1
|
Wu X, Wang J, Yang Z, Xue Y, Zhang M, Chen J, Li P, Wang Y, Wang Y, Wang X, Chen W, Wei X. A finite element study of the biomechanics of aging osteocyte model. Comput Methods Biomech Biomed Engin 2025:1-18. [PMID: 40227845 DOI: 10.1080/10255842.2025.2479853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025]
Abstract
Aging lacuna-canalicular system (LCS) has osteocyte size reduction, cell process number loss, and canaliculus blockage. This study built four osteocyte aging models for various aging features. These models have processes, collagen hillocks, and primary cilia mechanoreceptors for signal comparison. A triaxial displacement load on the piezoelectric bone matrix was utilized to explore mechanical signal changes in the absence of different processes, canaliculi blockage, and the effects of aging on osteocyte mechanoreceptor signals. Osteocyte age doesn't affect piezoelectric effect electric field strength. The aging model flows slower than the normal model. Blocking canaliculi raises fluid pressure. Aging osteocytes lack processes, reducing primary cilia and process stress-strain. Osteocyte volume reduction and canaliculi blockage exacerbate this alteration.
Collapse
Affiliation(s)
- Xiaogang Wu
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jiajun Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Zhengbiao Yang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Meng Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Jing Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Pengcui Li
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
| | - Yanqin Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yongxing Wang
- Taiyuan Great Health Technology Health Management Co., LTD, Taiyuan, China
| | - Xiyu Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
| |
Collapse
|
2
|
Rodic T, Wölfel EM, Fiedler IAK, Cvetkovic D, Jähn-Rickert K, Sopta J, Nikolic S, Zivkovic V, Busse B, Djuric M, Milovanovic P. Bone quality analysis of the mandible in alcoholic liver cirrhosis: Anatomical, microstructural, and microhardness evaluation. Bone 2025; 192:117378. [PMID: 39708897 DOI: 10.1016/j.bone.2024.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVES Alcoholic bone disease has been recognized in contemporary literature as a systemic effect of chronic ethanol consumption. However, evidence about the specific influence of alcoholic liver cirrhosis (ALC) on mandible bone quality is scarce. The aim of this study was to explore microstructural, compositional, cellular, and mechanical properties of the mandible in ALC individuals compared with a healthy control group. MATERIALS AND METHODS Mandible bone cores of mаle individuаls with ALC (n = 6; age: 70.8 ± 2.5 yeаrs) and age-matched healthy controls (n = 11; age: 71.5 ± 3.8 yeаrs) were obtаined postmortem during аutopsy from the edentulous аlveolаr bone in the mandibular first molаr region аnd the mаndibulаr аngulus region of each individual. Micro-computed tomogrаphy wаs used to аssess bone microstructure. Analyses based on quаntitаtive bаckscаttered electron microscopy included the characterization of osteon morphology, osteocyte lаcunаr properties, and bone mаtrix minerаlizаtion. Composition of bone minerаl аnd collаgen phаses was assessed by Rаmаn spectroscopy. Histomorphometry wаs used to determine cellulаr аnd tissue chаrаcteristics of bone specimens. Vickers microhardness test was used to evaluate cortical bone mechanical properties. RESULTS The ALC group showed higher closed cortical porosity (volume of pores thаt do not communicаte with the sаmple surfаce) (p = 0.003) and smaller lacunar area in the trabecular bone of the molar region (p = 0.002) compared with the Control group. The trabecular bone of the angulus region showed lower osteoclast number (p = 0.032) in the ALC group. There were higher carbonate content in the buccal cortex of the molar region (p = 0.008) and lower calcium content in the trabecular bone of the angulus region (p = 0.042) in the ALC group. The cortical bone showed inferior mechanical properties in the ALC cortical bony sites (p < 0.001), except for the buccal cortex of the molar region (p = 0.063). There was no significant difference in cortical thickness between the groups. CONCLUSIONS Bone quality is differentially altered in ALC in two bony sites and compartments of the mandible, which leads to impaired mechanical properties. CLINICAL RELEVANCE Altered mandible bone tissue characteristics in patients with ALC should be considered by dental medicine professionals prior to oral interventions in these patients. Knowledge about mandible bone quality alterations in ALC is valuable for determining diagnosis, treatment plan, indications for oral rehabilitation procedures, and follow-up procedures for this group of patients.
Collapse
Affiliation(s)
- Teodora Rodic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia
| | - Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Danica Cvetkovic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31/A, 11000 Belgrade, Serbia
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Jelena Sopta
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr Subotica starijeg 1, 11000 Belgrade, Serbia
| | - Slobodan Nikolic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31/A, 11000 Belgrade, Serbia
| | - Vladimir Zivkovic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia; Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, Deligradska 31/A, 11000 Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg- Eppendorf, Lottestrasse 55, 22529 Hamburg, Germany
| | - Marija Djuric
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute for Anatomy, Faculty of Medicine, Dr Subotica starijeg 4, 11000 Belgrade, Serbia.
| |
Collapse
|
3
|
Martonos CO, Gudea AI, Little WB, Stan FG, Lațiu C, Bolfa P, Dezdrobitu CC. The Gross Anatomical and Histological Features of the Humerus in African Green Monkeys ( Chlorocebus sabaeus) from Saint Kitts and Nevis, West Indies. Life (Basel) 2024; 14:1295. [PMID: 39459594 PMCID: PMC11508934 DOI: 10.3390/life14101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
This paper presents a detailed gross description of all anatomical elements of the humerus in the African green monkey and provides comparative and differential elements on monkey osteology. The osteometric investigation adds value to the gross morphological investigation, adjoining metric data to the gross descriptive data set. An in-depth investigation of the microstructural aspects of the humeral bone tissue is provided, with qualitative and quantitative details and potential for diagnostic applications. Of the gross morphological elements described, several unique features specific to this species include the humeral head shape that presents with distinctive low convexity and caudal placement, the shape of the intertubercular groove, the less developed greater tubercle, and the disposition of the rotator cuff muscle insertion. Furthermore, the overall cranio-lateral curvature of the bone shaft was found to have a distinctive 154-155 degree of angulation of the diaphysis, and the well-developed medial epicondyle was observed with its distinctive medio-caudal retroflexion. The histological investigation was more indicative of a typical non-primate organization of the bone tissue, with laminar vascular and avascular structures combined with the presence of the secondary Haversian system involving a mixture of scattered and dense unorganized secondary osteonal structures. The histomorphometric investigation yielded metrical data for the secondary osteonal structures in terms of area (20,331 ± 5105 µm2), perimeter, and vascular canal area (64,769 ± 257 µm2).
Collapse
Affiliation(s)
- Cristian Olimpiu Martonos
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (C.O.M.); (W.B.L.); (P.B.); (C.C.D.)
| | - Alexandru Ion Gudea
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - William Brady Little
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (C.O.M.); (W.B.L.); (P.B.); (C.C.D.)
| | - Florin Gheorghe Stan
- Department of Anatomy, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Călin Lațiu
- Faculty of Animal Husbandry and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Pompei Bolfa
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (C.O.M.); (W.B.L.); (P.B.); (C.C.D.)
| | - Cristian Constantin Dezdrobitu
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (C.O.M.); (W.B.L.); (P.B.); (C.C.D.)
| |
Collapse
|
4
|
Park JW, Yoo JH, Lee YK, Park JS, Won YY. Treatment of Osteoporosis after Hip Fracture: Survey of the Korean Hip Society. Hip Pelvis 2024; 36:62-69. [PMID: 38420739 DOI: 10.5371/hp.2024.36.1.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 03/02/2024] Open
Abstract
Purpose To assess current practice in the treatment of osteoporosis in patients who underwent treatment for hip fracture in South Korea. Materials and Methods A survey of 97 members of the Korean Hip Society, orthopedic hip surgeons who administer treatment for hip fractures in South Korea, was conducted. The survey was conducted for assessment of demographic data and perceptions regarding the management of osteoporosis in patients who have undergone treatment for hip fracture. Analysis of the data was performed using descriptive statistical methods. Results The majority of participants were between the age of 41 and 50 years, and 74% were practicing in tertiary hospitals. Testing for serum vitamin D levels (82%) was the most commonly performed laboratory test. Calcium and vitamin D were prescribed for more than 80% of patients by 47% and 52% of participants, respectively. Denosumab was the most commonly used first-line treatment option for osteoporosis in hip fracture patients. Bisphosphonate was most often perceived as the cause of atypical femoral fractures, and the most appropriate time for reoperation was postoperative 12 months. Teriparatide was most preferred after cessation of bisphosphonate and only prescribing calcium and vitamin D was most common in high-risk patients for prevention of atypical femoral fracture. Conclusion The results of this study that surveyed orthopedic hip surgeons showed that most participants followed the current strategy for management of osteoporosis. Because the end result of osteoporosis is a bone fracture, active involvement of orthopedic surgeons is important in treating this condition.
Collapse
Affiliation(s)
- Jung-Wee Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Je-Hyun Yoo
- Department of Orthopedic Surgery, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Young-Kyun Lee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong-Seok Park
- Department of Orthopedic Surgery, Soonchunhyang University Hospital Cheonan, Cheonan, Korea
| | - Ye-Yeon Won
- Department of Orthopedic Surgery, Ajou University College of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Wojciechowska-Puchałka J, Calik J, Krawczyk J, Obrzut J, Tomaszewska E, Muszyński S, Wojtysiak D. The effect of caponization on tibia bone histomorphometric properties of crossbred roosters. Sci Rep 2024; 14:4062. [PMID: 38374163 PMCID: PMC10876549 DOI: 10.1038/s41598-024-54791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
The negative effect of caponization on the structural, geometric and mechanical parameters of femur and tibia has been shown in a few studies. Nevertheless, its influence on tibia bone microarchitecture is still largely unknown. Therefore, this study aimed to assess the effect of castration on the microstructural parameters of the trabecular and compact bone of tibia bone in crossbred chickens. The experiment involved 96 roosters derived from crossing Yellowleg Partridge hens ([Formula: see text]-33) and Rhode Island Red cockerels (R-11) fattened until the 16th, 20th and 24th week of life. Animals were randomly divided into 2 groups of 48 each. Group I (control) consisted of intact roosters and group II (experimental) consisted of birds subjected to caponization at the 8th week of age. The castration surgery had no influence on some properties within compact bone such as osteon diameter On.Dm, osteon perimeter On.Pm, osteon area On.Ar, osteocyte lacunar number Ot.Lc.N, osteon bone area On.B.Ar, osteon wall thickness On.W.Th as well as thick-mature collagen content in all analyzed age groups of animals. Nevertheless, our results demonstrate that castration caused a decrease of Haversian canal area Hc.Ar, osteocyte lacunar area Ot.Lc.Ar and osteocyte lacunar porosity Ot.Lc.Po among the 16-week-old birds, decrease of Haversian canal perimeter Hc.Pm and increase of fraction of bone area On.B.Ar/On.Ar among 16- and 24-week-old individuals and also an increase of osteocyte lacunar density Ot.Lc.Dn in the osteons of the oldest roosters. Additionally, some microstructural parameters of trabecular bone show the negative effect of caponization. The youngest 16-week-old capons were characterized by thinnin the trabecular in the epiphysis part of tibia. Moreover, in the case of 24-week-old, there is an increase in the trabecular separation Tb.Sp with simultaneous decrease of trabecular number Tb.N compared to roosters, which may suggest the increase of the bone resorption among the oldest individuals. The increased bone turnover in the epiphysis part of the tibia bone also indicates changes in the collagen fibers distribution, where among 20-week-old animals there is a decrease in the content of immature thin collagen fibers with simultaneous increase in the content of mature thick collagen fibers. Furthermore, among the oldest 24-week-old individuals we can observe the increased thick-to-thin collagen ratio, which may be a sign of slowing down in bone formation.
