1
|
Amorim T, Kumar NG, David NL, Dion W, Pagadala T, Doshi NK, Zhu B, Parkhitko A, Steinhauser ML, Fazeli PK. Methionine as a regulator of bone remodeling with fasting. JCI Insight 2024; 9:e177997. [PMID: 38780544 PMCID: PMC11383369 DOI: 10.1172/jci.insight.177997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Caloric restriction improves metabolic health but is often complicated by bone loss. We studied bone parameters in humans during a 10-day fast and identified candidate metabolic regulators of bone turnover. Pro-collagen 1 intact N-terminal pro-peptide (P1NP), a bone formation marker, decreased within 3 days of fasting. Whereas dual-energy x-ray absorptiometry measures of bone mineral density were unchanged after 10 days of fasting, high-resolution peripheral quantitative CT demonstrated remodeling of bone microarchitecture. Pathway analysis of longitudinal metabolomics data identified one-carbon metabolism as fasting dependent. In cultured osteoblasts, we tested the functional significance of one-carbon metabolites modulated by fasting, finding that methionine - which surged after 3 days of fasting - affected markers of osteoblast cell state in a concentration-dependent manner, in some instances exhibiting a U-shaped response with both low and high concentrations driving putative antibone responses. Administration of methionine to mice for 5 days recapitulated some fasting effects on bone, including a reduction in serum P1NP. In conclusion, a 10-day fast in humans led to remodeling of bone microarchitecture, potentially mediated by a surge in circulating methionine. These data support an emerging model that points to a window of optimal methionine exposure for bone health.
Collapse
Affiliation(s)
- Tânia Amorim
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Naveen Gv Kumar
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Natalie L David
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - William Dion
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Trishya Pagadala
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Nandini K Doshi
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| | - Bokai Zhu
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; and
| | - Andrey Parkhitko
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine; and
| | - Matthew L Steinhauser
- Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pouneh K Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine
- Center for Human Integrative Physiology, Aging Institute of UPMC and University of Pittsburgh School of Medicine
| |
Collapse
|
2
|
Shi D, Liu W, Hang J, Chen W. Whole egg consumption in relation to bone health of the US population: a cross-sectional study. Food Funct 2024; 15:1369-1378. [PMID: 38206082 DOI: 10.1039/d3fo04248k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Osteoporosis, a condition that is characterized by low bone mineral density (BMD), is a serious health concern worldwide. This study aims to explore the relationship between whole egg consumption and BMD levels in the US population. This study involves 19 208 participants with valid BMD and egg consumption data from the National Health and Nutrition Examination Survey (NHANES) during 2005-2006, 2007-2008, 2009-2010, 2013-2014 and 2017-2018. Linear regression analysis was conducted to evaluate the association between whole egg consumption and BMD levels. Mediation analysis was used to investigate the role of serum alkaline phosphatase (ALP) in the above relationship. After multivariate adjustment, participants consuming whole eggs over 3.53 ounce per day in their diet were found to have elevated BMD levels in the femur (0.013 g cm-2 with 95% CI: 0.004, 0.022) and lumbar spine (0.013 g cm-2 with 95% CI: 0.002, 0.024) (Ptrend < 0.05). The additive interaction of egg consumption and body mass index (BMI) on the BMD of both the femur and lumbar spine (Pinteraction < 0.05) was also analyzed. The association between whole egg consumption and BMD of both the femur and lumbar spine were significantly mediated by ALP with 71.8% and 83.3% mediation proportion, respectively. In general, higher whole egg consumption is positively related to an increase in the BMD scores of both the femur and lumbar spine among the US population.
