1
|
Ren S, Peng H, Zhang J, Yang J, He Y, Sun Z, Wang G. A genome-wide association study of escitalopram treatment outcomes in patients with major depressive disorder. Gene 2024; 926:148596. [PMID: 38782219 DOI: 10.1016/j.gene.2024.148596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Major depressive disorder (MDD) is a common psychological condition, the consequences of which, such as suicide, can be severe. Escitalopram, a selective serotonin reuptake inhibitor, is a commonly used antidepressant in clinics. However, more than one-third of patients with MDD do not respond to this drug. Gene polymorphism may affect the efficacy of escitalopram, but the genetic architecture of the antidepressant response in patients with MDD remains unclear. We perform a genome-wide association study (GWAS) of the genetic effect on the outcome of escitalopram in patients with MDD. A total of 203 patients with MDD and 176 healthy control (HC) adults were recruited from Beijing Anding Hospital. Patients received 12 weeks of antidepressant treatment with escitalopram. The Quick Inventory of Depressive Symptomatology-Self-Report (QIDS-SR) or Hamilton depression scale (HAMD) were used to evaluate the severity of depression symptoms at the baseline and the end of 2 and 12 weeks of treatment. A total of 140 variants in MDD patients were identified by GWAS to have genome-wide significance (p < 5e - 8) compared with HCs. Similarly, 189 and 18 variants were identified to be associated with QIDS-SR and HAMD score changes in patients after antidepressant treatment (p < 1e - 5), including rs12602361, rs72799048, rs16842235, and rs2518256. In the two weeks QIDS-SR score study, the gene-level association for these variants and gene set enrichment analyses implicate the enrichment of genes involved in the synaptic plasticity process and nervous system development. Our results implicate the predictive capacity of the effect of escitalopram treatment, supporting a link between genetic basis and remission of depression.
Collapse
Affiliation(s)
- Siyu Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - He Peng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre for Infection Research (HZI) and Hannover Medical School (MHH). Hannover, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jinniu Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Elbuzidi M, Wenzel AN, Harris A, Marrache M, Oni JK, Khanuja HS, Hegde V. Preoperative COVID-19 infection status negatively impacts postoperative outcomes of geriatric hip fracture surgery. Injury 2024; 55:111201. [PMID: 37980857 DOI: 10.1016/j.injury.2023.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
OBJECTIVES Compare outcomes for patients with recently diagnosed COVID-19 infection to those without COVID-19 infection undergoing operative treatment of hip fractures using the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database. DESIGN Retrospective propensity score matched cohort. METHODS Patients who received surgery for an acute hip fracture (intramedullary nail (IMN), open reduction internal fixation (ORIF) or hemiarthroplasty) in 2021 were identified from the NSQIP database. Propensity score matching was implemented using patient demographics and preoperative medical conditions to compare outcomes for COVID-19-positive and COVID-19-negative cohorts. RESULTS After matching, COVID-19-positive patients exhibited a higher risk of 30-day mortality (Odds ratio (OR) 1.48, 95 % confidence interval (CI) 1.01 - 2.04), pneumonia (OR 2.90, 95 % CI: 1.91 - 4.33), unplanned intubation (OR 2.53, 95 % CI: 1.39 - 4.39), and septic shock (OR 2.51, 95 % CI: 1.10 - 4.67). COVID-19-positive patients were also more likely to have a longer length of hospital stay (Hazard Ratio 1.3, 95 % CI: 1.20 - 1.41) and were more likely to be discharged to an acute care hospital (OR 1.90, 95 % CI: 1.03 - 3.06). CONCLUSIONS Active COVID-19 infection is an independent risk factor for complications as well as increased resource utilization in patients undergoing surgical treatment of acute hip fracture. Using the results of this multicenter study, quantification of these risks can help inform practice and treatment protocols for this population. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Mohamed Elbuzidi
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alyssa N Wenzel
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew Harris
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Majd Marrache
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julius K Oni
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harpal S Khanuja
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Vishal Hegde
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
3
|
Lovšin N. Copy Number Variation and Osteoporosis. Curr Osteoporos Rep 2023; 21:167-172. [PMID: 36795294 PMCID: PMC10105686 DOI: 10.1007/s11914-023-00773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent findings on copy number variations and susceptibility to osteoporosis. RECENT FINDINGS Osteoporosis is highly influenced by genetic factors, including copy number variations (CNVs). The development and accessibility of whole genome sequencing methods has accelerated the study of CNVs and osteoporosis. Recent findings include mutations in novel genes and validation of previously known pathogenic CNVs in monogenic skeletal diseases. Identification of CNVs in genes previously associated with osteoporosis (e.g. RUNX2, COL1A2, and PLS3) has confirmed their importance in bone remodelling. This process has been associated also with the ETV1-DGKB, AGBL2, ATM, and GPR68 genes, identified by comparative genomic hybridisation microarray studies. Importantly, studies in patients with bone pathologies have associated bone disease with the long non-coding RNA LINC01260 and enhancer sequences residing in the HDAC9 gene. Further functional investigation of genetic loci harbouring CNVs associated with skeletal phenotypes will reveal their role as molecular drivers of osteoporosis.