Collapse
Affiliation(s)
- J Wojciechowska-Puchałka
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059, Cracow, Poland.
| | - J Calik
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - J Krawczyk
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - J Obrzut
- Department of Poultry Breeding, National Research Institute of Animal Production, 32-083, Balice, Poland
| | - E Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka St., 20-950, Lublin, Poland
| | - S Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 13 Akademicka St, 20-950, Lublin, Poland
| | - D Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 24/28 Mickiewicza Ave., 30-059, Cracow, Poland
| |
Collapse
|
6
|
Toni R, Barbaro F, Di Conza G, Zini N, Remaggi G, Elviri L, Spaletta G, Quarantini E, Quarantini M, Mosca S, Caravelli S, Mosca M, Ravanetti F, Sprio S, Tampieri A. A bioartificial and vasculomorphic bone matrix-based organoid mimicking microanatomy of flat and short bones. J Biomed Mater Res B Appl Biomater 2024; 112:e35329. [PMID: 37898921 DOI: 10.1002/jbm.b.35329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023]
Abstract
We engineered an in vitro model of bioartificial 3D bone organoid consistent with an anatomical and vascular microenvironment common to mammalian flat and short bones. To achieve this, we chose the decellularized-decalcified matrix of the adult male rat scapula, implemented with the reconstruction of its intrinsic vessels, obtained through an original intravascular perfusion with polylevolactic (PLLA), followed by coating of the PLLA-fabricated vascularization with rat tail collagen. As a result, the 3D bone and vascular geometry of the native bone cortical and cancellous compartments was reproduced, and the rat tail collagen-PLLA biomaterial could in vitro act as a surrogate of the perivascular extracellular matrix (ECM) around the wall of the biomaterial-reconstituted cancellous vessels. As a proof-of-concept of cell compatibility and site-dependent osteoinductive properties of this bioartificial 3D construct, we show that it in vitro leads to a time-dependent microtopographic positioning of rat mesenchymal stromal cells (MSCs), initiating an osteogenic fate in relation to the bone compartment. In addition, coating of PLLA-reconstructed vessels with rat tail collagen favored perivascular attachment and survival of MSC-like cells (mouse embryonic fibroblasts), confirming its potentiality as a perivascular stroma for triggering competence of seeded MSCs. Finally, in vivo radiographic topography of bone lesions in the human jaw and foot tarsus of subjects with primary osteoporosis revealed selective bone cortical versus cancellous involvement, suggesting usefulness of a human 3D bone organoid engineered with the same principles of our rat organoid, to in vitro investigate compartment-dependent activities of human MSC in flat and short bones under experimental osteoporotic challenge. We conclude that our 3D bioartificial construct offers a reliable replica of flat and short bones microanatomy, and promises to help in building a compartment-dependent mechanistic perspective of bone remodeling, including the microtopographic dysregulation of osteoporosis.
Collapse
Affiliation(s)
- Roberto Toni
- ISSMC, CNR, Faenza, Italy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts Medical Center-Tufts University School of Medicine, Boston, Massachusetts, USA
- Academy of Sciences of the Institute of Bologna, Section IV-Medical Sciences, Bologna, Italy
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Fulvio Barbaro
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Giusy Di Conza
- Department of Medicine and Surgery-DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), and Museum and Historical Library of Biomedicine-BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | - Giulia Spaletta
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Enrico Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Marco Quarantini
- Endocrinology, Diabetes, and Nutrition Disorders Outpatient Clinic-OSTEONET (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) and Odontostomatology Units, Galliera Medical Center, San Venanzio di Galliera (BO), Italy
| | - Salvatore Mosca
- Course on Disorders of the Locomotor System, Fellow Program in Orthopaedics and Traumatology, University Vita-Salute San Raffaele, Milan, Italy
| | - Silvio Caravelli
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Massimiliano Mosca
- II Clinic of Orthopedic and Traumatology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Ravanetti
- Department of Veterinary Medical Sciences, Section of Anatomy, University of Parma, Parma, Italy
| | | | | |
Collapse
|
7
|
Demirtas A, Taylor EA, Gludovatz B, Ritchie RO, Donnelly E, Ural A. An integrated experimental-computational framework to assess the influence of microstructure and material properties on fracture toughness in clinical specimens of human femoral cortical bone. J Mech Behav Biomed Mater 2023; 145:106034. [PMID: 37494816 DOI: 10.1016/j.jmbbm.2023.106034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/08/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.
Collapse
Affiliation(s)
- Ahmet Demirtas
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA
| | - Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA; Musculoskeletal Integrity Program, Weill Cornell Medicine, Research Institute, Hospital for Special Surgery, New York City, NY, USA
| | - Ani Ural
- Department of Mechanical Engineering, Villanova University, Villanova, PA, USA.
| |
Collapse
|
8
|
Marty AG, Barbone PE, Morgan EF. Multiscale theoretical model shows that aging-related mechanical degradation of cortical bone is driven by microstructural changes in addition to porosity. J Mech Behav Biomed Mater 2023; 145:106029. [PMID: 37499524 PMCID: PMC10528045 DOI: 10.1016/j.jmbbm.2023.106029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
This study aims to gain mechanistic understanding of how aging-related changes in the microstructure of cortical bone drive mechanical consequences at the macroscale. To that end, cortical bone was modeled as a bundle of elastic-plastic, parallel fibers, which represented osteons and interstitial tissue, loaded in uniaxial tension. Distinct material properties were assigned to each fiber in either the osteon or interstitial fiber "families." Models representative of mature (20-60 yrs.) bone, and elderly (60+) bone were created by modeling aging via the following changes to the input parameters: (i) increasing porosity from 5% to 15%, (ii) increasing the ratio of the number of osteon fibers relative to interstitial fibers from 40% to 50%, and (iii) changing the fiber material properties from representing mature bone samples to representing elderly bone samples (i.e., increased strength and decreased toughness of interstitial fibers together with decreased toughness of osteon fibers). To understand the respective contributions of these changes, additional models isolating one or two of each of these were also created. From the computed stress-strain curve for the fiber bundle, the yield point (ϵy, σy), ultimate point (ϵu, σu), and toughness (UT) for the bundle as a whole were measured. We found that changes to all three input parameters were required for the model to capture the aging-related decline in cortical bone mechanical properties consistent with those previously reported in the literature. In both mature and elderly bundles, rupture of the interstitial fibers drove the initial loss of strength following the ultimate point. Plasticity and more gradual rupture of the osteons drove the remainder of the response. Both the onset and completion of interstitial fiber rupture occurred at lower strains in the elderly vs. mature case. These findings point to the importance of studying microstructural changes beyond porosity, such as the area fraction of osteons and the material properties of osteon and interstitial tissue, in order to further understanding of aging-related changes in bone.
Collapse
Affiliation(s)
- André Gutiérrez Marty
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA.
| | - Paul E Barbone
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA.
| | - Elise F Morgan
- Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 110 Cummington Mall, Boston, 02115, MA, USA; Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, 02115, MA, USA.
| |
Collapse
|
9
|
Ahmed N, Eras V, Pruß A, Perka C, Brune J, Vu-Han TL. Allografts: expanding the surgeon's armamentarium. Cell Tissue Bank 2023; 24:273-283. [PMID: 35763162 PMCID: PMC10006263 DOI: 10.1007/s10561-022-10015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
Abstract
In Germany, bone allografts are widely used and their application in clinics has increased over the years. Successful use of allografts depends on many factors such as the procurement, processing, sterilization and the surgeon's surgical experience. Tissue banks have provided safe and sterile allografts for decades ranging from hard to soft tissue. Allografts are obtained from various tissues such as bone, tendon, amniotic membrane, meniscus and skin. An advantage of allografts is their wide applicability that has never been limited by indication restrictions thus providing a huge benefit for surgeon's. The use of the correct allograft in different indications is extremely important. Thereby surgeons have access to various allograft forms such as mineralized, demineralized, freeze-dried, paste, powder, chips strips and putty. The vast options of allografts allow surgeon's to use allografts in indications they deem fit. Currently, the application of allografts is at the discretion of the expert surgeon. However, regulations are often changed locally or internationally and may impact/limit allograft use to certain indications. Here, we report the different indications where our peracetic acid (PAA) sterilised bone allografts were used as well as general literature on bone allograft use in other indications.
Collapse
Affiliation(s)
- Norus Ahmed
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555, Berlin, Germany.
| | - Volker Eras
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555, Berlin, Germany
| | - Axel Pruß
- Institute for Transfusion Medicine, University Tissue Bank, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jan Brune
- German Institute for Cell and Tissue Replacement (DIZG, gemeinnützige GmbH), Haus 42, Köpenicker Str. 325, 12555, Berlin, Germany
| | - Tu-Lan Vu-Han
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
10
|
Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice. Nutrients 2023; 15:nu15030583. [PMID: 36771291 PMCID: PMC9920312 DOI: 10.3390/nu15030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Short-term animal experiments and association studies in humans have shown that cola intake may have a detrimental impact on bone mineral density (BMD); however, other bone parameters have not been investigated. This study examined the effects of long-term cola consumption on the femoral bone microstructure using adult mice (n = 32) as an animal model, which were divided into water and cola groups depending on whether they received water or cola along with a standard rodent diet for 6 months. Micro-computed tomography revealed that cola intake did not significantly affect all measured parameters characterizing trabecular bone mass and microarchitecture, as well as cortical microarchitecture and geometry in both sexes, although a slight deterioration of these parameters was noted. Cola consumption also resulted in a slightly, statistically insignificant worsening of bone mechanical properties. In contrast to female mice, males receiving cola had a lower area of primary osteons' vascular canals. Nevertheless, long-term cola intake did not cause evident pathological alterations in the femur of adult mice, possibly due to a balanced diet and no restriction of physical activity. Therefore, the adverse effects of cola consumption on BMD, the only bone parameter studied so far, may be caused by other risk and lifestyle factors.
Collapse
|
11
|
Allahyari P, Silani M, Yaghoubi V, Milovanovic P, Schmidt FN, Busse B, Qwamizadeh M. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. J Mech Behav Biomed Mater 2023; 137:105530. [PMID: 36334581 DOI: 10.1016/j.jmbbm.2022.105530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bone encompasses a complex arrangement of materials at different length scales, which endows it with a range of mechanical, chemical, and biological capabilities. Changes in the microstructure and characteristics of the material, as well as the accumulation of microcracks, affect the bone fracture properties. In this study, two-dimensional finite element models of the microstructure of cortical bone were considered. The eXtended Finite Element Method (XFEM) developed by Abaqus software was used for the analysis of the microcrack propagation in the model as well as for local sensitivity analysis. The stress-strain behavior obtained for the different introduced models was substantially different, confirming the importance of bone tissue microstructure for its failure behavior. Considering the role of interfaces, the results highlighted the effect of cement lines on the crack deflection path and global fracture behavior of the bone microstructure. Furthermore, bone micromorphology and areal fraction of cortical bone tissue components such as osteons, cement lines, and pores affected the bone fracture behavior; specifically, pores altered the crack propagation path since increasing porosity reduced the maximum stress needed to start crack propagation. Therefore, cement line structure, mineralization, and areal fraction are important parameters in bone fracture. The parameter-wise sensitivity analysis demonstrated that areal fraction and strain energy release rate had the greatest and the lowest effect on ultimate strength, respectively. Furthermore, the component-wise sensitivity analysis revealed that for the areal fraction parameter, pores had the greatest effect on ultimate strength, whereas for the other parameters such as elastic modulus and strain energy release rate, cement lines had the most important effect on the ultimate strength. In conclusion, the finding of the current study can help to predict the fracture mechanisms in bone by taking the morphological and material properties of its microstructure into account.