Collapse
Affiliation(s)
- Da Shi
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Jiayi Hang
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
3
|
Kuo YJ, Chen CJ, Hussain B, Tsai HC, Hsu GJ, Chen JS, Asif A, Fan CW, Hsu BM. Inferring Bacterial Community Interactions and Functionalities Associated with Osteopenia and Osteoporosis in Taiwanese Postmenopausal Women. Microorganisms 2023; 11:234. [PMID: 36838199 PMCID: PMC9959971 DOI: 10.3390/microorganisms11020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Growing evidence suggests that the gut microbiota and their metabolites are associated with bone homeostasis and fragility. However, this association is limited to microbial taxonomic differences. This study aimed to explore whether gut bacterial community associations, composition, and functions are associated with osteopenia and osteoporosis. We compared the gut bacterial community composition and interactions of healthy postmenopausal women with normal bone density (n = 8) with those of postmenopausal women with osteopenia (n = 18) and osteoporosis (n = 21) through 16S rRNA sequencing coupled with network biology and statistical analyses. The results of this study showed reduced alpha diversity in patients with osteoporosis, followed by that in patients with osteopenia, then in healthy controls. Taxonomic analysis revealed that significantly enriched bacterial genera with higher abundance was observed in patients with osteoporosis and osteopenia than in healthy subjects. Additionally, a co-occurrence network revealed that, compared to healthy controls, bacterial interactions were higher in patients with osteoporosis, followed by those with osteopenia. Further, NetShift analysis showed that a higher number of bacteria drove changes in the microbial community structure of patients with osteoporosis than osteopenia. Correlation analysis revealed that most of these driver bacteria had a significant positive relationship with several significant metabolic pathways. Further, ordination analysis revealed that height and T-score were the primary variables influencing the gut microbial community structure. Taken together, this study evaluated that microbial community interaction is more important than the taxonomic differences in knowing the critical role of gut microbiota in postmenopausal women associated with osteopenia and osteoporosis. Additionally, the significantly enriched bacteria and functional pathways might be potential biomarkers for the prognosis and treatment of postmenopausal women with osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Yi-Jie Kuo
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Jung Chen
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi 622, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien 970, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Disease, Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi 621, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Aslia Asif
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
- Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi 621, Taiwan
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi 621, Taiwan
| |
Collapse
|
4
|
Mei Z, Yin MT, Sharma A, Wang Z, Peters BA, Chandran A, Weber KM, Ross RD, Gustafson D, Zheng Y, Kaplan RC, Burk RD, Qi Q. Gut microbiota and plasma metabolites associated with bone mineral density in women with or at risk of HIV infection. AIDS 2023; 37:149-159. [PMID: 36205320 PMCID: PMC9742192 DOI: 10.1097/qad.0000000000003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate gut microbiota (GMB) alterations and metabolite profile perturbations associated with bone mineral density (BMD) in the context of HIV infection. DESIGN Cross-sectional studies of 58 women with chronic HIV infection receiving antiretroviral therapy and 33 women without HIV infection. METHODS We examined associations of GMB and metabolites with BMD among 91 women. BMD was measured by dual-energy X-ray absorptiometry (DXA), and T -scores of lumbar spine or total hip less than -1 defined low BMD. GMB was measured by 16S rRNA V4 region sequencing on fecal samples, and plasma metabolites were measured by liquid chromatography-tandem mass spectrometry. Associations of GMB with plasma metabolites were assessed in a larger sample (418 women; 280 HIV+ and 138 HIV-). RESULTS Relative abundances of five predominant bacterial genera ( Dorea , Megasphaera , unclassified Lachnospiraceae, Ruminococcus , and Mitsuokella ) were higher in women with low BMD compared with those with normal BMD (all linear discriminant analysis (LDA) scores >2.0). A distinct plasma metabolite profile was identified in women with low BMD, featuring lower levels of several metabolites belonging to amino acids, carnitines, caffeine, fatty acids, pyridines, and retinoids, compared with those with normal BMD. BMD-associated bacterial genera, especially Megasphaera , were inversely associated with several BMD-related metabolites (e.g. 4-pyridoxic acid, C4 carnitine, creatinine, and dimethylglycine). The inverse association of Megasphaera with dimethylglycine was more pronounced in women with HIV infection compared with those without HIV infection ( P for interaction = 0.016). CONCLUSION Among women with and at risk of HIV infection, we identified altered GMB and plasma metabolite profiles associated with low BMD.
