1
|
Li Q, Liang L, Gao C, Zong B. Therapeutic effects of whole-body vibration on postmenopausal women with osteoporosis: a systematic review and meta-analysis. Braz J Med Biol Res 2024; 57:e13996. [PMID: 39504068 PMCID: PMC11540256 DOI: 10.1590/1414-431x2024e13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
The objective of this study was to assess the efficacy of whole-body vibration (WBV) on bone mineral density (BMD), pain levels, and body composition in postmenopausal women with osteoporosis (PMOP). Relevant studies were retrieved from the PubMed, EMBASE, Web of science, CENTRAL, and PEDro databases. Thirteen randomized controlled trials with 783 patients were enrolled. The meta-analysis results showed that WBV can significantly increase lumbar spine BMD (WMD=0.018; 95%CI: 0.004 to 0.032; P=0.011), femoral neck BMD (WMD=0.005, 95%CI: 0.001 to 0.011, P=0.0493), and reduce pain degree (WMD=-0.786; 95%CI: -1.300 to -0.272; P=0.0027) in PMOP, but has no significant effect on patients' muscle mass (WMD=0.547; 95%CI: -1.104 to 2.199; P=0.5158) as well as fat mass (WMD=0.530; 95%CI: -2.389 to 3.448; P=0.7222). To conclude, WBV showed the potential to provide positive benefits in improving BMD and relieving pain of PMOP.
Collapse
Affiliation(s)
- Qian Li
- Department of Rehabilitation Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Lichao Liang
- Department of Rehabilitation Medicine, Zibo Central Hospital, Zibo, Shandong, China
| | - Chengfei Gao
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Beibei Zong
- Department of Rehabilitation Medicine, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
2
|
Yin S, Liu Y, Zhong Y, Zhu F. Effects of whole-body vibration on bone mineral density in postmenopausal women: an overview of systematic reviews. BMC Womens Health 2024; 24:444. [PMID: 39107743 PMCID: PMC11302093 DOI: 10.1186/s12905-024-03290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE The aim of this study is to evaluate the findings of existing systematic reviews (SRs) and provide scientific evidence on the efficacy and safety of whole-body vibration (WBV) in improving bone mineral density (BMD) in postmenopausal women, to provide recommendations and guidance for future high-quality clinical research and SRs. METHODS We conducted searches in six databases (SinoMed, CNKI, Cochrane Library, Embase, PubMed, Web of Science) from the inception of the databases until July 31, 2023. The language was limited to Chinese or English. The methodological quality, risk of bias, and evidence grade of outcomes were evaluated using AMSTAR-2, ROBIS, and GRADE, respectively. Additionally, the degree of overlap in randomized controlled trials (RCTs) among the SRs was calculated using corrected covered area (CCA). Furthermore, we performed quantitative synthesis or descriptive analysis of the relevant data. All relevant operations were independently conducted by two individuals. RESULTS A total of 15 SRs were included in the analysis, out of which three were qualitative descriptions and 12 were meta-analyses. According to AMSTAR-2, only two SRs were rated as low or moderate, while the remaining 13 SRs were rated as critically low quality. The ROBIS assessment indicated that seven SRs had a low risk of bias, while 8 SRs had a high risk of bias. The overall findings suggest that WBV does not have a significant advantage in improving BMD in postmenopausal women. Furthermore, the CCA results revealed a high overlap in RCTs across five outcomes among the 15 SRs. Only five SRs reported specific adverse reactions/events experienced by participants after WBV interventions, and none of the SRs reported any severe adverse events. CONCLUSION The existing evidence cannot establish definitive advantages of WBV in improving BMD in postmenopausal women. Therefore, we do not recommend the use of WBV for improving BMD in postmenopausal women. However, WBV may have potential value in maintaining BMD in postmenopausal women, further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Shao Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Twelve Bridges Road, Jinniu District, Chengdu City, 610000, China
| | - Ying Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Twelve Bridges Road, Jinniu District, Chengdu City, 610000, China
| | - Yue Zhong
- Zigong First People's Hospital, No. 42, Shangyihao Yizhi Road, Ziliujing District, Zigong City, 641000, China
| | - Fengya Zhu
- Zigong First People's Hospital, No. 42, Shangyihao Yizhi Road, Ziliujing District, Zigong City, 641000, China.