Collapse
Affiliation(s)
- P Allahyari
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Silani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - V Yaghoubi
- Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands
| | - P Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - M Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
| |
Collapse
|
12
|
Cen H, Gong H, Liu H, Jia S, Wu X, Fan Y. A Comparative Study on the Multiscale Mechanical Responses of Human Femoral Neck Between the Young and the Elderly Using Finite Element Method. Front Bioeng Biotechnol 2022; 10:893337. [PMID: 35600894 PMCID: PMC9117745 DOI: 10.3389/fbioe.2022.893337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Femoral neck fracture (FNF) is the most serious bone disease in the elderly population. The multiscale mechanical response is a key to predicting the strength of the femoral neck, assessing the risk of FNF, and exploring the role of mechanosensation and mechanotransmission in bone remodeling, especially in the context of aging bone.Methods: Multiscale finite element (FE) models of the proximal femur for both young and elderly people were developed. The models included organ scale (proximal femur), tissue scale (cortical bone), tissue element scale (osteon), and cell scale [osteocyte lacuna-canalicular network (LCN) and extracellular matrix (ECM), OLCEM]. The mechanical responses of cortical bone and osteocytes in the mid-femoral neck and the differences in mechanical responses between these two scales were investigated.Results: The mechanical responses of cortical bone and osteocyte showed significant differences between the elderly and the young. The minimum principal strains and mean SEDs of cortical bone in the elderly were 2.067–4.708 times and 3.093–14.385 times of the values in the young, respectively; the minimum principal strains and mean SEDs of osteocyte in the elderly were 1.497–3.246 times and 3.044–12 times of the values in the young, respectively; the amplification factors of minimum principal strain in the inferior (Inf), anterior (Ant), and posterior (Post) quadrants in the young were 1.241–1.804 times of the values in the elderly, but the amplification factor of minimum principal strain in the superior (Sup) quadrant was 87.4% of the value in the elderly; the amplification factors of mean SED in the young were 1.124–9.637 times of the values in the elderly.Conclusion: The mass and bone mineral density (BMD) of cortical bone in the femoral neck is closely related to the mechanical response of osteocytes, which provides a new idea for improving cortical bone quality. Perhaps cortical bone quality could be improved by stimulating osteocytes. Quadrantal differences of bone quality in the mid-femoral neck should be considered to improve fracture risk prediction in the future.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: He Gong,
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaodan Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
13
|
Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev 2022; 77:101608. [PMID: 35283289 DOI: 10.1016/j.arr.2022.101608] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Osteocytes play a critical role in maintaining bone homeostasis and in regulating skeletal response to hormones and mechanical loading. Substantial evidence have demonstrated that osteocytes and their lacunae exhibit morphological changes in aged bone, indicating the underlying involvement of osteocytes in bone aging. Notably, recent studies have deciphered aged osteocytes to have characteristics such as impaired mechanosensitivity, accumulated cellular senescence, dysfunctional perilacunar/canalicular remodeling, and degenerated lacuna-canalicular network. However, detailed molecular mechanisms of osteocytes remain unclear. Nonetheless, osteocyte transcriptomes analyzed via advanced RNA sequencing (RNA-seq) techniques have identified several bone aging-related genes and signaling pathways, such as Wnt, Bmp/TGF, and Jak-STAT. Moreover, inflammation, immune dysfunction, energy shortage, and impaired hormone responses possibly affect osteocytes in age-related bone deterioration. In this review, we summarize the hallmarks of aging bone and osteocytes and discuss osteocytic mechanisms in age-related bone loss and impaired bone quality. Furthermore, we provide insights into the challenges faced and their possible solutions when investigating osteocyte transcriptomes. We also highlight that single-cell RNA-seq can decode transcriptomic messages in aged osteocytes; therefore, this technique can promote novel single cell-based investigations in osteocytes once a well-established standardized protocol specific for osteocytes is developed. Interestingly, improved understanding of osteocytic mechanisms have helped identify promising targets and effective therapies for aging-related osteoporosis and fragile fractures.
Collapse
|
14
|
Little-Letsinger SE, Rubin J, Diekman B, Rubin CT, McGrath C, Pagnotti GM, Klett EL, Styner M. Exercise to Mend Aged-tissue Crosstalk in Bone Targeting Osteoporosis & Osteoarthritis. Semin Cell Dev Biol 2022; 123:22-35. [PMID: 34489173 PMCID: PMC8840966 DOI: 10.1016/j.semcdb.2021.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Aging induces alterations in bone structure and strength through a multitude of processes, exacerbating common aging- related diseases like osteoporosis and osteoarthritis. Cellular hallmarks of aging are examined, as related to bone and the marrow microenvironment, and ways in which these might contribute to a variety of age-related perturbations in osteoblasts, osteocytes, marrow adipocytes, chondrocytes, osteoclasts, and their respective progenitors. Cellular senescence, stem cell exhaustion, mitochondrial dysfunction, epigenetic and intracellular communication changes are central pathways and recognized as associated and potentially causal in aging. We focus on these in musculoskeletal system and highlight knowledge gaps in the literature regarding cellular and tissue crosstalk in bone, cartilage, and the bone marrow niche. While senolytics have been utilized to target aging pathways, here we propose non-pharmacologic, exercise-based interventions as prospective "senolytics" against aging effects on the skeleton. Increased bone mass and delayed onset or progression of osteoporosis and osteoarthritis are some of the recognized benefits of regular exercise across the lifespan. Further investigation is needed to delineate how cellular indicators of aging manifest in bone and the marrow niche and how altered cellular and tissue crosstalk impact disease progression, as well as consideration of exercise as a therapeutic modality, as a means to enhance discovery of bone-targeted therapies.
Collapse
Affiliation(s)
- SE Little-Letsinger
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - J Rubin
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| | - B Diekman
- Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill,Joint Departments of Biomedical Engineering NC State & University of North Carolina at Chapel Hill
| | - CT Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook
| | - C McGrath
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill
| | - GM Pagnotti
- Dept of Endocrine, Neoplasia, and Hormonal Disorders, University Texas MD Anderson Cancer Center, Houston
| | - EL Klett
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill
| | - M Styner
- Department of Medicine, Division of Endocrinology & Metabolism, University of North Carolina at Chapel Hill,North Carolina Diabetes Research Center (NCDRC), University of North Carolina at Chapel Hill,Department of Medicine, Thurston Arthritis Research Center (TARC), University of North Carolina at Chapel Hill
| |
Collapse
|
15
|
Xing W, Miller T, Wildy S. Computational homogenisation based extraction of transverse tensile cohesive responses of cortical bone tissue. Biomech Model Mechanobiol 2022; 21:147-161. [PMID: 34647217 DOI: 10.1007/s10237-021-01524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The numerical assessment of fracture properties of cortical bone is important in providing suggestions on patient-specific clinical treatments. We present a generic finite element modelling framework incorporating computational fracture approaches and computational homogenisation techniques. Finite element computations for statistical volume elements (SVEs) at the microscale are performed for different sizes with random osteon packing with a fixed volume fraction. These SVEs are loaded in the transverse direction under tension. The minimal SVE size in terms of ensuring a representative effective cohesive law is suggested to be 0.6 mm. Since cement lines as weak interfaces play a key role in bone fracture, the effects of their fracture properties on the effective fracture strength and toughness are investigated. The extracted effective fracture properties can be used as homogenised inputs to a discrete crack simulation at macroscopic or structural scale. The extrinsic toughening mechanisms observed in the SVE models are discussed with a comparison against experimental observations from the literature, giving beneficial insights to cortical bone failure.
Collapse
Affiliation(s)
- Wenjin Xing
- College of Science and Engineering, Flinders University, South Australia, 5042, Australia.
| | - Tony Miller
- College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Stuart Wildy
- College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| |
Collapse
|
16
|
Cen H, Yao Y, Liu H, Jia S, Gong H. Multiscale mechanical responses of young and elderly human femurs: A finite element investigation. Bone 2021; 153:116125. [PMID: 34280582 DOI: 10.1016/j.bone.2021.116125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bone remodeling in the elderly is no longer balanced. As a result, the morphologies and mechanical properties of bone at different scales will change. These changes would affect the mechanical responses of bone, which might exacerbate the imbalance of bone remodeling and even cause age-related bone diseases. METHODS Considering those changes, multiscale finite element (FE) models of bone in the young and the elderly were developed that included macroscale (proximal femur), mesoscale (cortical bone), microscale (Haversian system) and sub-microscale (osteocyte-lacuna-canaliculus-extracellular matrix system, OLCES). The stress and strain distributions at different scales and transmissions among different scales were investigated. RESULTS The stresses of the elderly at macroscale, mesoscale and microscale were higher than those in the young by 23.7%, 62.5% and 8.0%, respectively, and the stresses of the elderly and the young at sub-microscale were almost the same. The strain of the elderly at macroscale, mesoscale, microscale and sub-microscale were higher than those in the young by 48.6%, 56.8%, 11.9% and 25.1%, respectively. The stress and strain transmission rates (ησand ηε) from mesoscale to microscale were decreased by 1.8%, and 2.5% than those from macroscale to mesoscale in the elderly, respectively; but increased by 13.8%, and 4.7% in the young, respectively. ηε from microscale to sub-microscale in the elderly was higher than that in the young by 21.3%. CONCLUSIONS Degeneration of cortical bone mechanical property in the elderly causes increases in stress and strain at macroscale and mesoscale. The reduction of lacunar number in the elderly is not conducive to the mechanical transmission from mesoscale to microscale. The differences in stress and strain at microscale between the young and the elderly are smaller than those at macroscale or mesoscale. The strain stimulus sensed by osteocyte in the elderly is not weakened compared with that in the young.
Collapse
Affiliation(s)
- Haipeng Cen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yan Yao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Haibo Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - He Gong
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
17
|
Ural A. Biomechanical mechanisms of atypical femoral fracture. J Mech Behav Biomed Mater 2021; 124:104803. [PMID: 34479108 DOI: 10.1016/j.jmbbm.2021.104803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022]
Abstract
Antiresorptives such as bisphosphonates (BP) and denosumab are commonly used osteoporosis treatments that are effective in preventing osteoporotic fractures by suppressing bone turnover. Although these treatments reduce fracture risk, their long-term use has been associated with atypical femoral fracture (AFF), a rare potential side effect. Despite its rare occurrence, AFF has had a disproportionately significant adverse impact on society due to its severe outcomes such as loss of function and delayed healing. These severe outcomes have led to the decrease in the use and prescription of osteoporosis treatment drugs due to patient anxiety and clinician reluctance. This creates the risk for increasing osteoporotic fracture rates in the population. The existing information on the pathogenesis of AFF primarily relies on retrospective observational studies. However, these studies do not explain the underlying mechanisms that contribute to AFF, and therefore the mechanistic origins of AFF are still poorly understood. The purpose of this review is to outline the current state of knowledge of the mechanical mechanisms of AFF. The review focuses on three major potential mechanical mechanisms of AFF based on the current literature which are (1) macroscale femoral geometry which influences the stress/strain distribution in the femur under loading; (2) bone matrix composition, potentially altered by long-term remodeling suppression by BPs, which directly influences the material properties of bone and its mechanical behavior; and (3) microstructure, potentially altered by long-term remodeling suppression by BPs, which impacts fracture resistance through interaction with crack propagation. In addition, this review presents the critical knowledge gaps in understanding AFF and also discusses approaches to closing the knowledge gap in understanding the underlying mechanisms of AFF.
Collapse
Affiliation(s)
- Ani Ural
- Department of Mechanical Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA, 19085, USA.
| |
Collapse
|
18
|
Borges JS, Rabelo GD, Irie MS, Paz JLC, Spin-Neto R, Soares PBF. Cortical Bone Modifications after Radiotherapy: Cortex Porosity and Osteonal Changes Evaluated Over Time. Braz Dent J 2021; 32:9-15. [PMID: 33914008 DOI: 10.1590/0103-6440202103384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 11/22/2022] Open
Abstract
Aiming to evaluate cortical bone microarchitecture and osteonal morphology after irradiation, twelve male New Zealand rabbits were used. The animals were divided: control group (no radiation-NIr); and 3 irradiated groups, sacrificed after: 7 (Ir7d); 14 (Ir14d) and 21 (Ir21d) days. A single radiation dose of 30 Gy was used. Computed microtomography analyzed the cortical microarchitecture: cortical thickness (CtTh), bone volume (BV), total porosity (Ct.Po), intracortical porosity (CtPo-cl), channel/pore number (Po.N), fractal dimension (FD) and degree of anisotropy (Ct.DA). After scan, osteonal morphology was histologically assessed by means: area and perimeter of the osteons (O.Ar; O.p) and of the Haversian canals (C.Ar; C.p). Microtomographic analysis were performed by ANOVA, followed by Tukey and Dunnet tests. Osteon morphology analyses were performed by Kruskal-Wallis, and test Dunn's. Cortical thickness was significant difference (p<0.010) between the NIr and irradiated groups, with thicker cortex at Ir7d (1.15±0.09). The intracortical porosity revealed significant difference (p<0.001) between irradiated groups and NIr, with lower value for Ir7d (0.29±0.09). Bone volume was lower in Ir14d compared to control. Area and perimeter of the osteons were statistically different (p<0.0001) between NIr and Ir7d. Haversian canals also revealed lower values (p<0.0001) in Ir7d (80.57±9.3; 31.63±6.5) compared to NIr and irradiated groups. Cortical microarchitecture was affected by radiation, and the effects appear to be time-dependent, mostly regarding the osteons morphology at the initial days. Cortex structure in Ir21d revealed similarities to control suggesting that microarchitecture resembles normal condition after a period.