Collapse
Affiliation(s)
- Zhendong Mei
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Michael T Yin
- Department of Medicine, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York
| | - Anjali Sharma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
| | - Aruna Chandran
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Deborah Gustafson
- Department of Neurology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
- Department of Pediatrics, Albert Einstein College of Medicine
- Department of Microbiology and Immunology, and Department of Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx
- Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Tarentini E, Odorici G, Righi V, Paganelli A, Giacomelli L, Mirisola V, Mucci A, Benassi L, D’Aversa E, Lasagni C, Kaleci S, Reali E, Magnoni C. Integrated metabolomic analysis and cytokine profiling define clusters of immuno-metabolic correlation in new-onset psoriasis. Sci Rep 2021; 11:10472. [PMID: 34006909 PMCID: PMC8131691 DOI: 10.1038/s41598-021-89925-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
The association between the metabolic profile and inflammatory cytokines in psoriasis is poorly understood. We analyzed the metabolic and cytokine/chemokine profiles in serum and skin from patients with new-onset psoriasis and healthy subjects (n = 7/group) by HR-MAS NMR and Bio-Plex immunoassay. Immuno-metabolic correlation matrix was analyzed in skin and serum to identify a potential immune-metabolic signature. Metabolomics analysis showed a significant increase in ascorbate and a decrease in scyllo-inositol, and a trend towards an increase in eight other metabolites in psoriatic skin. In serum, there was a significant increase of dimethylglycine and isoleucine. In parallel, psoriatic skin exhibited an increase of early inflammatory cytokines (IL-6, IL-8, TNF-α, IL-1β) and correlation analysis highlighted some major clusters of immune-metabolic correlations. A cluster comprising scyllo-inositol and lysine showed correlations with T-cell cytokines; a cluster comprising serine and taurine showed a negative correlation with early inflammatory cytokines (IL-6, G-CSF, CCL3). A strong positive correlation was enlightened between glutathione and inflammatory cytokines/angiogenesis promoters of psoriasis. The integration of metabolic and immune data indicated a molecular signature constituted by IL-6, IL1-ra, DMG, CCL4, Ile, Gly and IL-8, which could discriminate patients and healthy subjects and could represent a candidate tool in the diagnosis of new-onset psoriasis.
Collapse
Affiliation(s)
- Elisabetta Tarentini
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Odorici
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Righi
- grid.6292.f0000 0004 1757 1758Department for the Quality of Life Studies, University of Bologna, Rimini, Italy
| | - Alessia Paganelli
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | - Adele Mucci
- grid.7548.e0000000121697570Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luisa Benassi
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta D’Aversa
- grid.8484.00000 0004 1757 2064Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Claudia Lasagni
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Shaniko Kaleci
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Eva Reali
- grid.7563.70000 0001 2174 1754Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Cristina Magnoni
- grid.7548.e0000000121697570Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Zhang X, Xu H, Li GH, Long MT, Cheung CL, Vasan RS, Hsu YH, Kiel DP, Liu CT. Metabolomics Insights into Osteoporosis Through Association With Bone Mineral Density. J Bone Miner Res 2021; 36:729-738. [PMID: 33434288 PMCID: PMC8488880 DOI: 10.1002/jbmr.4240] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/15/2020] [Accepted: 01/03/2021] [Indexed: 11/10/2022]
Abstract
Osteoporosis, a disease characterized by low bone mineral density (BMD), increases the risk for fractures. Conventional risk factors alone do not completely explain measured BMD or osteoporotic fracture risk. Metabolomics may provide additional information. We aim to identify BMD-associated metabolomic markers that are predictive of fracture risk. We assessed 209 plasma metabolites by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in 1552 Framingham Offspring Study participants, and measured femoral neck (FN) and lumbar spine (LS) BMD 2 to 10 years later using dual-energy X-ray absorptiometry. We assessed osteoporotic fractures up to 27-year follow-up after metabolomic profiling. We identified 27 metabolites associated with FN-BMD