses of dried plum, and in the vertebra these effects resulted in greater (P<.05) bone strength and stiffness. In the bone marrow, OVX suppressed granulocyte and committed monocyte populations and increased the lymphoblast population, but the MDP and HDP restored these myeloid and lymphoid populations to the level of the Sham. Dried plum also suppressed lymphocyte tumor necrosis factor (TNF)-α production ex vivo by splenocytes, in response to concanavalin (Con) A stimulation. These data indicate that dried plum's positive effects on bone structural and biomechanical properties coincide with the restoration of certain bone marrow myeloid and lymphoid populations, and suppressed splenocyte activation occurring with ovarian hormone deficiency.
Collapse
Affiliation(s)
- Elizabeth Rendina
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Halloran BP, Wronski TJ, VonHerzen DC, Chu V, Xia X, Pingel JE, Williams AA, Smith BJ. Dietary dried plum increases bone mass in adult and aged male mice. J Nutr 2010; 140:1781-7. [PMID: 20739449 DOI: 10.3945/jn.110.124198] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bone is progressively lost with advancing age. Therapies are limited and the only effective proanabolic regimen presently available to restore bone is intermittent treatment with teriparatide (parathyroid hormone 1-34). Recent evidence suggests that dietary supplementation with dried plum (DP) can prevent bone loss due to estrogen deficiency. To determine whether dietary DP supplementation can prevent the loss of bone with aging and whether bone that has already been lost can be restored, adult (6 mo) and old (18 mo) male mice were fed a normal diet or isoenergetic, isonitrogenous diets supplemented with DP (0, 15, and 25% DP by weight) for 6 mo. MicroCT analysis and bone histomorphometry were used to assess bone volume, structure, and metabolic activity before, during, and after dietary supplementation. Mice fed the 0% DP diet (control diet) lost bone, whereas both adult and old mice fed the 25% DP-supplemented diet gained bone. Adult but not old mice fed the 15% diet also gained bone. Cancellous bone volume in mice receiving 25% DP exceeded baseline levels by 40-50%. Trabecular structure varied with diet and age and responses in old mice were generally blunted. Trabecular, but not cortical, mineral density varied with age and measures of bone anabolic activity were lower in aged mice. Our findings suggest that DP contains proanabolic factors that can dramatically increase bone volume and restore bone that has already been lost due to aging. In turn, DP may provide effective prophylactic and therapeutic agents for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Bernard P Halloran
- Division of Endocrinology, Veterans Affairs Medical Center and Department of Medicine, University of California, San Francisco, CA 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cao JJ, Gregoire BR, Sheng X, Liuzzi JP. Pinto bean hull extract supplementation favorably affects markers of bone metabolism and bone structure in mice. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Hooshmand S, Arjmandi BH. Viewpoint: dried plum, an emerging functional food that may effectively improve bone health. Ageing Res Rev 2009; 8:122-7. [PMID: 19274852 DOI: 10.1016/j.arr.2009.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoporosis is a debilitating disorder that affects both female and male, albeit to a greater extent in women than men. As the demographic shift to a more aged population continues, a growing number of men and women will be afflicted with osteoporosis and a search for potential non-pharmacological alternative therapies for osteoporosis is of prime interest. Aside from existing drug therapies, certain lifestyle and nutritional factors are known to reduce the risk of osteoporosis. Among nutritional factors, recent observations suggest that dried plum, or prunes (Prunus domestica L.) is the most effective fruit in both preventing and reversing bone loss. Animal studies and a 3-month clinical trial conducted in our laboratories have shown that dried plum has positive effects on bone indices. The animal data indicate that dried plum not only protects against but more importantly reverses bone loss in two separate models of osteopenia. Our initial animal study indicated that dried plum prevented the ovariectomy-induced reduction in bone mineral density (BMD) of the femur and lumbar vertebra. In another study, to mimic established osteoporosis, rats were ovariectomized and allowed to lose bone before the initiation of treatment. Dried plum as low as 5% (w/w) restored BMD to the level of intact rats. More importantly, dried plum reversed the loss of trabecular architectural properties such as trabecular number and connectivity density, and trabecular separation. We have also shown the effectiveness of dried plum in reversal of bone loss due to skeletal unloading. Analysis of BMD and trabecular bone structure by microcomputed tomography (microCT) revealed that dried plum enhanced bone recovery during reambulation following skeletal unloading and had comparable effects to parathyroid hormone. In addition to the animal studies, our 3-month clinical trial indicated that the consumption of dried plum daily by postmenopausal women significantly increased serum markers of bone formation, total alkaline phosphatase, bone-specific alkaline phosphatase and insulin-like growth factor-I by 12, 6, and 17%, respectively. This review summarizes the findings of studies published to date which examine the beneficial effects of dried plum on bone in both female and male animal models of osteoporosis as well as the only published clinical study.