Collapse
Affiliation(s)
- Juliana Simeão Borges
- Periodontology Department, Faculty of Dentistry, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Gustavo Davi Rabelo
- Dentistry Department, UFSC: Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Milena Suemi Irie
- Periodontology Department, Faculty of Dentistry, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - João Lucas Carvalho Paz
- Periodontology Department, Faculty of Dentistry, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rubens Spin-Neto
- Dentistry Department and Oral Health, Oral Radiology Department, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
19
|
Bone quality analysis of jaw bones in individuals with type 2 diabetes mellitus-post mortem anatomical and microstructural evaluation. Clin Oral Investig 2021; 25:4377-4400. [PMID: 33694028 DOI: 10.1007/s00784-020-03751-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES With the higher risk of dental implant failure with type 2 diabetes mellitus (T2DM), there is a need to characterize the jaw bones in those individuals. The aim of this post mortem study was to compare jaw bone quality of individuals with T2DM to healthy controls. MATERIAL AND METHODS Bone cores from the edentulous lower first molar region and the region of mandibular angle were collected from male individuals with T2DM (n = 10, 70.6 ± 4.5 years) and healthy controls (n = 11, 71.5 ± 3.8 years) during autopsy. Within the T2DM, a subgroup treated with oral antidiabetics (OAD) and one on insulin were identified. Bone quality assessment encompassed evaluation of bone microstructure, matrix composition, and cellular activity, using microcomputed tomography (micro-CT), quantitative backscattered electron imaging (qBEI), Raman spectroscopy, and bone histomorphometry. RESULTS In the mandibular angle, T2DM showed 51% lower porosity of the lingual cortex (p = 0.004) and 21% higher trabecular thickness (p = 0.008) compared to control. More highly mineralized bone packets were found in the buccal cortex of the mandibular angle in insulin-treated compared to OAD-treated T2DM group (p = 0.034). In the molar region, we found higher heterogeneity of trabecular calcium content in T2DM insulin compared to controls (p = 0.015) and T2DM OAD (p = 0.019). T2DM was associated with lower osteocyte lacunar size in the trabecular bone of the molar region (vs. control p = 0.03). CONCLUSIONS Alterations in microstructure, mineralization, and osteocyte morphology were determined in jaw bone of individuals with T2DM compared to controls. CLINICAL RELEVANCE Future studies will have to verify if the mild changes determined in this study will translate to potential contraindications for dental implant placements.
Collapse
|
20
|
Bohns FR, Shih Y, Chuang Y, Akhtar R, Chen P. Influence of Prednisolone and Alendronate on the de novo Mineralization of Zebrafish Caudal Fin. JBMR Plus 2021; 5:e10435. [PMID: 33615104 PMCID: PMC7872341 DOI: 10.1002/jbm4.10435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated balance between bone resorption and formation mediates the onset and progression of osteoporosis. The administration of prednisolone is known to induce osteoporosis, whereas alendronate is commonly used to reverse the process. However, the assessment of the effects of such medicines on the nanostructure of bone remodeling and mechanical properties remains a major technical challenge. The aim of this study was to apply various analytical approaches to evaluate the compositional, morphological, and mechanical properties of regenerative zebrafish caudal fin bony rays affected by prednisolone and alendronate. Adult wild-type AB strain zebrafish were first exposed to 125μM of prednisolone for 14 days to develop glucocorticoid-induced osteoporosis. Fish fins were then amputated and let to regenerate for 21 days in tank water containing 30μM of alendronate or no alendronate. The lepidotrichia in the proximal and distal regions were evaluated separately using confocal microscope, scanning electron microscope, electron-dispersive spectroscopy, Raman spectroscopy, atomic force microscopy, and a triboindenter. As expected, prednisolone led to significant osteoporotic phenotypes. A decrease of Ca/P ratio was observed in the osteoporotic subjects (1.46 ± 0.04) as compared to the controls (1.74 ± 0.10). Subsequent treatment of alendronate overmineralized the bony rays during regeneration. Enhanced phosphate deposition was detected in the proximal part with alendronate treatment. Moreover, prednisolone attenuated the reduced elastic modulus and hardness levels (5.60 ± 5.04 GPa and 0.12 ± 0.17 GPa, respectively), whereas alendronate recovered them to the pre-amputation condition (8.68 ± 8.74 GPa and 0.34 ± 0.47 GPa, respectively). As an emerging model of osteoporosis, regrowth of zebrafish caudal fin was shown to be a reliable assay system to investigate the various effects of medicines in the de novo mineralization process. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fabio Rocha Bohns
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
- Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
- International Intercollegiate Ph.D. ProgramNational Tsing Hua University 101HsinchuTaiwan
| | - Yann‐Rong Shih
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| | - Yung‐Jen Chuang
- Department of Medical Science and Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Riaz Akhtar
- Department of Mechanical, Materials and Aerospace EngineeringUniversity of LiverpoolLiverpoolUK
| | - Po‐Yu Chen
- Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
21
|
Qiu S, Divine G, Warner E, Rao SD. Reference Intervals for Bone Histomorphometric Measurements Based on Data from Healthy Premenopausal Women. Calcif Tissue Int 2020; 107:543-550. [PMID: 32814991 PMCID: PMC7606320 DOI: 10.1007/s00223-020-00748-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
This study has established the normal reference intervals for bone histomorphometric measurements derived from healthy premenopausal women, which is rarely available. We presented the static and dynamic bone histomorphometric data from trans-iliac bone biopsies in 62 healthy premenopausal women (19 blacks and 43 whites, ages 20-53 years). There were no significant differences in age and BMI between black and white women. Since there was no significant difference in bone remodeling between the two ethnic groups, we pooled data of all 62 premenopausal women to establish normal reference intervals for bone histomorphometry. The results provide normal reference intervals for both static and dynamic histomorphometric variables in cancellous and cortical bone of the ilium. None of the bone remodeling-related variables correlated with age or BMI. This study provides reference intervals for bone histomorphometric measurements in both cancellous and cortical bone of the ilium, which would be helpful in the evaluation of bone health in women.
Collapse
Affiliation(s)
- Shijing Qiu
- Bone and Mineral Research Laboratory, Henry Ford Health System, Detroit, MI, USA.
| | - George Divine
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Elizabeth Warner
- Division of Endocrinology, Diabetes, and Bone & Mineral Disorders, Henry Ford Health System, Detroit, MI, USA
| | - Sudhaker D Rao
- Bone and Mineral Research Laboratory, Henry Ford Health System, Detroit, MI, USA
- Division of Endocrinology, Diabetes, and Bone & Mineral Disorders, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
22
|
Toni R, Di Conza G, Barbaro F, Zini N, Consolini E, Dallatana D, Antoniel M, Quarantini E, Quarantini M, Maioli S, Bruni CA, Elviri L, Panseri S, Sprio S, Sandri M, Tampieri A. Microtopography of Immune Cells in Osteoporosis and Bone Lesions by Endocrine Disruptors. Front Immunol 2020; 11:1737. [PMID: 33013826 PMCID: PMC7493744 DOI: 10.3389/fimmu.2020.01737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis stems from an unbalance between bone mineral resorption and deposition. Among the numerous cellular players responsible for this unbalance bone marrow (BM) monocytes/macrophages, mast cells, T and B lymphocytes, and dendritic cells play a key role in regulating osteoclasts, osteoblasts, and their progenitor cells through interactions occurring in the context of the different bone compartments (cancellous and cortical). Therefore, the microtopography of immune cells inside trabecular and compact bone is expected to play a relevant role in setting initial sites of osteoporotic lesion. Indeed, in physiological conditions, each immune cell type preferentially occupies either endosteal, subendosteal, central, and/or perisinusoidal regions of the BM. However, in the presence of an activation, immune cells recirculate throughout these different microanatomical areas giving rise to a specific distribution. As a result, the trabeculae of the cancellous bone and endosteal free edge of the diaphyseal case emerge as the primary anatomical targets of their osteoporotic action. Immune cells may also transit from the BM to the depth of the compact bone, thanks to the efferent venous capillaries coursing in the Haversian and Volkmann canals. Consistently, the innermost parts of the osteons and the periosteum are later involved by their immunomodulatory action, becoming another site of mineral reabsorption in the course of an osteoporotic insult. The novelty of our updating is to highlight the microtopography of bone immune cells in the cancellous and cortical compartments in relation to the most consistent data on their action in bone remodeling, to offer a mechanist perspective useful to dissect their role in the osteoporotic process, including bone damage derived from the immunomodulatory effects of endocrine disrupting chemicals.
Collapse
Affiliation(s)
- Roberto Toni
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy.,OSTEONET-CMG Unit (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) at the Medical Center Galliera (CMG), San Venanzio, Italy.,Interdepartment Center for Law, Economics, and Medicine of Sport, University of Parma, Parma, Italy.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Giusy Di Conza
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Fulvio Barbaro
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Nicoletta Zini
- CNR- National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Elia Consolini
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Davide Dallatana
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Manuela Antoniel
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Enrico Quarantini
- OSTEONET-CMG Unit (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) at the Medical Center Galliera (CMG), San Venanzio, Italy
| | - Marco Quarantini
- OSTEONET-CMG Unit (Osteoporosis, Nutrition, Endocrinology, and Innovative Therapies) at the Medical Center Galliera (CMG), San Venanzio, Italy
| | - Sara Maioli
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Celeste Angela Bruni
- Laboratory of Regenerative Morphology and Bioartificial Structures (Re.Mo.Bio.S.), Department of Medicine and Surgery - DIMEC, Unit of Biomedical, Biotechnological and Translational Sciences (S.BI.BI.T.), Museum and Historical Library of Biomedicine - BIOMED, University of Parma, Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parma, Italy
| | | | | | | | | |
Collapse
|
23
|
Zhang L, Xiang Y, Zhang H, Cheng L, Mao X, An N, Zhang L, Zhou J, Deng L, Zhang Y, Sun X, Santos HA, Cui W. A Biomimetic 3D-Self-Forming Approach for Microvascular Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903553. [PMID: 32382485 PMCID: PMC7201264 DOI: 10.1002/advs.201903553] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/13/2020] [Indexed: 05/12/2023]
Abstract
The development of science and technology often drew lessons from natural phenomena. Herein, inspired by drying-driven curling of apple peels, hydrogel-based micro-scaled hollow tubules (MHTs) are proposed for biomimicking microvessels, which promote microcirculation and improve the survival of random skin flaps. MHTs with various pipeline structures are fabricated using hydrogel in corresponding shapes, such as Y-branches, anastomosis rings, and triangle loops. Adjustable diameters can be achieved by altering the concentration and cross-linking time of the hydrogel. Based on this rationale, biomimetic microvessels with diameters of 50-500 µm are cultivated in vitro by coculture of MHTs and human umbilical vein endothelial cells. In vivo studies show their excellent performance to promote microcirculation and improve the survival of random skin flaps. In conclusion, the present work proposes and validifies a biomimetic 3D self-forming method for the fabrication of biomimetic vessels and microvascular scaffolds with high biocompatibility and stability based on hydrogel materials, such as gelatin and hyaluronic acid.