or LS-BMD by LASSO regression with internal validation. Incorporating selected metabolites significantly improved the prediction and the classification of osteoporotic fracture risk beyond conventional risk factors (area under the curve [AUC] = 0.74 for the model with identified metabolites and risk factors versus AUC = 0.70 with risk factors alone, p = .001; net reclassification index = 0.07, p = .03). We replicated significant improvement in fracture prediction by incorporating selected metabolites in 634 participants from the Hong Kong Osteoporosis Study (HKOS). The glycine, serine, and threonine metabolism pathway (including four identified metabolites: creatine, dimethylglycine, glycine, and serine) was significantly enriched (false discovery rate [FDR] p value = .028). Furthermore, three causally related metabolites (glycine, phosphatidylcholine [PC], and triacylglycerol [TAG]) were negatively associated with FN-BMD, whereas PC and TAG were negatively associated with LS-BMD through Mendelian randomization analysis. In summary, metabolites associated with BMD are helpful in osteoporotic fracture risk prediction. Potential causal mechanisms explaining the three metabolites on BMD are worthy of further experimental validation. Our findings may provide novel insights into the pathogenesis of osteoporosis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gloria Hy Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Michelle T Long
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
| | - Ching-Lung Cheung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ramachandran S Vasan
- National Heart, Lung and Blood Institute's and Boston University's Framingham Heart Study, Framingham, MA, USA
- Section of Preventive Medicine and Epidemiology, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Whitaker Cardiovascular Institute and Cardiology Section, Evans Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Mangano KM, Noel SE, Lai CQ, Christensen JJ, Ordovas JM, Dawson-Hughes B, Tucker KL, Parnell LD. Diet-derived fruit and vegetable metabolites show sex-specific inverse relationships to osteoporosis status. Bone 2021; 144:115780. [PMID: 33278656 PMCID: PMC7856195 DOI: 10.1016/j.bone.2020.115780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The impact of nutrition on the metabolic profile of osteoporosis (OS) is unknown. OBJECTIVE Identify biochemical factors driving the association of fruit and vegetable (FV) intakes with OS prevalence using an untargeted metabolomics approach. DESIGN Cross-sectional dietary, anthropometric and plasma metabolite data were examined from the Boston Puerto Rican Osteoporosis Study, n = 600 (46-79 yr). METHODS Bone mineral density was assessed by DXA. OS was defined by clinical standards. A culturally adapted FFQ assessed usual dietary intake. Principal components analysis (PCA) of 42 FV items created 6 factors. Metabolomic profiles derived from plasma samples were assessed on a commercial platform. Differences in levels of 525 plasma metabolites between disease groups (OS vs no-OS) were compared using logistic regression; and associations with FV intakes by multivariable linear regression, adjusted for covariates. Metabolites significantly associated with OS status or with total FV intake were analyzed for enrichment in various biological pathways using Mbrole 2.0, MetaboAnalyst, and Reactome, using FDR correction of P-values. Correlation coefficients were calculated as Spearman's rho rank correlations, followed by hierarchical clustering of the resulting correlation coefficients using PCA FV factors and sex-specific sets of OS-associated metabolites. RESULTS High FV intake was inversely related to OS prevalence (Odds Ratio = 0.73; 95% CI = 0.57, 0.94; P = 0.01). Several biological processes affiliated with the FV-associating metabolites, including caffeine metabolism, carnitines and fatty acids, and glycerophospholipids. Important processes identified with OS-associated metabolites were steroid hormone biosynthesis in women and branched-chain amino acid metabolism in men. Factors derived from PCA were correlated with the OS-associated metabolites, with high intake of dark leafy greens and berries/melons appearing protective in both sexes. CONCLUSIONS These data warrant investigation into whether increasing intakes of dark leafy greens, berries and melons causally affect bone turnover and BMD among middle-aged and older adults at risk for osteoporosis via sex-specific metabolic pathways, and how gene-diet interactions alter these sex-specific metabolomic-osteoporosis links. ClinicalTrials.gov Identifier: NCT01231958.