Collapse
Affiliation(s)
- Nika Lovšin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Li T, Liu WB, Tian FF, Jiang JJ, Wang Q, Hu FQ, Hu WH, Zhang XS. Gender-specific SBNO2 and VPS13B as a potential driver of osteoporosis development in male ankylosing spondylitis. Osteoporos Int 2021; 32:311-320. [PMID: 32803317 DOI: 10.1007/s00198-020-05593-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022]
Abstract
UNLABELLED To identify the critical genes and pathways that related to OP development in male AS patients, bioinformatic gene analysis and qRT-PCR validation were performed. SBNO2 and VPS13B were identified as the potential target for OP development, which may be valuable for the prevention of OP in male AS patients. INTRODUCTION Osteoporosis (OP) is common in men with ankylosing spondylitis (AS). The specific pathogenesis of OP in AS, however, is still unclear. The present study attempted to identify potential genes associated with the development of OP in males with AS. METHODS Gene expression profiles were downloaded from the GSE73754 and GSE35959 datasets from the Gene Expression Omnibus (GEO). Data from OsteoporosAtlas were downloaded as a supplement. Differentially expressed genes (DEGs) were determined with the limma package. The overlapping DEGs between male AS-related genes and OP-related genes were determined. The DEGs were validated by qRT-PCR in the blood samples of males with AS. Weighted gene co-expression network analysis (WGCNA) was utilized to establish a co-expression network to identify the hub genes. RESULTS A total of 17 overlapping DEGs were identified; 6 genes in 17 overlapping DEGs were verified as the essential genes in the pathogenesis of OP in male AS by qRT-PCR analysis. After WGCNA, the modules of MEblue (> 0.6) and MEred (> 0.8) were screened out by the correlation analysis and were determined to function mainly in MAPK signaling pathway and osteoclast differentiation. Analysis of the two modules revealed VPS13B and SBNO2 as key genes due to the high degree of correlation. Both genes play an important role in bone metabolism regulation in male AS. Two hub genes MYD88 in MEblue and NCK1 in MEred with high degree of connectivity were selected. CONCLUSIONS Gender-specific SBNO2 and VPS13B may be key genes involved in OP in male AS.
Collapse
Affiliation(s)
- T Li
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - W-B Liu
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - F-F Tian
- Clinical Biobank Center, the Medical Innovation Research Division, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - J-J Jiang
- Clinical Biobank Center, the Medical Innovation Research Division, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Q Wang
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - F-Q Hu
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - W-H Hu
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100000, China.
| | - X-S Zhang
- Department of Orthopedics, the First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
5
|
Boudin E, Van Hul W. MECHANISMS IN ENDOCRINOLOGY: Genetics of human bone formation. Eur J Endocrinol 2017; 177:R69-R83. [PMID: 28381451 DOI: 10.1530/eje-16-0990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/15/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Throughout life, bone is continuously remodelled to be able to fulfil its multiple functions. The importance of strictly regulating the bone remodelling process, which is defined by the sequential actions of osteoclasts and osteoblasts, is shown by a variety of disorders with abnormalities in bone mass and strength. The best known and most common example of such a disorder is osteoporosis, which is marked by a decreased bone mass and strength that consequently results in an increased fracture risk. As osteoporosis is a serious health problem, a large number of studies focus on elucidating the aetiology of the disease as well as on the identification of novel therapeutic targets for the treatment of osteoporotic patients. These studies have demonstrated that a large amount of variation in bone mass and strength is often influenced by genetic variation in genes encoding important regulators of bone homeostasis. Throughout the years, studies into the genetic causes of osteoporosis as well as several rare monogenic disorders with abnormal high or low bone mass and strength have largely increased the knowledge on regulatory pathways important for bone resorption and formation. This review gives an overview of genes and pathways that are important for the regulation of bone formation and that are identified through their involvement in monogenic and complex disorders with abnormal bone mass. Furthermore, novel bone-forming strategies for the treatment of osteoporosis that resulted from these discoveries, such as antibodies against sclerostin, are discussed as well.