| |
Collapse
|
3
|
Petrigna L, Amato A, Sortino M, Trovato B, Zanghì M, Roggio F, Musumeci G. Intervention Hypothesis for Training with Whole-Body Vibration to Improve Physical Fitness Levels: An Umbrella Review. J Funct Morphol Kinesiol 2024; 9:100. [PMID: 38921636 PMCID: PMC11204594 DOI: 10.3390/jfmk9020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Whole-body vibration (WBV) is a training modality, and it seems to be a safe and efficient exercise especially to improve different aspects of physical fitness in different populations. The protocols for WBV are still not standardized. The difficulty in comparing the data confuses the real efficacy of this instrument. Consequently, the objective of this umbrella review is to analyze the protocols previously adopted and eventually to propose a standard operating procedure for WBV training. Systematic review and meta-analysis of randomized controlled trials on WBV were searched on the electronic databases PubMed, Web of Science, and Scopus until 18 March 2024. A quality assessment of the studies included has been performed. A total of 20 studies were included in this umbrella review and frequency, magnitude, and amplitude intensity data were recorded. Detailed information about the protocols (static or dynamic exercises, barefoot or with shoes, intensity duration, weekly frequency, and vibration characteristics) was also collected. WBV presents widely different protocols. Consequently, a standard operating procedure has not been proposed for WBV training. A hypothesis of intervention was instead written in which parameters for frequency, amplitude, acceleration, and training mode were proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (L.P.); (A.A.); (M.S.); (B.T.); (M.Z.); (F.R.)
| |
Collapse
|
4
|
Maïmoun L, Gelis A, Serrand C, Mura T, Brabant S, Garnero P, Mariano-Goulart D, Fattal C. Whole-body vibration may not affect bone mineral density and bone turnover in persons with chronic spinal cord injury: A preliminary study. J Spinal Cord Med 2023:1-13. [PMID: 37930641 DOI: 10.1080/10790268.2023.2268893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
CONTEXT Spinal-cord injury (SCI) induces bone loss and dramatically increases the risk of fracture. OBJECTIVES Determine the effects of whole-body vibration (WBV) on areal bone mineral density (aBMD), whole body composition and bone biological parameters in individuals with chronic-state SCI. DESIGN Randomized study. SETTING Centre Neurologique PROPARA. PARTICIPANTS Fourteen subjects were randomly assigned to a WBV or a control group. INTERVENTIONS WBV (20-45 min, 30-45 Hz, 0.5 g) was performed in verticalized persons twice weekly for 6 months. OUTCOME MEASURES aBMD was measured by DXA at baseline and 6 months and bone biological parameters at baseline, 1, 3 and 6 months. RESULTS No significant aBMD change was found in either the WBV or control group after 6 months of follow-up. Similarly, periostin, sclerostin and bone turnover markers remained relatively stable throughout follow-up and no difference in variation was observed within-group and between groups. Except for whole-body fat mass, which showed a significant decrease in the WBV group compared to controls, no difference in changes was observed, whatever the localization for fat and lean body mass. CONCLUSIONS During the chronic phase, aBMD and bone remodeling reach a new steady state. However, the DXA technique and the bone markers, including sclerostin and periostin, both of which reflect bone cell activity influenced by mechanical strain, showed that the bone tissue of individuals with SCI was insensitive to 6 months of WBV training at the study dose. Nevertheless, results of this preliminary study that was underpowered need to be confirmed and other modalities of WBV may be more effective in improving aBMD of this population. TRIALS REGISTRATION N°IDRCB:2011-A00224-37.