Collapse
Affiliation(s)
- Kelsey M Mangano
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, 3 Solomont Way, 01854 Lowell, MA, USA.
| | - Sabrina E Noel
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, 3 Solomont Way, 01854 Lowell, MA, USA
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0315 Oslo, Norway
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, 02111 Boston, MA, USA
| | - Bess Dawson-Hughes
- Bone Metabolism Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, 02111 Boston, MA, USA
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences and Center for Population Health, University of Massachusetts Lowell, 3 Solomont Way, 01854 Lowell, MA, USA
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St, Boston, MA 02111, USA
| |
Collapse
|
8
|
Ferro Y, Pujia R, Maurotti S, Mare R, Arturi F, Montalcini T, Pujia A, Mazza E. Relationship between osteoporosis, multiple fractures, and egg intake in healthy elderly. J Midlife Health 2021; 12:287-293. [PMID: 35264835 PMCID: PMC8849143 DOI: 10.4103/jmh.jmh_118_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/14/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Context: The role of dietary patterns in the prevention of osteoporosis has been investigated in many studies, but few have examined the association between consumption of specific food and whole-body (WB) bone mineral density (BMD). Recent evidence suggests that whole eggs contain bioactive compounds that could have beneficial effects on BMD. BMD is also expressed as the T-score, which is used for the clinical diagnosis of osteoporosis and to evaluate the effectiveness of drugs. Aims: We conducted a study to assess the association between eggs consumption and bone density in a population of the elderly. Settings and Design: This cross-sectional study included 176 individuals of both genders and aged ≥65 years. Subjects and Methods: Egg intake was ascertained by a combination of dietary intake assessment, and a dual X-ray absorptiometry scan was performed to measure WB T-score. Results: In our study, among all the food groups and nondietary factors evaluated, we find a positive association between the WB T-score and egg consumption (B = 0.02; P = 0.02), gender (B = 0.85; P < 0.001), and body mass index (B = 0.04; P = 0.03). Multiple fractures were associated with the daily intake of eggs (B = ‒0.26; P = 0.02) and high-density lipoprotein-cholesterol (B = 0.09; P = 0.03). Conclusions: This study provides novel evidence of a positive link between whole egg consumption and bone health. If results observed in this study will be confirmed through future randomized controlled trials, whole eggs may represent a viable strategy to prevent osteoporosis and reduce the risk of fractures in the elderly.
Collapse
|
9
|
Zaric BL, Radovanovic JN, Gluvic Z, Stewart AJ, Essack M, Motwalli O, Gojobori T, Isenovic ER. Atherosclerosis Linked to Aberrant Amino Acid Metabolism and Immunosuppressive Amino Acid Catabolizing Enzymes. Front Immunol 2020; 11:551758. [PMID: 33117340 PMCID: PMC7549398 DOI: 10.3389/fimmu.2020.551758] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the leading global health concern and responsible for more deaths worldwide than any other type of disorder. Atherosclerosis is a chronic inflammatory disease in the arterial wall, which underpins several types of cardiovascular disease. It has emerged that a strong relationship exists between alterations in amino acid (AA) metabolism and the development of atherosclerosis. Recent studies have reported positive correlations between levels of branched-chain amino acids (BCAAs) such as leucine, valine, and isoleucine in plasma and the occurrence of metabolic disturbances. Elevated serum levels of BCAAs indicate a high cardiometabolic risk. Thus, BCAAs may also impact atherosclerosis prevention and offer a novel therapeutic strategy for specific individuals at risk of coronary events. The metabolism of AAs, such as L-arginine, homoarginine, and L-tryptophan, is recognized as a critical regulator of vascular homeostasis. Dietary intake of homoarginine, taurine, and glycine can improve atherosclerosis by endothelium remodeling. Available data also suggest that the regulation of AA metabolism by indoleamine 2,3-dioxygenase (IDO) and arginases 1 and 2 are mediated through various immunological signals and that immunosuppressive AA metabolizing enzymes are promising therapeutic targets against atherosclerosis. Further clinical studies and basic studies that make use of animal models are required. Here we review recent data examining links between AA metabolism and the development of atherosclerosis.