Collapse
Affiliation(s)
- Liucheng Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Yi Xiang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Sciences Laboratory and Turku Center for BiotechnologyÅbo Akademi UniversityTurkuFI‐20520Finland
| | - Liying Cheng
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Ning An
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of AerospaceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lu Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Jinxiong Zhou
- State Key Laboratory for Strength and Vibration of Mechanical StructuresSchool of AerospaceXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai JiaoTong University School of Medicine639 Zhi Zao Ju RoadShanghai200011P. R. China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
24
|
Loundagin LL, Haider IT, Cooper DM, Edwards WB. Association between intracortical microarchitecture and the compressive fatigue life of human bone: A pilot study. Bone Rep 2020; 12:100254. [PMID: 32258250 PMCID: PMC7110329 DOI: 10.1016/j.bonr.2020.100254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Many mechanical properties of cortical bone are largely governed by the underlying microarchitecture; however, the influence of microarchitecture on the fatigue life of bone is poorly understood. Furthermore, imaging-based studies investigating intracortical microarchitecture may expose bone samples to large doses of radiation that may compromise fatigue resistance. The purpose of this pilot study was to 1) investigate the relationship between intracortical microarchitecture and the fatigue life of human bone in compression and 2) examine the effects of synchrotron irradiation on fatigue life measurements. Cortical samples were prepared from the femoral and tibial shafts of three cadaveric donors. A subset of samples was imaged using synchrotron X-ray microCT to quantify microarchitecture, including porosity, canal diameter, lacunar density, lacunar volume, and lacunar orientation. A second group of control samples was not imaged and used only for mechanical testing. Fatigue life was quantified by cyclically loading both groups in zero-compression until failure. Increased porosity and larger canal diameter were both logarithmically related to a shorter fatigue life, whereas lacunar density demonstrated a positive linear relationship with fatigue life (r2 = 45–73%, depending on measure). Irradiation from microCT scanning reduced fatigue life measurements by 91%, but relationships with microarchitecture measurements remained. Additional research is needed to support the findings of this pilot study and fully establish the relationship between intracortical microarchitecture and the compressive fatigue life of bone. Increased porosity and larger canal diameters were associated with a shorter compressive fatigue life. A higher lacunar density was related to a longer compressive fatigue life. Irradiation from synchrotron X-ray microCT scanning reduced fatigue life by 91%. The influence of microarchitecture on fatigue life exhibited similar trends for both irradiated and non-irradiated bone.
Collapse
Affiliation(s)
- Lindsay L. Loundagin
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Corresponding author at: Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| | - Ifaz T. Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - David M.L. Cooper
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, 105 Administration Place, Saskatoon, SK S7N 5A2, Canada
| | - W. Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
25
|
Ahmad T, Byun H, Lee J, Madhurakat Perikamana SK, Shin YM, Kim EM, Shin H. Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials 2019; 230:119652. [PMID: 31787333 DOI: 10.1016/j.biomaterials.2019.119652] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/23/2019] [Indexed: 01/22/2023]
Abstract
Although stem cell spheroids offer great potential as functional building blocks for bottom-up bone tissue engineering, delivery of bioactive signals remain challenging. Here, we engineered adenosine-ligand-modified fiber fragments to create a 3D cell-instructive microenvironment for bone. Briefly, the Poly(ι-lactic acid) (PLLA) nanofiber sheet was partially degraded into fragmented fibers (FFs) through aminolysis and adenosine was stably incorporated via one-step polydopamine coating. The SEM and XPS analysis demonstrated that polydopamine assisted adenosine coating efficiency was significantly increased, which led to high coating efficiency of adenosine and its significant retention. The engineered fibers were then assembled into stable spheroids with human-adipose-derived stem cells (hADSCs). The adenosine in the spheroids effectively stimulated A2bR (1.768 ± 0.08) signaling, which further significantly induced the expression of osteogenic markers such as Runx2 (3.216 ± 0.25), OPN (4.136 ± 0.14), OCN (10.16 ± 0.34), and OSX (2.27 ± 0.11) with improved mineral deposition (1.375 ± 0.05 μg per spheroid). In contrast, the adipogenic differentiation of hADSCs was significantly suppressed within the engineered spheroids. Transplantation of engineered spheroids strongly induced osteogenic differentiation of hADSCs in ectopic subcutaneous tissue. Finally, the bone regeneration was significantly enhanced by implanting AP-FF group (59.97 ± 18.33%) as compared to P-FF (27.96 ± 11.14) and defect only (7.97 ± 3.76%). We propose that stem cell spheroids impregnated with engineered fibers enabling adenosine delivery could be promising building blocks for a bottom-up approach to create large tissues for regeneration of damaged bone.
Collapse
Affiliation(s)
- Taufiq Ahmad
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sajeesh Kumar Madhurakat Perikamana
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Young Min Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
26
|
Raguin E, Drapeau MSM. Relation between cross-sectional bone geometry and double zonal osteon frequency and morphology. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:598-612. [PMID: 31675105 DOI: 10.1002/ajpa.23954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES While double-zonal osteons (DZ) are characterized by a hyper-mineralized ring inside their lamellae, recent findings suggest that this ring is also defined by a change in the collagen fibers' orientation. Collagen and minerals are essential components to the maintenance of adequate bone strength and their alteration can modify the mechanical properties of the bone tissue. Consequently, the aim of this study is to explore the effect of past loads, as estimated from cross-sectional geometric properties, on the formation of DZ osteons compared to type I (common) osteons. MATERIALS AND METHODS The sample consists of paired humerus and femur midshaft sections (n = 23) of Eurocanadian settlers from the historical St. Matthew cemetery, Quebec City (1771-1860). Histomorphometric variables included in this study are osteon density for DZ and type I osteons (DZD; OPD), osteon area (DZOn.Ar; On. Ar), Haversian canal area (DZH.Ar; H.Ar), and the area within the hypermineralized ring (HR. Ar). Loading history is estimated from cross-sectional properties including the following variable: cortical and total area (CA, TA), maximum and minimum second moment of area (Imax , Imin ) and polar moment of area (J). RESULTS When the humerus and femur of the same individuals are compared, the femur has a higher OPD, DZD, and relative DZD (DZD/OPD). DZ osteons have a smaller area and Haversian canal area compared to type I osteons. The area within the hypermineralized ring in DZ is higher than the Haversian canal area of the type I osteons. Correlations between the residual scores of the regression of histomorphometric variables and cross-sectional properties of the humerus on the femur were not significant. DISCUSSION Based on the analysis of the entire cross-section, the lack of correlation between variations in cross-sectional properties and remodeling combined with the significant differences between humeri and femura suggests that the creation of DZ or type I osteons in the bone tissue might be due to a bone specific response, possibly related to differences in bone tissue age that needs to be further investigated. Definitive conclusion regarding biomechanical loads still seem to be premature as regional variations associated with mechanical properties remain to be explored.
Collapse
Affiliation(s)
- Emeline Raguin
- Département d'anthropologie, Université de Montréal, Montréal, Québec, Canada
| | | |
Collapse
|
27
|
Gauthier R, Follet H, Olivier C, Mitton D, Peyrin F. 3D analysis of the osteonal and interstitial tissue in human radii cortical bone. Bone 2019; 127:526-536. [PMID: 31362068 DOI: 10.1016/j.bone.2019.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022]
Abstract
Human cortical bone has a complex hierarchical structure that is periodically remodelled throughout a lifetime. This microstructure dictates the mechanical response of the tissue under a critical load. If only some structural features, such as the different porosities observed in bone, are primarily studied, then investigations may not fully consider the osteonal systems in three-dimensions (3D). Currently, it is difficult to differentiate osteons from interstitial tissue using standard 3D characterization methods. Synchrotron radiation micro-computed tomography (SR-μCT) in the phase contrast mode is a promising method for the investigation of osteons. In the current study, SR-μCT imaging was performed on cortical bone samples harvested from eight human radii (female, 50-91 y.o.). The images were segmented to identify Haversian canals, osteocyte lacunae, micro-cracks, as well as osteons. The significant correlation between osteonal and Haversian canal volume fraction highlights the role of the canals as sites where bone remodelling is initiated. The results showed that osteocyte lacunae morphometric parameters depend on their distance to cement lines, strongly suggesting the evolution of biological activity from the beginning to the end of the remodelling process. Thus, the current study provides new data on 3D osteonal morphometric parameters and their relationships with other structural features in humans.
Collapse
Affiliation(s)
- Rémy Gauthier
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France; Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - Hélène Follet
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - Cécile Olivier
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France
| | - David Mitton
- Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, LBMC UMR_T9406, F69622 Lyon, France
| | - Françoise Peyrin
- Univ Lyon, CNRS UMR 5220, Inserm U1206, INSA Lyon, Université Claude Bernard Lyon 1, Creatis, F69621 Villeurbanne Cedex, France.
| |
Collapse
|
28
|
Milovanovic P, Busse B. Inter-site Variability of the Human Osteocyte Lacunar Network: Implications for Bone Quality. Curr Osteoporos Rep 2019; 17:105-115. [PMID: 30980284 DOI: 10.1007/s11914-019-00508-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This article provides a review on the variability of the osteocyte lacunar network in the human skeleton. It highlights characteristics of the osteocyte lacunar network in relation to different skeletal sites and fracture susceptibility. RECENT FINDINGS Application of 2D analyses (quantitative backscattered electron microscopy, histology, confocal laser scanning microscopy) and 3D reconstructions (microcomputed tomography and synchrotron radiation microcomputed tomography) provides extended high-resolution information on osteocyte lacunar properties in individuals of various age (fetal, children's growth, elderly), sex, and disease states with increased fracture risk. Recent findings on the distribution of osteocytes in the human skeleton are reviewed. Quantitative data highlighting the variability of the osteocyte lacunar network is presented with special emphasis on site specificity and maintenance of bone health. The causes and consequences of heterogeneous distribution of osteocyte lacunae both within specific regions of interest and on the skeletal level are reviewed and linked to differential bone quality factors and fracture susceptibility.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55A, 22529, Hamburg, Germany
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55A, 22529, Hamburg, Germany.
- Forum Medical Technology Health Hamburg (FMTHH), Heisenberg Research Group of Biomedical Sciences, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
29
|
Irie MS, Rabelo GD, Spin-Neto R, Dechichi P, Borges JS, Soares PBF. Use of Micro-Computed Tomography for Bone Evaluation in Dentistry. Braz Dent J 2019; 29:227-238. [PMID: 29972447 DOI: 10.1590/0103-6440201801979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 01/20/2023] Open
Abstract
Micro computed tomography (µCT) follows the same principle of computed-tomography used for patients, however providing higher-resolution. Using a non-destructive approach, samples can be scanned, and each section obtained is used to build a volume using tridimensional reconstruction. For bone analysis, it is possible to obtain information about the tissue's microarchitecture and composition. According to the characteristics of the bone sample (e.g. human or animal origin, long or irregular shape, epiphysis or diaphysis region) the pre-scanning parameters must be defined. The resolution (i.e. voxel size) should be chosen taking into account the features that will be evaluated, and the necessity to identify inner structures (e.g. bone channels and osteocyte lacunae). The region of interest should be delimited, and the threshold that defines the bone tissue set in order to proceed with binarization to separate the voxels representing bone from the other structures (channels, resorption areas, and medullary space). Cancellous bone is evaluated by means of the trabeculae characteristics and their connectivity. The cortex is evaluated in relation to the thickness and porosity. Bone mineral density can also be measured, by the amount of hydroxyapatite. Other parameters such as structure-model-index, anisotropy, and fractal dimension can be assessed. In conclusion, intrinsic and extrinsic determinants of bone quality can be assessed by µCT. In dentistry, this method can be used for evaluating bone loss, alterations in bone metabolism, or the effects of using drugs that impair bone remodeling, and also to assess the success rate of bone repair or surgical procedures.