Collapse
Affiliation(s)
- Laurent Maïmoun
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | | - Chris Serrand
- Unité de Recherche Clinique et Epidémiologie, Hôpital La Colombière, CHU Montpellier, Montpellier, France
| | - Thibault Mura
- BESPIM -Hôpital Caremeau, CHRU de Nîmes, Nîmes, France
| | - Severine Brabant
- Laboratoire des Explorations Fonctionnelles, Hôpital Necker, Paris, France
| | | | - Denis Mariano-Goulart
- Département de Médecine Nucléaire, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
- PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
5
|
Schlacht TZ, Haque I, Skelton DA. What are the Effects of Exercise on Trabecular Microarchitecture in Older Adults? A Systematic Review and Meta-analysis of HR-pQCT Studies. Calcif Tissue Int 2023; 113:359-382. [PMID: 37725127 PMCID: PMC10516781 DOI: 10.1007/s00223-023-01127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
The objective of this review was to determine the effects of exercise on high-resolution peripheral quantitative computed tomography (HR-pQCT) derived trabecular microarchitecture parameters in older adults. Five electronic databases were systematically searched by two independent reviewers. Inclusion criteria were adults age ≥ 50, any type of exercise as part of the intervention, and trabecular microarchitecture assessed via HR-pQCT. Data was extracted from included studies, and where suitable, included in a meta-analysis. Quality of included studies was appraised. Seven studies (397 participants) were included. All participants were postmenopausal women. Interventions included jumping, whole-body vibration, and power/plyometric training. All studies were rated as either weak or moderate quality. Meta-analysis (5 studies) showed no significant changes in any parameters when considering all exercise or sub-analysing based on type. Exercise was not found to have significant effects on trabecular microarchitecture in postmenopausal women over the age of 50. These findings should be interpreted with caution due to the small number of studies investigating few modes of exercise, their weak to moderate quality, and risk of bias. High-quality studies are needed to determine the effects of additional types of exercise in a more diverse population of older adults, including men.
Collapse
Affiliation(s)
- Thomas Z Schlacht
- Research Centre for Health (ReaCH), Physiotherapy and Paramedicine, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Inaya Haque
- Research Centre for Health (ReaCH), Physiotherapy and Paramedicine, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK
| | - Dawn A Skelton
- Research Centre for Health (ReaCH), Physiotherapy and Paramedicine, Glasgow Caledonian University, Cowcaddens Road, Glasgow, G4 0BA, UK.
| |
Collapse
|
6
|
Ding Y, Yang Y, Xu F, Tan Z, Liu X, Shao X, Kang F, Yan Z, Luo E, Wang J, Luo Z, Cai J, Jing D. Early protection against bone stress injuries by mobilization of endogenous targeted bone remodeling. iScience 2023; 26:107605. [PMID: 37664634 PMCID: PMC10470328 DOI: 10.1016/j.isci.2023.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Bone stress injuries are common overuse injuries, especially in soldiers, athletes, and performers. In contrast to various post-injury treatments, early protection against bone stress injuries can provide greater benefit. This study explored the early protection strategies against bone stress injuries by mobilization of endogenous targeted bone remodeling. The effects of various pharmaceutical/biophysical approaches, individual or combinational, were investigated by giving intervention before fatigue loading. We optimized the dosage and administration parameters and found that early intervention with pulsed electromagnetic field and parathyroid hormone (i.e., PEMF+PTH) resulted in the most pronounced protective effects among all the approaches against the bone stress injuries. In addition, the mechanisms by which the strategy mobilizes targeted bone remodeling and enhances the self-repair capacity of bone were systematically investigated. This study proposes strategies to reduce the incidence of bone stress injuries in high-risk populations (e.g., soldiers and athletes), particularly for those before sudden increased physical training.