Collapse
Affiliation(s)
- Bozidarka L. Zaric
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena N. Radovanovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Department of Endocrinology and Diabetes, Faculty of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, University of Belgrade, Belgrade, Serbia
| | - Alan J. Stewart
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Olaa Motwalli
- College of Computing and Informatics, Saudi Electronic University (SEU), Medina, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center, Computer (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Lysne V, Bjørndal B, Grinna ML, Midttun Ø, Ueland PM, Berge RK, Dierkes J, Nygård O, Strand E. Short-term treatment with a peroxisome proliferator-activated receptor α agonist influences plasma one-carbon metabolites and B-vitamin status in rats. PLoS One 2019; 14:e0226069. [PMID: 31805132 PMCID: PMC6894826 DOI: 10.1371/journal.pone.0226069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) have been suggested to be involved in the regulation of one-carbon metabolism. Previously we have reported effects on plasma concentrations of metabolites along these pathways as well as markers of B-vitamin status in rats following treatment with a pan-PPAR agonist. Here we aimed to investigate the effect on these metabolites after specific activation of the PPARα and PPARγ subtypes. METHODS For a period of 12 days, Male Wistar rats (n = 20) were randomly allocated to receive treatment with the PPARα agonist WY-14.643 (n = 6), the PPARγ agonist rosiglitazone (n = 6) or placebo (n = 8). The animals were sacrificed under fasting conditions, and plasma concentration of metabolites were determined. Group differences were assessed by one-way ANOVA, and planned comparisons were performed for both active treatment groups towards the control group. RESULTS Treatment with a PPARα agonist was associated with increased plasma concentrations of most biomarkers, with the most pronounced differences observed for betaine, dimethylglycine, glycine, nicotinamide, methylnicotinamide, pyridoxal and methylmalonic acid. Lower levels were observed for flavin mononucleotide. Fewer associations were observed after treatment with a PPARγ agonist, and the most notable was increased plasma serine. CONCLUSION Treatment with a PPARα agonist influenced plasma concentration of one-carbon metabolites and markers of B-vitamin status. This confirms previous findings, suggesting specific involvement of PPARα in the regulation of these metabolic pathways as well as the status of closely related B-vitamins.
Collapse
Affiliation(s)
- Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- * E-mail:
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Per Magne Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bevital A/S, Bergen, Norway
| | - Rolf Kristian Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
AL-Bashaireh AM, Haddad LG, Weaver M, Kelly DL, Chengguo X, Yoon S. The Effect of Tobacco Smoking on Musculoskeletal Health: A Systematic Review. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2018; 2018:4184190. [PMID: 30112011 PMCID: PMC6077562 DOI: 10.1155/2018/4184190] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022]
Abstract
This systematic review explored associations between smoking and health outcomes involving the musculoskeletal system. AMSTAR criteria were followed. A comprehensive search of PubMed, Web of Science, and Science Direct returned 243 articles meeting inclusion criteria. A majority of studies found smoking has negative effects on the musculoskeletal system. In research on bones, smoking was associated with lower BMD, increased fracture risk, periodontitis, alveolar bone loss, and dental implant failure. In research on joints, smoking was associated with increased joint disease activity, poor functional outcomes, and poor therapeutic response. There was also evidence of adverse effects on muscles, tendons, cartilage, and ligaments. There were few studies on the musculoskeletal health outcomes of secondhand smoke, smoking cessation, or other modes of smoking, such as waterpipes or electronic cigarettes. This review found evidence that suggests tobacco smoking has negative effects on the health outcomes of the musculoskeletal system. There is a need for further research to understand mechanisms of action for the effects of smoking on the musculoskeletal system and to increase awareness of healthcare providers and community members of the adverse effects of smoking on the musculoskeletal system.
Collapse
Affiliation(s)
| | - Linda G. Haddad
- College of Health and Human Services, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Michael Weaver
- College of Nursing, University of Florida, Gainesville, FL, USA
| | | | - Xing Chengguo
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Saunjoo Yoon
- College of Nursing, University of Florida, Gainesville, FL, USA
| |
Collapse
|