Collapse
Affiliation(s)
- Eveline Boudin
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Center of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Boudin E, Fijalkowski I, Hendrickx G, Van Hul W. Genetic control of bone mass. Mol Cell Endocrinol 2016; 432:3-13. [PMID: 26747728 DOI: 10.1016/j.mce.2015.12.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/16/2015] [Accepted: 12/28/2015] [Indexed: 01/01/2023]
Abstract
Bone mineral density (BMD) is a quantitative traits used as a surrogate phenotype for the diagnosis of osteoporosis, a common metabolic disorder characterized by increased fracture risk as a result of a decreased bone mass and deterioration of the microarchitecture of the bone. Normal variation in BMD is determined by both environmental and genetic factors. According to heritability studies, 50-85% of the variance in BMD is controlled by genetic factors which are mostly polygenic. In contrast to the complex etiology of osteoporosis, there are disorders with deviating BMD values caused by one mutation with a large impact. These mutations can result in monogenic bone disorders with either an extreme high (sclerosteosis, Van Buchem disease, osteopetrosis, high bone mass phenotype) or low BMD (osteogenesis imperfecta, juvenile osteoporosis, primary osteoporosis). Identification of the disease causing genes, increased the knowledge on the regulation of BMD and highlighted important signaling pathways and novel therapeutic targets such as sclerostin, RANKL and cathepsin K. Genetic variation in genes involved in these pathways are often also involved in the regulation of normal variation in BMD and osteoporosis susceptibility. In the last decades, identification of genetic factors regulating BMD has proven to be a challenge. Several approaches have been tested such as linkage studies and candidate and genome wide association studies. Although, throughout the years, technological developments made it possible to study increasing numbers of genetic variants in populations with increasing sample sizes at the same time, only a small fraction of the genetic impact can yet be explained. In order to elucidate the missing heritability, the focus shifted to studying the role of rare variants, copy number variations and epigenetic influences. This review summarizes the genetic cause of different monogenic bone disorders with deviating BMD and the knowledge on genetic factors explaining normal variation in BMD and osteoporosis risk.
Collapse
Affiliation(s)
- Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Igor Fijalkowski
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
7
|
Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions. PLoS One 2015; 10:e0123081. [PMID: 25919136 PMCID: PMC4412667 DOI: 10.1371/journal.pone.0123081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/27/2015] [Indexed: 01/03/2023] Open
Abstract
Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.
Collapse
|
8
|
Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 2015; 11:462-74. [PMID: 25900210 DOI: 10.1038/nrrheum.2015.48] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a common disorder, affecting hundreds of millions of people worldwide, and characterized by decreased bone mineral density and increased fracture risk. Known nonheritable risk factors for primary osteoporosis include advanced age, sex-steroid deficiency and increased oxidative stress. Age is a nonmodifiable risk factor, but the influence of a person's lifestyle (diet and physical activity) on their bone structure and density is modifiable to some extent. Heritable factors influencing bone fragility can be monogenic or polygenic. Osteogenesis imperfecta, juvenile osteoporosis and syndromes of decreased bone density are discussed as examples of monogenic disorders associated with bone fragility. So far, the factors associated with polygenic osteoporosis have been investigated mainly in genome-wide association studies. However, epigenetic mechanisms also contribute to the heritability of polygenic osteoporosis. Identification of these heritable and nonheritable risk factors has already led to the discovery of therapeutic targets for osteoporosis, which emphasizes the importance of research into the pathogenetic mechanisms of osteoporosis. Accordingly, this article discusses the many heritable and nonheritable factors that contribute to the pathogenesis of primary osteoporosis. Although osteoporosis can also develop secondary to many other diseases or their treatment, a discussion of the factors that contribute only to secondary osteoporosis is beyond the scope of this Review.