Collapse
Affiliation(s)
- Yuanjun Ding
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Yongqing Yang
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Fei Xu
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zhifen Tan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiyu Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xi Shao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zedong Yan
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Erping Luo
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Cai
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Liu Y, Fan Y, Chen X. Effects of whole-body vibration training in static and dynamic semi-squat patterns on the lower limb muscle activity. Sci Rep 2023; 13:14432. [PMID: 37660154 PMCID: PMC10475118 DOI: 10.1038/s41598-023-40985-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/19/2023] [Indexed: 09/04/2023] Open
Abstract
The decline in physical function and the deterioration of the neuromusculoskeletal system in older people can easily lead to reduced muscle strength and slower mobility in the joints of the lower limbs, increasing the incidence of chronic diseases such as muscle wasting disorders, osteoporosis, debilitation and fall and fracture. It may also affect the quality of life and functional independence of older people, and in serious cases, even directly threaten their health. This study was conducted to determine the differences in lower limb muscle activation characteristics between static semi-squat (SSS) and dynamic semi-squat (DSS) training in middle-aged and old women at different frequencies and amplitudes and to explore a personalized whole-body vibration (WBV) training instruction program suitable for them. Fifteen healthy middle-aged and old women (60.8 ± 4.18 years old) were recruited for SSS and DSS WBV training. Their muscle activity of the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF) and gastrocnemius (GS) were calculated using the BTS FreeEMG300 wireless surface electromyography (EMG), which participants were completed that the two different contraction patterns of squats on WBV training. The knee flexion was maintained at 45° while the subjects were performing the SSS training, while during the DSS training, the knee flexion fluctuates between 10° and 45°. The SSS exercise requires the subject to remain stationary in the squatting position and the DSS to be performed at a rhythm of 4 s/repetition, with 2 s of squatting, 1 s of standing up, and 1 s intervals. The vibration frequencies and amplitudes were changed to the WBV training intensity, and the vibration frequencies were set to 0 Hz, 30 Hz and 40 Hz, and the amplitudes were set to 0 mm, 2 mm and 4 mm. Each subject is randomised to participate in WBV training with 5 combinations of frequency and amplitude in both static and dynamic semi-squat patterns. These were 0 Hz 0 mm, 30 Hz 2 mm, 30 Hz 4 mm, 40 Hz 2 mm, 40 Hz 4 mm for the static and dynamic demi-squat patterns of WBV training. A two-way repeated measures ANOVA was applied to compare the changes in surface EMG of the lower limb muscles in different modes of SSS and DSS with WBV training. (1) Our results showed significantly interaction effects in the frequency × amplitude of root mean square (EMGrms) in GS (P < 0.05), while no significant differences were observed in the interaction effects of SSS/DSS patterns, frequencies and amplitude of RF, VM, VL and BF (P > 0.05). (2) Comparisons between groups showed that the EMGrms of the RF were significantly higher for the DSS than the SSS (P < 0.05). Additionally, the EMGrms of VL and BF at 30 Hz and 40 Hz were greater than 0 Hz (P < 0.05). Also, The EMGrms at 4 mm for the VM, VL and BF were significantly higher than 0 mm, the EMGrms at 4 mm for the VM and VL were significantly higher than 2 mm (P < 0.05), and the EMGrms at 2 mm of VL and BF were significantly higher than 0 mm (P < 0.05). (3) The results showed that WBV stimulation significantly increased the EMGrms of the GS in the SSS compared with the vibration free semi-squat alone (P < 0.05). However, there were no significant differences between WBV training protocols for SSS patterns with different frequencies and amplitudes (frequencies and amplitudes not were 0 Hz and 0 mm) (P > 0.05). Comparison of EMGrms for WBV training of the GS in DSS patterns showed that 40 Hz/4 mm was significantly higher than 0 Hz/0 mm (P < 0.05), but there was no significant difference between the remaining vibration conditions (P > 0.05). WBV training for DSS can significantly improve the activation of the RF compared to SSS pattern. Compared with no vibration, WBV could significantly improv the activity of the lower limb muscles. Additionally, an increase in amplitude from 2 to 4 mm could significantly improve VM and VL activation, while no significant improvement on lower limb muscle activation was observed for increasing vibration frequency from 30 to 40 Hz.
Collapse
Affiliation(s)
- Yuxiu Liu
- Graduate Department, Capital University of Physical Education and Sports, Beijing, 100191, China
| | - Yongzhao Fan
- Department of Physical Education, Henan Normal University, Xinxiang, 453007, China
| | - Xiaohong Chen
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, 100191, China.