Collapse
Affiliation(s)
- Milena Suemi Irie
- Department of Periodontology and Implantology, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Gustavo Davi Rabelo
- Department of Periodontology and Implantology, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Paula Dechichi
- Institute of Biomedical Sciences, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Juliana Simeão Borges
- Department of Periodontology and Implantology, UFU - Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
30
|
Beresheim AC, Pfeiffer SK, Grynpas MD, Alblas A. Use of backscattered scanning electron microscopy to quantify the bone tissues of mid‐thoracic human ribs. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168:262-278. [DOI: 10.1002/ajpa.23716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Amy C. Beresheim
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
| | - Susan K. Pfeiffer
- Department of AnthropologyUniversity of Toronto Toronto Ontario Canada
- Department of ArchaeologyUniversity of Cape Town Rondebosch Cape Town South Africa
- Department of Anthropology and Center for Advanced Study of Human PaleobiologyGeorge Washington University Washington, D.C
| | - Marc D. Grynpas
- Department of Laboratory Medicine and Pathobiology and Institute for Biomaterials and Biomedical EngineeringUniversity of Toronto Toronto Ontario Canada
- Lunenfeld‐Tanenbaum Research Institute, Mount Sinai Hospital Toronto Ontario Canada
| | - Amanda Alblas
- Division of Anatomy and Histology, Department of Biomedical SciencesStellenbosch University Cape Town South Africa
| |
Collapse
|
31
|
Rabelo GD, Portero-Muzy N, Gineyts E, Roux JP, Chapurlat R, Chavassieux P. Spatial Distribution of Microcracks in Osteoarthritic Femoral Neck: Influence of Osteophytes on Microcrack Formation. Calcif Tissue Int 2018; 103:617-624. [PMID: 30022227 DOI: 10.1007/s00223-018-0456-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
Osteophytes have been suggested to influence the bone mechanical properties. The aim of this study was to compare the microcrack density in osteophytes with that in the other parts of the osteoarthritic femoral neck (FN). The presence of microcracks was investigated in the ultra-distal FN and in the osteophytes in samples obtained during hip arthroplasty in 24 postmenopausal women aged 67 ± 10 years. Furthermore, the 3D microarchitecture and the collagen crosslinks contents were assessed by high-resolution peripheral quantitative computed tomography and high-performance liquid chromatography, respectively. Osteophytes were present in the 24 FN, mainly at the level of the inferior quadrant. Microcracks were present in all FN with an average of 2.8 per sample. All observed microcracks were linear. The microcrack density (Cr.N/BV; #/mm2) was significantly higher in cancellous than in cortical bone (p = 0.004), whereas the microcrack length (Cr.Le, µm) was significantly greater in cortical bone (p = 0.04). The collagen crosslinks ratio pyridinoline/deoxypyridinoline was significantly and negatively correlated with Cr.N/BV in the posterior (r' = - 0.68, p = 0.01) and inferior (r' = - 0.53, p = 0.05) quadrants. Microcracks were observed in seven osteophytes in seven patients. When microcracks were present in the osteophyte area, Cr.N/BV was also significantly higher in the whole FN and in the quadrant of the osteophyte compared to the cases without microcrack in the osteophyte (p < 0.03). In conclusion, in FN from hip osteoarthritis microcracks are present in all FNs but in only 23% of the osteophytes. The microcrack formation was greater and their progression was smaller in the cancellous bone than in the cortex. The spatial distribution of microcracks varied according to the proximity of the osteophyte, and suggests that osteophyte may influence microcrack formation related to changes in local bone quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavassieux
- INSERM UMR 1033, Université de Lyon, Lyon, France.
- INSERM UMR 1033 - UFR de Médecine Lyon-Est - Domaine Laennec, 7-11, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| |
Collapse
|
32
|
Rabelo GD, Roux JP, Portero-Muzy N, Gineyts E, Chapurlat R, Chavassieux P. Cortical Fractal Analysis and Collagen Crosslinks Content in Femoral Neck After Osteoporotic Fracture in Postmenopausal Women: Comparison with Osteoarthritis. Calcif Tissue Int 2018; 102:644-650. [PMID: 29249023 DOI: 10.1007/s00223-017-0378-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 01/22/2023]
Abstract
The femoral neck (FN) has been previously characterized by thinner cortices in osteoporotic fracture (HF) when compared to hip osteoarthritis (HOA). The purposes of this study were to complete the previous investigations on FNs from HF and HOA by analyzing the complexity of the cortical structure and to approach the intrinsic properties of cortical bone by assessing the collagen crosslink contents. FN samples were obtained during arthroplasty in 35 postmenopausal women (HF; n = 17; mean age 79 ± 2 years; HOA; n = 18; mean age 66 ± 2 years). The cortical fractal dimension (Ct.FD) and lacunarity (Ct.Lac) derived from high-resolution peripheral quantitative tomography (isotropic voxel size: 82 μm) images of FN by using Ctan software and Fraclac running in ImageJ were analyzed. The collagen crosslinks content [pyridinoline, deoxypyridinoline, pentosidine (PEN)] were assessed in cortical bone. Ct.FD was significantly lower (p < 0.0001) in HF than HOA reflecting a decreased complexity and was correlated to the age and BMD. In two sub-groups, BMD- and age-matched, respectively, Ct.FD remained significantly lower in HF than HOA (p < 0.001). Ct.Lac was not different between HF and HOA. PEN content was two times higher in HF than HOA (p < 0.0001) independently of age. In conclusion, FN with HF was characterized by a less complex cortical texture and higher PEN content than HOA. In addition to the decreased bone mass and BMD previously reported, these modifications contribute to the lower bone quality in HF than HOA in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | - Pascale Chavassieux
- INSERM UMR 1033, Université de Lyon, Lyon, France.
- INSERM UMR 1033, UFR de Médecine Lyon-Est, Domaine Laennec, 7-11, Rue Guillaume Paradin, 69372, Lyon Cedex 08, France.
| |
Collapse
|
33
|
Milovanovic P, Vom Scheidt A, Mletzko K, Sarau G, Püschel K, Djuric M, Amling M, Christiansen S, Busse B. Bone tissue aging affects mineralization of cement lines. Bone 2018; 110:187-193. [PMID: 29427789 DOI: 10.1016/j.bone.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/02/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
Cement lines are known as thin peripheral boundaries of the osteons. With a thickness below 5 μm their composition of inorganic and organic compounds has been a matter of debate. Here, we hypothesized that cement lines become hypermineralized and their degree of mineralization is not constant but related to the tissue age of the osteon. Therefore, we analyzed the calcium content of osteons and their corresponding cement lines in a range of different tissue ages reflected by osteonal mineralization levels in femoral cortical bone of both postmenopausal women with osteoporosis and bisphosphonate-treated cases. Quantitative backscattered electron imaging (qBEI) showed that cement lines are hypermineralized entities with consistently higher calcium content than their corresponding osteons (mean calcium content: 29.46 ± 0.80 vs. 26.62 ± 1.11 wt%; p < 0.001). Micro-Raman spectroscopy complemented the qBEI data by showing a significantly higher phosphate/amide I ratio in the cement lines compared to the osteonal bone (8.78 ± 0.66 vs. 6.33 ± 0.58, p < 0.001), which was both due to an increased phosphate peak and a reduced amide I peak in cement lines. A clear positive correlation of cement line mineralization and the mineralization of the osteon was observed (r = 0.839, p = 0.003). However, the magnitude of the difference between cement line and osteonal calcium content decreased with increased osteonal calcium content (r = -0.709, p < 0.001), suggesting diverging mineralization dynamics in these osseous entities. The number of mineralized osteocyte lacunae per osteon bone area correlated positively with both osteonal and cement line calcium content (p < 0.01). The degree of mineralization of cement lines may represent another tissue-age related phenomenon, given that it strongly relates to the osteonal mineralization level. Understanding of the cement lines' mineralization and their changes in aging and disease states is important for predicting crack propagation pathways and fracture resistance mechanisms in human cortical bone.
Collapse
Affiliation(s)
- Petar Milovanovic
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany; Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade, Serbia
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Kathrin Mletzko
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - George Sarau
- Institute of Optics, Information and Photonics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr 7/B2, 91058 Erlangen, Germany; Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany
| | - Klaus Püschel
- Department of Forensic Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marija Djuric
- Laboratory for Anthropology and Skeletal Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica 4/2, 11000 Belgrade, Serbia
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany
| | - Silke Christiansen
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin, Germany; Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 55a, 22529 Hamburg, Germany.
| |
Collapse
|
34
|
Bencardino JT, Stone TJ, Roberts CC, Appel M, Baccei SJ, Cassidy RC, Chang EY, Fox MG, Greenspan BS, Gyftopoulos S, Hochman MG, Jacobson JA, Mintz DN, Mlady GW, Newman JS, Rosenberg ZS, Shah NA, Small KM, Weissman BN. ACR Appropriateness Criteria ® Stress (Fatigue/Insufficiency) Fracture, Including Sacrum, Excluding Other Vertebrae. J Am Coll Radiol 2018; 14:S293-S306. [PMID: 28473086 DOI: 10.1016/j.jacr.2017.02.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Stress fractures, including both fatigue and insufficiency types, are frequently encountered in clinical practice as a source of pain in both athletes and patients with predisposing conditions. Radiography is the imaging modality of choice for baseline diagnosis. MRI has greatly improved our ability to diagnose radiographically occult stress fractures. Tc-99m bone scan and CT may also be useful as diagnostic tools. Although fatigue and insufficiency fractures can be self-limited and go onto healing even without diagnosis, there is usually value in initiating prompt therapeutic measures as incomplete stress fractures have the potential of progressing to completion and requiring more invasive treatment or delay in return to activity. This is particularly important in the setting of stress fractures of the femoral neck. Accuracy in the identification of these injuries is also relevant because the differential diagnosis includes entities that would otherwise be treated significantly different (ie, osteoid osteoma, osteomyelitis, and metastasis). The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Jenny T Bencardino
- Principal Author and Panel Vice-Chair, New York University School of Medicine, New York, New York.