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43B, 2650 Edegem, Belgium
| |
Collapse
|
9
|
Liu M, Goss PE, Ingle JN, Kubo M, Furukawa Y, Batzler A, Jenkins GD, Carlson EE, Nakamura Y, Schaid DJ, Chapman JAW, Shepherd LE, Ellis MJ, Khosla S, Wang L, Weinshilboum RM. Aromatase inhibitor-associated bone fractures: a case-cohort GWAS and functional genomics. Mol Endocrinol 2014; 28:1740-51. [PMID: 25148458 DOI: 10.1210/me.2014-1147] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bone fractures are a major consequence of osteoporosis. There is a direct relationship between serum estrogen concentrations and osteoporosis risk. Aromatase inhibitors (AIs) greatly decrease serum estrogen levels in postmenopausal women, and increased incidence of fractures is a side effect of AI therapy. We performed a discovery case-cohort genome-wide association study (GWAS) using samples from 1071 patients, 231 cases and 840 controls, enrolled in the MA.27 breast cancer AI trial to identify genetic factors involved in AI-related fractures, followed by functional genomic validation. Association analyses identified 20 GWAS single nucleotide polymorphism (SNP) signals with P < 5E-06. After removal of signals in gene deserts and those composed entirely of imputed SNPs, we applied a functional validation "decision cascade" that resulted in validation of the CTSZ-SLMO2-ATP5E, TRAM2-TMEM14A, and MAP4K4 genes. These genes all displayed estradiol (E2)-dependent induction in human fetal osteoblasts transfected with estrogen receptor-α, and their knockdown altered the expression of known osteoporosis-related genes. These same genes also displayed SNP-dependent variation in E2 induction that paralleled the SNP-dependent induction of known osteoporosis genes, such as osteoprotegerin. In summary, our case-cohort GWAS identified SNPs in or near CTSZ-SLMO2-ATP5E, TRAM2-TMEM14A, and MAP4K4 that were associated with risk for bone fracture in estrogen receptor-positive breast cancer patients treated with AIs. These genes displayed E2-dependent induction, their knockdown altered the expression of genes related to osteoporosis, and they displayed SNP genotype-dependent variation in E2 induction. These observations may lead to the identification of novel mechanisms associated with fracture risk in postmenopausal women treated with AIs.
Collapse
Affiliation(s)
- Mohan Liu
- Division of Clinical Pharmacology (M.L., L.W., R.M.W.), Department of Molecular Pharmacology and Experimental Therapeutics; Departments of Oncology (J.N.I.) and Health Sciences Research (A.B., G.D.J., E.E.C., D.J.S.); and Division of Endocrinology (S.K.), Mayo Clinic, Rochester, Minnesota 55905; Massachusetts General Hospital (P.E.G.), Harvard University, Boston, Massachusetts 02114; Rikagaku Kenkyūsho Center for Integrative Medical Science (M.K., Y.F.), Yokohama, Japan 230-0045; School of Medicine (Y.N.), Chicago University, Chicago, Illinois 60637; National Cancer Institute of Canada Clinical Trials Group (J.-A.W.C., L.E.S.), Kingston, Ontario, Canada K7L 3N6; and Division of Oncology (M.J.E.), Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Halley YA, Dowd SE, Decker JE, Seabury PM, Bhattarai E, Johnson CD, Rollins D, Tizard IR, Brightsmith DJ, Peterson MJ, Taylor JF, Seabury CM. A draft de novo genome assembly for the northern bobwhite (Colinus virginianus) reveals evidence for a rapid decline in effective population size beginning in the Late Pleistocene. PLoS One 2014; 9:e90240. [PMID: 24621616 PMCID: PMC3951200 DOI: 10.1371/journal.pone.0090240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/27/2014] [Indexed: 11/20/2022] Open
Abstract
Wild populations of northern bobwhites (Colinus virginianus; hereafter bobwhite) have declined across nearly all of their U.S. range, and despite their importance as an experimental wildlife model for ecotoxicology studies, no bobwhite draft genome assembly currently exists. Herein, we present a bobwhite draft de novo genome assembly with annotation, comparative analyses including genome-wide analyses of divergence with the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes, and coalescent modeling to reconstruct the demographic history of the bobwhite for comparison to other birds currently in decline (i.e., scarlet macaw; Ara macao). More than 90% of the assembled bobwhite genome was captured within <40,000 final scaffolds (N50 = 45.4 Kb) despite evidence for approximately 3.22 heterozygous polymorphisms per Kb, and three annotation analyses produced evidence for >14,000 unique genes and proteins. Bobwhite analyses of divergence with the chicken and zebra finch genomes revealed many extremely conserved gene sequences, and evidence for lineage-specific divergence of noncoding regions. Coalescent models for reconstructing the demographic history of the bobwhite and the scarlet macaw provided evidence for population bottlenecks which were temporally coincident with human colonization of the New World, the late Pleistocene collapse of the megafauna, and the last glacial maximum. Demographic trends predicted for the bobwhite and the scarlet macaw also were concordant with how opposing natural selection strategies (i.e., skewness in the r-/K-selection continuum) would be expected to shape genome diversity and the effective population sizes in these species, which is directly relevant to future conservation efforts.