Collapse
Affiliation(s)
- Shirin Hooshmand
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
45
|
Shen CL, Yeh JK, Stoecker BJ, Chyu MC, Wang JS. Green tea polyphenols mitigate deterioration of bone microarchitecture in middle-aged female rats. Bone 2009; 44:684-90. [PMID: 19118658 DOI: 10.1016/j.bone.2008.11.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2008] [Revised: 11/11/2008] [Accepted: 11/29/2008] [Indexed: 02/08/2023]
Abstract
Our previous study demonstrated that green tea polyphenols (GTP) benefit bone health in middle-aged female rats without (sham, SH) and with ovariectomy (OVX), because of GTP's antioxidant capacity. The current study further evaluates whether GTP can restore bone micro-structure in both gonad-intact and gonadal-hormone-deficient middle-aged female rats. A 16-week study was performed based on a 2 (SH vs. OVX)x3 (no GTP, 0.1% GTP, and 0.5% GTP in drinking water) factorial design using 14-month-old female rats (n=10/group). An additional 10 rats were euthanized at the beginning of study to provide baseline parameters. Analysis using dual-energy X-ray absorptiometry, histomorphometry, and micro-computed tomography showed that GTP supplementation resulted in (a) increased trabecular volume, thickness, number, and bone formation of proximal tibia, periosteal bone formation rate of tibia shaft, and cortical thickness and area of femur, and (b) decreased trabecular separation and bone erosion of proximal tibia, and endocortical bone eroded surface of tibia shaft. We concluded that drinking water supplemented with GTP mitigated deterioration of bone microarchitecture in both intact and ovariectomized middle-aged female rats by suppressing bone erosion, enhancing bone formation, and modulating endocortical and cancellous bone compartments, resulting in a larger net bone volume.
Collapse
Affiliation(s)
- Chwan-Li Shen
- BB 198, 3601 4th Street, Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | | | | | | | | |
Collapse
|
46
|
Bu SY, Lerner M, Stoecker BJ, Boldrin E, Brackett DJ, Lucas EA, Smith BJ. Dried plum polyphenols inhibit osteoclastogenesis by downregulating NFATc1 and inflammatory mediators. Calcif Tissue Int 2008; 82:475-88. [PMID: 18509698 DOI: 10.1007/s00223-008-9139-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 04/22/2008] [Indexed: 12/13/2022]
Abstract
Dried plums and their polyphenols have been shown to suppress bone resorption by downregulating receptor activator NF-kappaB ligand (RANKL). Due to the anti-inflammatory and antioxidant properties of these compounds, this study was designed to investigate whether dried plum polyphenols exert additional, more direct effects on osteoclasts and their precursors. RAW 264.7 macrophages were used as a model to study osteoclast precursors and osteoclast differentiation and activity. Under inflammatory conditions induced by lipopolysaccharide (LPS), polyphenols extracted from dried plum (10, 20, and 30 microg/mL) downregulated osteoclast precursor cyclooxygenase expression and nitric oxide (NO) by inhibiting inducible NO synthase. NO and tumor necrosis factor (TNF)-alpha were also suppressed in the presence of RANKL during osteoclastogenesis by the polyphenols. Increased TNF-alpha production in response to oxidative stress, but not LPS, was decreased over time. As expected, LPS and H2O2 significantly increased the number of tartrate-resistant acid phosphatase-positive cells by 127% and 30%, respectively. Dried plum polyphenols decreased osteoclast differentiation under normal as well as inflammatory and oxidative stress conditions, coincident with the suppression of the transcription factor, nuclear factor for activated T cells (NFATcl). These inhibitory effects on osteoclastogenesis were confirmed in primary bone marrow cultures. Resorption pit formation was decreased to a similar extent as osteoclast differentiation, suggesting that dried plum polyphenols primarily affect osteoclast differentiation as opposed to activity. Our data demonstrate that dried plum polyphenols directly inhibit osteoclastogenesis, leading to a decrease in osteoclast activity, by downregulating NFATc1 and inflammatory mediators.