| | - Taylor J Stone
- Research Author, Charlotte Radiology, Charlotte, North Carolina
| | | | - Marc Appel
- James J. Peters VA Medical Center, Bronx, New York; American Academy of Orthopaedic Surgeons
| | | | - R Carter Cassidy
- UK Healthcare Spine and Total Joint Service, Lexington, Kentucky; American Academy of Orthopaedic Surgeons
| | - Eric Y Chang
- VA San Diego Healthcare System, San Diego, California
| | - Michael G Fox
- University of Virginia Health System, Charlottesville, Virginia
| | | | | | - Mary G Hochman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jon A Jacobson
- University of Michigan Medical Center, Ann Arbor, Michigan
| | | | - Gary W Mlady
- University of New Mexico, Albuquerque, New Mexico
| | | | | | - Nehal A Shah
- Brigham & Women's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
35
|
Yu WL, Cen HP, Wu XG, Guo Y, Li CX, Wang YQ, Chen WY. Finite Element Study of the Effect of Osteon Morphology Variation Related Ageing, Osteoporosis, or Physical Activity Level on Its Poroelastic Behaviors. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Wei-Lun Yu
- College of Biomedical Engineering , Taiyuan University of Technology
| | - Hai-Peng Cen
- Biological Science and Medical Engineering, Beihang University
| | - Xiao-Gang Wu
- College of Biomedical Engineering , Taiyuan University of Technology
| | - Yuan Guo
- College of Biomedical Engineering , Taiyuan University of Technology
| | - Chao-Xin Li
- College of Biomedical Engineering , Taiyuan University of Technology
| | - Yan-Qin Wang
- College of Biomedical Engineering , Taiyuan University of Technology
| | - Wei-Yi Chen
- College of Biomedical Engineering , Taiyuan University of Technology
| |
Collapse
|
36
|
Milovanovic P, Hrncic D, Radotic K, Stankovic M, Mutavdzic D, Djonic D, Rasic-Markovic A, Djuric D, Stanojlovic O, Djuric M. Moderate hyperhomocysteinemia induced by short-term dietary methionine overload alters bone microarchitecture and collagen features during growth. Life Sci 2017; 191:9-16. [PMID: 28987632 DOI: 10.1016/j.lfs.2017.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
AIMS In general, hyperhomocysteinemia is increasingly appreciated as a risk factor for various diseases, including osteoporosis. However, its effects in non-adults remain largely unknown. Our aim was to determine whether dietary-caused increased homocysteine levels have deleterious effects on bone structure during growth. MAIN METHODS We developed a model of moderate hyperhomocysteinemia caused by short-term methionine nutritional overload in growing rats. 30-days-old male Wistar albino rats were randomly assigned to either experimental group subject to a 30-days hypermethionine diet or control group. High-resolution 3D assessment of bone geometry and microarchitecture, as well as fluorescence spectroscopic analysis of bone matrix were performed. KEY FINDINGS Short-term moderate hyperhomocysteinemia (~30μmol/L) achieved in the study notably affected bone and cartilage characteristics. Parameters of the cortical bone geometry in the experimental group indicated peculiar reorganization of the bone cross-section. Trabecular bone microarchitecture was especially sensitive to hyperhomocysteinemia showing clearly negative bone balance in the experimental group (almost 30% reduced bone volume, mainly due to ~25% decrease in trabecular number as well as markedly reduced trabecular connections). Fluorescent spectroscopy of bone matrix revealed multiple alterations to collagen spectra due to homocysteine accumulation in bone, indicative of broken collagenous cross-links. SIGNIFICANCE Given that appropriate accrual of bone mass during growth has important effects on the risk of osteoporosis in adulthood, understanding the skeletal effects of dietary-induced hyperhomocysteinemia in non-adults is essential for interpreting its importance as a modifiable risk factor for osteoporosis and improving programs to preserve/re-establish bone health.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Dragan Hrncic
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Mira Stankovic
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Dragosav Mutavdzic
- Department of Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Rasic-Markovic
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Olivera Stanojlovic
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
37
|
Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D Biofabrication Using Shape-Morphing Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703443. [PMID: 29024044 DOI: 10.1002/adma.201703443] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Despite the tremendous potential of bioprinting techniques toward the fabrication of highly complex biological structures and the flourishing progress in 3D bioprinting, the most critical challenge of the current approaches is the printing of hollow tubular structures. In this work, an advanced 4D biofabrication approach, based on printing of shape-morphing biopolymer hydrogels, is developed for the fabrication of hollow self-folding tubes with unprecedented control over their diameters and architectures at high resolution. The versatility of the approach is demonstrated by employing two different biopolymers (alginate and hyaluronic acid) and mouse bone marrow stromal cells. Harnessing the printing and postprinting parameters allows attaining average internal tube diameters as low as 20 µm, which is not yet achievable by other existing bioprinting/biofabrication approaches and is comparable to the diameters of the smallest blood vessels. The proposed 4D biofabrication process does not pose any negative effect on the viability of the printed cells, and the self-folded hydrogel-based tubes support cell survival for at least 7 d without any decrease in cell viability. Consequently, the presented 4D biofabrication strategy allows the production of dynamically reconfigurable architectures with tunable functionality and responsiveness, governed by the selection of suitable materials and cells.
Collapse
Affiliation(s)
- Alina Kirillova
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Ridge Maxson
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | - Georgi Stoychev
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
| | | | - Leonid Ionov
- College of Engineering, University of Georgia, Athens, GA, 30602, USA
- College of Family and Consumer Sciences, University of Georgia, Athens, GA, 30602, USA
- Faculty of Engineering Science, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| |
Collapse
|
38
|
Felder AA, Phillips C, Cornish H, Cooke M, Hutchinson JR, Doube M. Secondary osteons scale allometrically in mammalian humerus and femur. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170431. [PMID: 29291052 PMCID: PMC5717626 DOI: 10.1098/rsos.170431] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Intra-cortical bone remodelling is a cell-driven process that replaces existing bone tissue with new bone tissue in the bone cortex, leaving behind histological features called secondary osteons. While the scaling of bone dimensions on a macroscopic scale is well known, less is known about how the spatial dimensions of secondary osteons vary in relation to the adult body size of the species. We measured the cross-sectional area of individual intact secondary osteons and their central Haversian canals in transverse sections from 40 stylopodal bones of 39 mammalian species (body mass 0.3-21 000 kg). Scaling analysis of our data shows that mean osteonal resorption area (negative allometry, exponent 0.23,R2 0.54,p<0.005) and Haversian canal area (negative allometry, exponent 0.31,R2 0.45,p<0.005) are significantly related to body mass, independent of phylogeny. This study is the most comprehensive of its kind to date, and allows us to describe overall trends in the scaling behaviour of secondary osteon dimensions, supporting the inference that the osteonal resorption area may be limited by the need to avoid fracture in smaller mammalian species, but the need to maintain osteocyte viability in larger mammalian species.
Collapse
Affiliation(s)
- A. A. Felder
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
- Structure and Motion Laboratory, Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - C. Phillips
- Museums and Archives, The Royal College of Surgeons of England, London, UK
| | - H. Cornish
- Museums and Archives, The Royal College of Surgeons of England, London, UK
| | - M. Cooke
- Museums and Archives, The Royal College of Surgeons of England, London, UK
| | - J. R. Hutchinson
- Structure and Motion Laboratory, Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - M. Doube
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
39
|
Rolvien T, Krause M, Jeschke A, Yorgan T, Püschel K, Schinke T, Busse B, Demay MB, Amling M. Vitamin D regulates osteocyte survival and perilacunar remodeling in human and murine bone. Bone 2017; 103:78-87. [PMID: 28666969 DOI: 10.1016/j.bone.2017.06.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023]
Abstract
Osteocytes are the most abundant bone cells and are highly regulated by external stimuli. Vitamin D and osteocytes cooperatively regulate bone remodeling as well as phosphate and calcium homeostasis. However, it is unclear if vitamin D regulates osteocyte number, connectivity or size in the setting of altered bone formation or impaired mineralization. Sixty iliac crest biopsies of patients with varying vitamin D levels were examined to analyze osteocyte number, osteocyte connectivity and osteocyte viability using high-resolution imaging. Osteocyte parameters were also quantified in mice lacking the vitamin D receptor (Vdr-/-) and in wildtype littermates. The cortical and cancellous bone of patients with vitamin D deficiency exhibited a significant decrease in the number of viable osteocytes, as well as increased osteocyte apoptosis and impaired osteocyte connectivity, based on evaluation of the canalicular network. The number of osteocytes was also decreased in Vdr-deficient mice, in comparison to wildtype controls, and this was accompanied by enlargement of osteocyte lacunae. A high calcium diet normalized the osteocyte lacunar area in Vdr-deficient mice, but failed to normalize osteocyte number. Thus, a diet-independent decrease in osteocyte number in Vdr-deficient mice suggests a mechanism that is directly dependent on the VDR, since vitamin D may promote the transition from osteoblasts to osteocytes. The increase in lacunar area the in Vdr-deficient mice, which is normalized by the high calcium diet suggests this phenotype is due to osteocytic osteolysis. These investigations demonstrate that vitamin D plays a role in the regulation of osteocyte number and perilacunar remodeling.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Trauma and Reconstructive Surgery, Asklepios Clinic St. Georg, Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
40
|
Milovanovic P, Djonic D, Hahn M, Amling M, Busse B, Djuric M. Region-dependent patterns of trabecular bone growth in the human proximal femur: A study of 3D bone microarchitecture from early postnatal to late childhood period. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:281-291. [PMID: 28631293 DOI: 10.1002/ajpa.23268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/29/2017] [Accepted: 05/31/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Parallel with body growth and development, bone structure in non-adults is reorganized to achieve the particular design observed in mature individuals. We traced the changes in three-dimensional trabecular microarchitectural design during the phases of locomotor maturation to clarify how human bone adapts to mechanical demands. MATERIALS AND METHODS Micro-CT was performed on biomechanically-relevant subregions of the proximal femur (medial, intermediate and lateral neck regions, intertrochanteric region, metaphyseal region) from early postnatal period to late childhood. RESULTS Developmental patterns of trabecular microarchitecture showed that gestationally overproduced bone present at birth underwent the most dramatic reduction during the first year, followed by a reversing trend in some of the quantitative parameters (e.g., bone volume fraction, trabecular anisotropy). Certain regional anisotropy already present at birth is further accentuated into the childhood suggesting an adaptation to differential loading environments. Trabecular eccentricity in the femoral neck was particularly accentuated during childhood, giving the medial neck-the site mostly loaded in walking-superior microarchitectural design (high bone volume fraction and anisotropy, the earliest appearance and predominance of plate- and honeycomb-shaped trabeculae). DISCUSSION While providing quantitative data on how bone microarchitecture adapts to increasing mechanical demands occurring during the phases of locomotor maturation, the study reveals how regional anisotropy develops in the proximal femur to ensure a functional and competent bone structure. Decomposing the region-specific patterns of bone mass accrual is important in understanding skeletal adaptations to bipedalism, as well for understanding why fractures often occur location-dependent, both in pediatric and elderly individuals.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2Belgrade, 11000, Serbia
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a Hamburg, 22529, Germany
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2Belgrade, 11000, Serbia
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a Hamburg, 22529, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a Hamburg, 22529, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a Hamburg, 22529, Germany
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2Belgrade, 11000, Serbia
| |
Collapse
|
41
|
Tong X, Malo MKH, Burton IS, Jurvelin JS, Isaksson H, Kröger H. Histomorphometric and osteocytic characteristics of cortical bone in male subtrochanteric femoral shaft. J Anat 2017; 231:708-717. [PMID: 28786101 DOI: 10.1111/joa.12670] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
The histomorphometric properties of the subtrochanteric femoral region have rarely been investigated. The aim of this study was to investigate the age-associated variations and regional differences of histomorphometric and osteocytic properties in the cortical bone of the subtrochanteric femoral shaft, and the association between osteocytic and histological cortical bone parameters. Undecalcified histological sections of the subtrochanteric femoral shaft were obtained from cadavers (n = 20, aged 18-82 years, males). They were cut and stained using modified Masson-Goldner stain. Histomorphometric parameters of cortical bone were analysed with ×50 and ×100 magnification after identifying cortical bone boundaries using our previously validated method. Within cortical bone areas, only complete osteons with typical concentric lamellae and cement line were selected and measured. Osteocytic parameters of cortical bone were analyzed under phase contrast microscopy and epifluorescence within microscopic fields (0.55 mm2 for each). The cortical widths of the medial and lateral quadrants were significantly higher than other quadrants (P < 0.01). Osteonal area per cortical bone area was lower and cortical porosities were higher in the posterior quadrant than in the other quadrants (P < 0.05). Osteocyte lacunar number per cortical bone area was found higher in the young subjects (≤ 50 years) than in the older ones (> 50 years) both before and after adjustments for body height and weight (P < 0.05). Moreover, significant but low correlations were found between the cortical bone and osteocytic parameters (0.20 ≤ R2 ≤ 0.35, P < 0.05). It can be concluded that in healthy males, the cortical histomorphometric parameters differ between the anatomical regions of the subtrochanteric femoral shaft, and are correlated with the osteocytic parameters from the same site. These findings may be of use when discussing mechanisms that predispose patients to decreasing bone strength.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Markus K H Malo
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Diagnostic Imaging Centre, Kuopio University Hospital, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Department of Orthopaedics, Lund University, Lund, Sweden
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.,Department of Orthopaedics, Traumatology, and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
42
|
Milovanovic P, Vukovic Z, Antonijevic D, Djonic D, Zivkovic V, Nikolic S, Djuric M. Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:71. [PMID: 28357689 DOI: 10.1007/s10856-017-5878-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.
Collapse
Affiliation(s)
- Petar Milovanovic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia
| | - Zorica Vukovic
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 12 Njegoseva, Belgrade, 11000, Serbia
| | - Djordje Antonijevic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia
| | - Danijela Djonic
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, 31a Deligradska, Belgrade, 11000, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine, University of Belgrade, 31a Deligradska, Belgrade, 11000, Serbia
| | - Marija Djuric
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 4/2 Dr Subotica, Belgrade, 11000, Serbia.
| |
Collapse
|
43
|
Milovanovic P, Zimmermann EA, Vom Scheidt A, Hoffmann B, Sarau G, Yorgan T, Schweizer M, Amling M, Christiansen S, Busse B. The Formation of Calcified Nanospherites during Micropetrosis Represents a Unique Mineralization Mechanism in Aged Human Bone. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602215. [PMID: 28084694 DOI: 10.1002/smll.201602215] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Osteocytes-the central regulators of bone remodeling-are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno-canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high-resolution imaging and physics-based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals.