Collapse
Affiliation(s)
- Yvette A. Halley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Scot E. Dowd
- Molecular Research LP, Shallowater, Texas, United States of America
| | - Jared E. Decker
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Paul M. Seabury
- ElanTech Inc., Greenbelt, Maryland, United States of America
| | - Eric Bhattarai
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Charles D. Johnson
- Genomics and Bioinformatics Core, Texas A&M AgriLife Research, College Station, Texas, United States of America
| | - Dale Rollins
- Rolling Plains Quail Research Ranch, Rotan, Texas, United States of America
| | - Ian R. Tizard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Donald J. Brightsmith
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Markus J. Peterson
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Christopher M. Seabury
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Umemori J, Mori A, Ichiyanagi K, Uno T, Koide T. Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome. BMC Genomics 2013; 14:455. [PMID: 23834397 PMCID: PMC3722088 DOI: 10.1186/1471-2164-14-455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 07/05/2013] [Indexed: 11/14/2022] Open
Abstract
Background Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. Results We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. Conclusions Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13.
Collapse
Affiliation(s)
- Juzoh Umemori
- Mouse Genomics Resource Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
12
|
Wu S, Liu Y, Zhang L, Han Y, Lin Y, Deng HW. Genome-wide approaches for identifying genetic risk factors for osteoporosis. Genome Med 2013; 5:44. [PMID: 23731620 PMCID: PMC3706967 DOI: 10.1186/gm448] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis, the most common type of bone disease worldwide, is clinically characterized by low bone mineral density (BMD) and increased susceptibility to fracture. Multiple genetic and environmental factors and gene-environment interactions have been implicated in its pathogenesis. Osteoporosis has strong genetic determination, with the heritability of BMD estimated to be as high as 60%. More than 80 genes or genetic variants have been implicated in risk of osteoporosis by hypothesis-free genome-wide studies. However, these genes or genetic variants can only explain a small portion of BMD variation, suggesting that many other genes or genetic variants underlying osteoporosis risk await discovery. Here, we review recent progress in genome-wide studies of osteoporosis and discuss their implications for medicine and the major challenges in the field.
Collapse
Affiliation(s)
- Shuyan Wu
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Yongjun Liu
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| | - Lei Zhang
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China ; Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| | - Yingying Han
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Yong Lin
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China
| | - Hong-Wen Deng
- The Center for System Biomedical Research, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Rd, Yangpu district, Shanghai, 200093, China ; Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Chew S, Dastani Z, Brown SJ, Lewis JR, Dudbridge F, Soranzo N, Surdulescu GL, Richards JB, Spector TD, Wilson SG. Copy number variation of the APC gene is associated with regulation of bone mineral density. Bone 2012; 51:939-43. [PMID: 22884971 PMCID: PMC3918860 DOI: 10.1016/j.bone.2012.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Genetic studies of osteoporosis have commonly examined SNPs in candidate genes or whole genome analyses, but insertions and deletions of DNA, collectively called copy number variations (CNVs), also comprise a large amount of the genetic variability between individuals. Previously, SNPs in the APC gene have been strongly associated with femoral neck and lumbar spine volumetric bone mineral density in older men. In addition, familial adenomatous polyposis patients carrying heterozygous mutations in the APC gene have been shown to have significantly higher mean bone mineral density than age- and sex-matched controls suggesting the importance of this gene in regulating bone mineral density. We examined CNV within the APC gene region to test for association with bone mineral density. METHODS DNA was extracted from venous blood, genotyped using the Human Hap610 arrays and CNV determined from the fluorescence intensity data in 2070 Caucasian men and women aged 47.0 ± 13.0 (mean ± SD) years, to assess the effects of the CNV on bone mineral density at the forearm, spine and total hip sites. RESULTS Data for covariate adjusted bone mineral density from subjects grouped by APC CNV genotype showed significant difference (P=0.02-0.002). Subjects with a single copy loss of APC had a 7.95%, 13.10% and 13.36% increase in bone mineral density at the forearm, spine and total hip sites respectively, compared to subjects with two copies of the APC gene. CONCLUSIONS These data support previous findings of APC regulating bone mineral density and demonstrate that a novel CNV of the APC gene is significantly associated with bone mineral density in Caucasian men and women.