Collapse
Affiliation(s)
- So Young Bu
- Department of Nutritional Sciences, College of Human Environmental Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Bu SY, Hunt TS, Smith BJ. Dried plum polyphenols attenuate the detrimental effects of TNF-alpha on osteoblast function coincident with up-regulation of Runx2, Osterix and IGF-I. J Nutr Biochem 2008; 20:35-44. [PMID: 18495459 DOI: 10.1016/j.jnutbio.2007.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/25/2007] [Accepted: 11/26/2007] [Indexed: 10/22/2022]
Abstract
Previous studies have demonstrated that dried plums which contain high amounts of polyphenols can restore bone mass and structure, and significantly increase indices of bone formation. The purpose of this study was to determine how dried plum polyphenols influence osteoblast activity and mineralized nodule formation under normal and inflammatory conditions. MC3T3-E1 cells were plated and pretreated with dried plum polyphenols (0, 2.5, 5, 10 and 20 microg/ml) and 24 h later stimulated with TNF-alpha (0 or 1.0 ng/ml). The 5, 10 and 20 microg/ml doses of polyphenols significantly increased intracellular ALP activity under normal conditions at 7 and 14 days, and restored the TNF-alpha-induced suppression of intracellular ALP activity by 14 days (P<.001). Polyphenols also increased mineralized nodule formation under normal and inflammatory conditions. In the absence of TNF-alpha, 5 microg/ml of polyphenols significantly up-regulated the growth factor, IGF-I, compared to controls, and the 5 and 10 microg/ml doses increased the expression of lysyl oxidase involved in collagen crosslinking. TNF-alpha decreased the expression of Runx2, Osterix and IGF-I, and polyphenols restored their mRNA levels to that of the controls. Although TNF-alpha failed to alter lysyl oxidase at 18 h, the polyphenols up-regulated its expression (P<.05) in the presence of TNF-alpha. As expected, TNF-alpha up-regulated RANKL mRNA and polyphenols suppressed RANKL expression without altering OPG. Based on these findings, we conclude that dried plum polyphenols enhance osteoblast activity and function by up-regulating Runx2, Osterix and IGF-I and increasing lysyl oxidase expression, and at the same time attenuate osteoclastogenesis signaling.
Collapse
Affiliation(s)
- So Young Bu
- Department of Nutritional Sciences, College of Human Environmental Science, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
48
|
Devareddy L, Hooshmand S, Collins JK, Lucas EA, Chai SC, Arjmandi BH. Blueberry prevents bone loss in ovariectomized rat model of postmenopausal osteoporosis. J Nutr Biochem 2008; 19:694-9. [PMID: 18328688 DOI: 10.1016/j.jnutbio.2007.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 08/23/2007] [Accepted: 09/07/2007] [Indexed: 11/24/2022]
Abstract
The objective of the present study was to explore the bone protective role of blueberry in an ovariectomized rat model. Thirty 6-month-old female Sprague-Dawley rats were either sham-operated (Sham) or ovariectomized (Ovx) and divided into three groups: Sham, Ovx (control), Ovx+blueberry (5% blueberry w/w). After 100 days of treatment, rats were euthanized, and blood and tissues were collected. Bone mineral density (BMD) and content of whole body, right tibia, right femur and fourth lumbar vertebra were assessed via dual-energy X-ray absorptiometry. As expected, Ovx resulted in loss of whole-body, tibial, femoral, and 4th lumbar BMD by approximately 6%. Blueberry treatment was able to prevent the loss of whole-body BMD and had an intermediary effect on prevention of tibial and femoral BMD when compared to either Sham or Ovx controls. The bone-protective effects of blueberry may be due to suppression of Ovx-induced increase in bone turnover, as evident by lowered femoral mRNA levels of alkaline phosphatase, collagen type I and tartrate-resistant acid phosphatase to the Sham levels. Similarly, serum osteocalcein levels were also lower in the blueberry group when compared to the Ovx control group, albeit not significantly. In summary, our findings indicate that blueberry can prevent bone loss as seen by the increases in BMD and favorable changes in biomarkers of bone metabolism.
Collapse
Affiliation(s)
- Latha Devareddy
- Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | |
Collapse
|