Collapse
Affiliation(s)
- Petar Milovanovic
- Institute for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a, 22529, Hamburg, Germany
- Laboratory for Anthropology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr Subotica 4/2, 11000, Belgrade, Serbia
| | - Elizabeth A Zimmermann
- Institute for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a, 22529, Hamburg, Germany
| | - Annika Vom Scheidt
- Institute for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a, 22529, Hamburg, Germany
| | - Björn Hoffmann
- Christiansen Research Group, Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, D-91058, Erlangen, Germany
- Institute of Optics, Information and Photonics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7/B2, 91058, Erlangen, Germany
| | - George Sarau
- Christiansen Research Group, Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, D-91058, Erlangen, Germany
| | - Timur Yorgan
- Institute for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a, 22529, Hamburg, Germany
| | - Michaela Schweizer
- Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Michael Amling
- Institute for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a, 22529, Hamburg, Germany
| | - Silke Christiansen
- Christiansen Research Group, Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, D-91058, Erlangen, Germany
- Institute of Nano-architectures for Energy Conversion, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Björn Busse
- Institute for Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 55a, 22529, Hamburg, Germany
- Materials Sciences Division, Lawrence Berkeley National Laboratory/University of California-Berkeley, CA, 94720, USA
| |
Collapse
|
44
|
Tong X, Burton IS, Jurvelin JS, Isaksson H, Kröger H. Iliac crest histomorphometry and skeletal heterogeneity in men. Bone Rep 2016; 6:9-16. [PMID: 28377976 PMCID: PMC5365273 DOI: 10.1016/j.bonr.2016.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/10/2016] [Accepted: 11/26/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose The cortical characteristics of the iliac crest in male have rarely been investigated with quantitative histomorphometry. Also it is still unknown how cortical microarchitecture may vary between the iliac crest and fractures related sites at the proximal femur. We studied the microarchitecture of both external and internal cortices within the iliac crest, and compared the results with femoral neck and subtrochanteric femoral shaft sites. Methods Undecalcified histological sections of the iliac crest were obtained bicortically from cadavers (n = 20, aged 18–82 years, males). They were cut (7 μm) and stained using modified Masson-Goldner stain. Histomorphometric parameters of cortical bone were analysed with low (× 50) and high (× 100) magnification, after identifying cortical bone boundaries using our previously validated method. Within cortical bone area, only complete osteons with typical concentric lamellae and cement line were selected and measured. Results At the iliac crest, the mean cortical width of external cortex was higher than at the internal cortex (p < 0.001). Also, osteon structural parameters, e.g. mean osteonal perimeter, were higher in the external cortex (p < 0.05). In both external and internal cortices, pore number per cortical bone area was higher in young subjects (≤ 50 years) (p < 0.05) while mean pore perimeter was higher in the old subjects (> 50 years) (p < 0.05). Several cortical parameters (e.g. osteon area per cortical bone area, pore number per cortical area) were the lowest in the femoral neck (p < 0.05). The maximal osteonal diameter and mean wall width were the highest in the external cortex of the iliac crest (p < 0.05), and the mean cortical width, osteon number per cortical area were the highest in the subtrochanteric femoral shaft (p < 0.05). Some osteonal structural parameters (e.g. min osteonal diameter) were significantly positively correlated (0.29 ≤ R2 ≤ 0.45, p < 0.05) between the external iliac crest and the femoral neck. Conclusions This study reveals heterogeneity in cortical microarchitecture between the external and internal iliac crest cortices, as well as between the iliac crest, the femoral neck and the subtrochanteric femoral shaft. Standard iliac crest biopsy does not reflect accurately cortical microarchitecture of other skeletal sites. The structural asymmetry between cortices of the ilium remains after childhood. In both cortices of the ilium, cortical pore perimeter was higher in the old subjects. The cortical microarchitecture is highly variable between different skeletal sites. Positive correlation is revealed between the external iliac crest and the femoral neck in osteonal characteristics.
Collapse
Affiliation(s)
- Xiaoyu Tong
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland
| | - Inari S Burton
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland
| | - Jukka S Jurvelin
- Department of Applied Physics, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Diagnostic Imaging Centre, Kuopio University Hospital, POB 100, FIN-70029 KYS, Kuopio, Finland
| | - Hanna Isaksson
- Department of Biomedical Engineering, Department of Orthopaedics, Lund University, POB 118, SE-221 00 Lund, Sweden
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit (KMRU), Institute of Clinical Medicine, University of Eastern Finland, POB 1627, FIN-70211 Kuopio, Finland; Department of Orthopaedics, Traumatology, and Hand Surgery, Kuopio University Hospital, POB 100, FIN-70029 KYS, Kuopio, Finland
| |
Collapse
|
45
|
Granke M, Makowski AJ, Uppuganti S, Nyman JS. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. J Biomech 2016; 49:2748-2755. [PMID: 27344202 PMCID: PMC5056137 DOI: 10.1016/j.jbiomech.2016.06.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 01/08/2023]
Abstract
Changes in the distribution of bone mineralization occurring with aging, disease, or treatment have prompted concerns that alterations in mineralization heterogeneity may affect the fracture resistance of bone. Yet, so far, studies assessing bone from hip fracture cases and fracture-free women have not reached a consensus on how heterogeneity in tissue mineralization relates to skeletal fragility. Owing to the multifactorial nature of toughening mechanisms occurring in bone, we assessed the relative contribution of heterogeneity in mineralization to fracture resistance with respect to age, porosity, and area fraction of osteonal tissue. The latter parameters were extracted from quantitative backscattered electron imaging of human cortical bone sections following R-curve tests of single-edge notched beam specimens to determine fracture toughness properties. Microstructural heterogeneity was determined as the width of the mineral distribution (bulk) and as the sill of the variogram (local). In univariate analyses of measures from 62 human donors (21 to 101 years), local but not bulk heterogeneity as well as pore clustering negatively correlated with fracture toughness properties. With age as covariate, heterogeneity was a significant predictor of crack initiation, though local had a stronger negative contribution than bulk. When considering all potential covariates, age, cortical porosity and area fraction of osteons explained up to 50% of the variance in bone׳s crack initiation toughness. However, including heterogeneity in mineralization did not improve upon this prediction. The findings of the present work stress the necessity to account for porosity and microstructure when evaluating the potential of matrix-related features to affect skeletal fragility.
Collapse
Affiliation(s)
- Mathilde Granke
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| | - Alexander J Makowski
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jeffry S Nyman
- Department of Orthopaedics Surgery & Rehabilitation, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
46
|
Zimmermann EA, Schaible E, Gludovatz B, Schmidt FN, Riedel C, Krause M, Vettorazzi E, Acevedo C, Hahn M, Püschel K, Tang S, Amling M, Ritchie RO, Busse B. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Sci Rep 2016; 6:21072. [PMID: 26879146 PMCID: PMC4754644 DOI: 10.1038/srep21072] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022] Open
Abstract
Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.
Collapse
Affiliation(s)
- Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Eric Schaible
- Experimental Systems Group, Advanced Light Source, Berkeley, California, 94720, USA
| | - Bernd Gludovatz
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Christoph Riedel
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Eik Vettorazzi
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Claire Acevedo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Michael Hahn
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Klaus Püschel
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Simon Tang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St Louis, MO 63110, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.,Department of Materials Science and Engineering, University of California, Berkeley, California, 94720, USA
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| |
Collapse
|
47
|
Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, Busse B, Zimmermann EA, Schaible E, Allen MR, Burr DB, Ritchie RO. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone 2015; 81:352-363. [PMID: 26253333 DOI: 10.1016/j.bone.2015.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/10/2023]
Abstract
Bisphosphonates are widely used to treat osteoporosis, but have been associated with atypical femoral fractures (AFFs) in the long term, which raises a critical health problem for the aging population. Several clinical studies have suggested that the occurrence of AFFs may be related to the bisphosphonate-induced changes of bone turnover, but large discrepancies in the results of these studies indicate that the salient mechanisms responsible for any loss in fracture resistance are still unclear. Here the role of bisphosphonates is examined in terms of the potential deterioration in fracture resistance resulting from both intrinsic (plasticity) and extrinsic (shielding) toughening mechanisms, which operate over a wide range of length-scales. Specifically, we compare the mechanical properties of two groups of humeri from healthy beagles, one control group comprising eight females (oral doses of saline vehicle, 1 mL/kg/day, 3 years) and one treated group comprising nine females (oral doses of alendronate used to treat osteoporosis, 0.2mg/kg/day, 3 years). Our data demonstrate treatment-specific reorganization of bone tissue identified at multiple length-scales mainly through advanced synchrotron x-ray experiments. We confirm that bisphosphonate treatments can increase non-enzymatic collagen cross-linking at molecular scales, which critically restricts plasticity associated with fibrillar sliding, and hence intrinsic toughening, at nanoscales. We also observe changes in the intracortical architecture of treated bone at microscales, with partial filling of the Haversian canals and reduction of osteon number. We hypothesize that the reduced plasticity associated with BP treatments may induce an increase in microcrack accumulation and growth under cyclic daily loadings, and potentially increase the susceptibility of cortical bone to atypical (fatigue-like) fractures.
Collapse
Affiliation(s)
- Claire Acevedo
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California Berkeley, CA 94720, USA
| | - Hrishikesh Bale
- Department of Materials Science and Engineering, University of California Berkeley, CA 94720, USA
| | - Bernd Gludovatz
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amy Wat
- Department of Materials Science and Engineering, University of California Berkeley, CA 94720, USA
| | - Simon Y Tang
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Mingyue Wang
- International Research Center for Advanced Structural and Bio-Materials, Beihang University, Beijing 100083, China
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg, D-22529 Hamburg, Germany
| | - Eric Schaible
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David B Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis (IUPUI), Indianapolis, IN 46202, USA
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Materials Science and Engineering, University of California Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater 2015; 50:104-22. [DOI: 10.1016/j.jmbbm.2015.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
|
49
|
Wang M, Gao X, Abdel-Wahab A, Li S, Zimmermann EA, Riedel C, Busse B, Silberschmidt VV. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20159403005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Zimmermann EA, Busse B, Ritchie RO. The fracture mechanics of human bone: influence of disease and treatment. BONEKEY REPORTS 2015; 4:743. [PMID: 26380080 PMCID: PMC4562496 DOI: 10.1038/bonekey.2015.112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023]
Abstract
Aging and bone diseases are associated with increased fracture risk. It is therefore pertinent to seek an understanding of the origins of such disease-related deterioration in bone's mechanical properties. The mechanical integrity of bone derives from its hierarchical structure, which in healthy tissue is able to resist complex physiological loading patterns and tolerate damage. Indeed, the mechanisms through which bone derives its mechanical properties make fracture mechanics an ideal framework to study bone's mechanical resistance, where crack-growth resistance curves give a measure of the intrinsic resistance to the initiation of cracks and the extrinsic resistance to the growth of cracks. Recent research on healthy cortical bone has demonstrated how this hierarchical structure can develop intrinsic toughness at the collagen fibril scale mainly through sliding and sacrificial bonding mechanisms that promote plasticity. Furthermore, the bone-matrix structure develops extrinsic toughness at much larger micrometer length-scales, where the structural features are large enough to resist crack growth through crack-tip shielding mechanisms. Although healthy bone tissue can generally resist physiological loading environments, certain conditions such as aging and disease can significantly increase fracture risk. In simple terms, the reduced mechanical integrity originates from alterations to the hierarchical structure. Here, we review how human cortical bone resists fracture in healthy bone and how changes to the bone structure due to aging, osteoporosis, vitamin D deficiency and Paget's disease can affect the mechanical integrity of bone tissue.
Collapse
Affiliation(s)
- Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Materials Science & Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|