Collapse
Affiliation(s)
- Shelby Chew
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands 6009, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu YZ, Li J, Pan R, Shen H, Tian Q, Zhou Y, Liu YJ, Deng HW. Genome-wide copy number variation association analyses for age at menarche. J Clin Endocrinol Metab 2012; 97:E2133-9. [PMID: 22904172 PMCID: PMC3485608 DOI: 10.1210/jc.2012-1145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Menarche is a significant physiological event for women. Age at menarche (AAM) is a heritable trait associated with many common female diseases. The genetic basis and the mechanism for AAM are largely unknown. Copy number variation (CNV) is a common type of genetic variation underlying human complex traits. The importance of CNV to AAM variation is unclear. OBJECTIVE The objective of the study was to identify CNV important to AAM variation. DESIGN We performed the first genome-wide CNV study of AAM in 1654 Caucasian females using Affymetrix human single-nucleotide polymorphism 6.0 array. We also replicated our findings in another Chinese cohort containing 752 women. RESULTS We identified a CNV, variation_38399, in the 2q14.2 region, for association with AAM (P = 1.03 × 10(-3)). The CNV has two variants (one copy and two copy), with a mean AAM of 14.00 yr and 12.90 yr, respectively. Interestingly, in a Chinese sample containing 752 women, this CNV has been replicated both with a marginally significant P = 0.090 and with a same direction of effect (a lower copy number for a later AAM). The CNV is located approximately 75 kb upstream of the diazepam binding inhibitor (DBI), a gene known to regulate estrogen levels, a key factor for menarche. CONCLUSION Our findings for the first time identified a novel CNV and suggested the DBI-mediated endocrinological pathway as a potential mechanism for AAM regulation.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hsu YH, Kiel DP. Clinical review: Genome-wide association studies of skeletal phenotypes: what we have learned and where we are headed. J Clin Endocrinol Metab 2012; 97:E1958-77. [PMID: 22965941 PMCID: PMC3674343 DOI: 10.1210/jc.2012-1890] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/09/2012] [Indexed: 02/07/2023]
Abstract
CONTEXT The primary goals of genome-wide association studies (GWAS) are to discover new molecular and biological pathways involved in the regulation of bone metabolism that can be leveraged for drug development. In addition, the identified genetic determinants may be used to enhance current risk factor profiles. EVIDENCE ACQUISITION There have been more than 40 published GWAS on skeletal phenotypes, predominantly focused on dual-energy x-ray absorptiometry-derived bone mineral density (BMD) of the hip and spine. EVIDENCE SYNTHESIS Sixty-six BMD loci have been replicated across all the published GWAS, confirming the highly polygenic nature of BMD variation. Only seven of the 66 previously reported genes (LRP5, SOST, ESR1, TNFRSF11B, TNFRSF11A, TNFSF11, PTH) from candidate gene association studies have been confirmed by GWAS. Among 59 novel BMD GWAS loci that have not been reported by previous candidate gene association studies, some have been shown to be involved in key biological pathways involving the skeleton, particularly Wnt signaling (AXIN1, LRP5, CTNNB1, DKK1, FOXC2, HOXC6, LRP4, MEF2C, PTHLH, RSPO3, SFRP4, TGFBR3, WLS, WNT3, WNT4, WNT5B, WNT16), bone development: ossification (CLCN7, CSF1, MEF2C, MEPE, PKDCC, PTHLH, RUNX2, SOX6, SOX9, SPP1, SP7), mesenchymal-stem-cell differentiation (FAM3C, MEF2C, RUNX2, SOX4, SOX9, SP7), osteoclast differentiation (JAG1, RUNX2), and TGF-signaling (FOXL1, SPTBN1, TGFBR3). There are still 30 BMD GWAS loci without prior molecular or biological evidence of their involvement in skeletal phenotypes. Other skeletal phenotypes that either have been or are being studied include hip geometry, bone ultrasound, quantitative computed tomography, high-resolution peripheral quantitative computed tomography, biochemical markers, and fractures such as vertebral, nonvertebral, hip, and forearm. CONCLUSIONS Although several challenges lie ahead as GWAS moves into the next generation, there are prospects of new discoveries in skeletal biology. This review integrates findings from previous GWAS and provides a roadmap for future directions building on current GWAS successes.
Collapse
Affiliation(s)
- Yi-Hsiang Hsu
- Hebrew SeniorLife Institute for Aging Research, 1200 Centre Street, Boston, Massachusetts 02131, USA
| | | |
Collapse
|
16
|
Sathirapongsasuti JF, Lee H, Horst BAJ, Brunner G, Cochran AJ, Binder S, Quackenbush J, Nelson SF. Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. ACTA ACUST UNITED AC 2011; 27:2648-54. [PMID: 21828086 DOI: 10.1093/bioinformatics/btr462] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MOTIVATION The ability to detect copy-number variation (CNV) and loss of heterozygosity (LOH) from exome sequencing data extends the utility of this powerful approach that has mainly been used for point or small insertion/deletion detection. RESULTS We present ExomeCNV, a statistical method to detect CNV and LOH using depth-of-coverage and B-allele frequencies, from mapped short sequence reads, and we assess both the method's power and the effects of confounding variables. We apply our method to a cancer exome resequencing dataset. As expected, accuracy and resolution are dependent on depth-of-coverage and capture probe design. AVAILABILITY CRAN package 'ExomeCNV'. CONTACT fsathira@fas.harvard.edu; snelson@ucla.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
17
|
Liu SL, Lei SF, Yang F, Li X, Liu R, Nie S, Liu XG, Yang TL, Guo Y, Deng FY, Tian Q, Li J, Liu YZ, Liu YJ, Shen H, Deng HW. Copy number variation in CNP267 region may be associated with hip bone size. PLoS One 2011; 6:e22035. [PMID: 21789208 PMCID: PMC3137628 DOI: 10.1371/journal.pone.0022035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/13/2011] [Indexed: 12/29/2022] Open
Abstract
Osteoporotic hip fracture (HF) is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD). Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV) association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267) located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2), was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5) and androgen receptor (AR). Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream.
Collapse
Affiliation(s)
- Shan-Lin Liu
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
- * E-mail: (H-WD); (S-FL)
| | - Fang Yang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Xi Li
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Rong Liu
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shan Nie
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Xiao-Gang Liu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Tie-Lin Yang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Yan Guo
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Fei-Yan Deng
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Qing Tian
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Jian Li
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yao-Zhong Liu
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Yong-Jun Liu
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
| | - Hui Shen
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People's Republic of China
- Center of Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, United States of America
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, People's Republic of China
- Center of Systematic Biomedical Research, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- * E-mail: (H-WD); (S-FL)
| |
Collapse
|
18
|
Abstract
CONTEXT A strong genetic influence on bone mineral density has been long established, and modern genotyping technologies have generated a flurry of new discoveries about the genetic determinants of bone mineral density (BMD) measured at a single time point. However, much less is known about the genetics of age-related bone loss. Identifying bone loss-related genes may provide new routes for therapeutic intervention and osteoporosis prevention. EVIDENCE ACQUISITION A review of published peer-reviewed literature on the genetics of bone loss was performed. Relevant studies were summarized, most of which were drawn from the period 1990-2010. EVIDENCE SYNTHESIS Although bone loss is a challenging phenotype, available evidence supports a substantial genetic contribution. Some of the genes identified from recent genome-wide association studies of cross-sectional BMD are attractive candidate genes for bone loss, most notably genes in the nuclear factor κB and estrogen endocrine pathways. New insights into the biology of skeletal development and regulation of bone turnover have inspired new hypotheses about genetic regulation of bone loss and may provide new directions for identifying genes associated with bone loss. CONCLUSIONS Although recent genome-wide association and candidate gene studies have begun to identify genes that influence BMD, efforts to identify susceptibility genes specific for bone loss have proceeded more slowly. Nevertheless, clues are beginning to emerge on where to look, and as population studies accumulate, there is hope that important bone loss susceptibility genes will soon be identified.
Collapse
Affiliation(s)
- Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
19
|
Yang TL, Guo Y, Zhang LS, Tian Q, Yan H, Papasian CJ, Recker RR, Deng HW. Runs of homozygosity identify a recessive locus 12q21.31 for human adult height. J Clin Endocrinol Metab 2010; 95:3777-82. [PMID: 20466785 PMCID: PMC2913044 DOI: 10.1210/jc.2009-1715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Runs of homozygosity (ROHs) have recently been proposed to have potential recessive significance for complex traits. Human adult height is a classic complex trait with heritability estimated up to 90%, and recessive loci that contribute to adult height variation have been identified. METHODS Using the Affymetrix 500K array set, we performed a genome-wide ROHs analysis to identify genetic loci for adult height in a discovery sample including 998 unrelated Caucasian subjects from the midwest United States. For the significant ROHs identified, we replicated these findings in a family-based sample of 8385 Caucasian subjects from the Framingham Heart Study (FHS). RESULTS Our results revealed one ROH, located in 12q21.31, that had a strong association with adult height variation both in the discovery (P=6.69x10(-6)) and replication samples (P=5.40x10(-5)). We further validated the presence of this ROH using the HapMap sample. CONCLUSION Our findings open a new avenue for identifying loci with recessive contributions to adult height variation. Further molecular and functional studies are needed to explore and clarify the potential mechanism.
Collapse
Affiliation(s)
- Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering, Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Forer L, Schönherr S, Weissensteiner H, Haider F, Kluckner T, Gieger C, Wichmann HE, Specht G, Kronenberg F, Kloss-Brandstätter A. CONAN: copy number variation analysis software for genome-wide association studies. BMC Bioinformatics 2010; 11:318. [PMID: 20546565 PMCID: PMC2894823 DOI: 10.1186/1471-2105-11-318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. RESULTS CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. CONCLUSIONS CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at.
Collapse
Affiliation(s)
- Lukas Forer
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tenne M, McGuigan FE, Ahlborg H, Gerdhem P, Akesson K. Variation in the PTH gene, hip fracture, and femoral neck geometry in elderly women. Calcif Tissue Int 2010; 86:359-66. [PMID: 20349051 DOI: 10.1007/s00223-010-9351-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 02/14/2010] [Indexed: 01/30/2023]
Abstract
Parathyroid hormone (PTH) is a principal regulator of calcium homeostasis. Previously, we studied single-nucleotide polymorphisms present in the major genes in the PTH pathway (PTH, PTHrP, PTHR1, PTHR2) in relation to bone mineral density (BMD) and fracture incidence. We found that haplotypes of the PTH gene were associated with fracture risk independent of BMD. In the present study, we evaluated the relationship between PTH haplotypes and femoral neck bone size. Hip structure analysis and BMD of the femoral neck was assessed by DXA in elderly women from the Malmö Osteoporosis Prospective Risk Assessment study. Data on hip fracture, sustained as a result of low trauma, after the age of 45 years were also analyzed. Haplotypes derived from six polymorphisms in the PTH locus were analyzed in 750 women. Carriers of haplotype 9 had lower values for hip geometry parameters cross-sectional moment of inertia (P = 0.029), femoral neck width (P = 0.049), and section modulous (P = 0.06), suggestive of increased fracture risk at the hip. However, this did not translate into an increased incidence of hip fracture in the studied population. Women who suffered a hip fracture compared to those who had not had longer hip axis length (HAL) (P < 0.001). HAL was not significantly different among haplotypes. Polymorphisms in the PTH gene are associated with differences in aspects of femoral neck geometry in elderly women; however, the major predictor of hip fracture in our population was HAL, to which PTH gene variation does not contribute significantly.
Collapse
Affiliation(s)
- M Tenne
- Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Science Malmö, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
22
|
Li WF, Hou SX, Yu B, Li MM, Férec C, Chen JM. Genetics of osteoporosis: accelerating pace in gene identification and validation. Hum Genet 2009; 127:249-85. [PMID: 20101412 DOI: 10.1007/s00439-009-0773-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 02/06/2023]
Abstract
Osteoporosis is characterized by low bone mineral density and structural deterioration of bone tissue, leading to an increased risk of fractures. It is the most common metabolic bone disorder worldwide, affecting one in three women and one in eight men over the age of 50. In the past 15 years, a large number of genes have been reported as being associated with osteoporosis. However, only in the past 4 years we have witnessed an accelerated pace in identifying and validating osteoporosis susceptibility loci. This increase in pace is mostly due to large-scale association studies, meta-analyses, and genome-wide association studies of both single nucleotide polymorphisms and copy number variations. A comprehensive review of these developments revealed that, to date, at least 15 genes (VDR, ESR1, ESR2, LRP5, LRP4, SOST, GRP177, OPG, RANK, RANKL, COLIA1, SPP1, ITGA1, SP7, and SOX6) can be reasonably assigned as confirmed osteoporosis susceptibility genes, whereas, another >30 genes are promising candidate genes. Notably, confirmed and promising genes are clustered in three biological pathways, the estrogen endocrine pathway, the Wnt/beta-catenin signaling pathway, and the RANKL/RANK/OPG pathway. New biological pathways will certainly emerge when more osteoporosis genes are identified and validated. These genetic findings may provide new routes toward improved therapeutic and preventive interventions of this complex disease.
Collapse
Affiliation(s)
- Wen-Feng Li
- Department of Orthopaedics, The First Affiliated Hospital, General Hospital of the People's Liberation Army, 100037 Beijing, China
| | | | | | | | | | | |
Collapse
|
23
|
|