| |
Collapse
|
8
|
Faes Y, Rolli Salathé C, Herlig ML, Elfering A. Beyond physiology: Acute effects of side-alternating whole-body vibration on well-being, flexibility, balance, and cognition using a light and portable platform A randomized controlled trial. Front Sports Act Living 2023; 5:1090119. [PMID: 36793620 PMCID: PMC9922907 DOI: 10.3389/fspor.2023.1090119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 02/03/2023] Open
Abstract
A good body-balance helps to prevent slips, trips and falls. New body-balance interventions must be explored, because effective methods to implement daily training are sparse. The purpose of the current study was to investigate acute effects of side-alternating whole-body vibration (SS-WBV) training on musculoskeletal well-being, flexibility, body balance, and cognition. In this randomized controlled trial, participants were randomly allocated into a verum (8.5 Hz, SS-WBV, N = 28) or sham (6 Hz, SS-WBV, N = 27) condition. The training consisted of three SS-WBV series that lasted one-minute each with two one-minute breaks in between. During the SS-WBV series, participants stood in the middle of the platform with slightly bent knees. During the breaks in between, participants could loosen up. Flexibility (modified fingertip-to-floor method), balance (modified Star Excursion Balance Test), and cognitive interference (Stroop Color Word Test) were tested before and after the exercise. Also, musculoskeletal well-being, muscle relaxation, sense of flexibility, sense of balance, and surefootedness were assessed in a questionnaire before and after the exercise. Musculoskeletal well-being was significantly increased only after verum. Also, muscle relaxation was significantly higher only after verum. The Flexibility-Test showed significant improvement after both conditions. Accordingly, sense of flexibility was significantly increased after both conditions. The Balance-Test showed significant improvement after verum, and after sham. Accordingly, increased sense of balance was significant after both conditions. However, surefootedness was significantly higher only after verum. The Stroop-Test showed significant improvement only after verum. The current study shows that one SS-WBV training session increases musculoskeletal well-being, flexibility, body balance and cognition. The abundance of improvements on a light and portable platform has great influence on the practicability of training in daily life, aiming to prevent slip trips and falls at work.
Collapse
Affiliation(s)
- Yannik Faes
- Business Psychology, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
- Faculty of Psychology, Distance University, Brig, Switzerland
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
| | - Cornelia Rolli Salathé
- Faculty of Psychology, Distance University, Brig, Switzerland
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Marina Luna Herlig
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
| | - Achim Elfering
- Faculty of Psychology, Distance University, Brig, Switzerland
- Department of Work and Organizational Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
de Oliveira RDJ, de Oliveira RG, de Oliveira LC, Santos-Filho SD, Sá-Caputo DC, Bernardo-Filho M. Effectiveness of whole-body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 2023; 34:29-52. [PMID: 36282343 DOI: 10.1007/s00198-022-06556-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023]
Abstract
The present study observed significant effects of whole-body vibration (WBV) on bone mineral density (BMD) in postmenopausal women, with high-quality evidence for high-frequency, low-magnitude, and high-cumulative-dose use. The aim was to update a previous systematic review with meta-analysis to observe the effects of WBV on BMD in postmenopausal women. For the meta-analysis, the weighted mean difference between WBV and control groups, or WBV and conventional exercise, was used for the area of bone mineral density (aBMD) of the lumbar spine, femoral neck, total hip, trochanter, intertrochanter, and Ward's area, or volumetric trabecular bone mineral density (vBMDt) of the radius and tibia. Methodological quality was assessed using the PEDro scale and the quality of evidence using the GRADE system. In total, 23 studies were included in the systematic review and 20 in the meta-analysis. Thirteen studies showed high methodological quality. WBV compared with control groups showed significant effects on aBMD in the primary analysis (lumbar spine and trochanter), sensitivity (lumbar spine), side-alternating vibration (lumbar spine and trochanter), synchronous vibration (lumbar spine), low frequency and high magnitude (lumbar spine and trochanter), high frequency and low magnitude (lumbar spine), high frequency and high magnitude (lumbar spine, trochanter, and Ward's area), high cumulative dose and low magnitude (lumbar spine), low cumulative dose and high magnitude (lumbar spine and trochanter), and positioning with semi-flexed knees (trochanter). Of these results, only high frequency associated with low magnitude and high cumulative dose with low magnitude showed high-quality evidence. At this time, considering the high quality of evidence, it is possible to recommend WBV using high frequency (≈ 30 Hz), low magnitude (≈ 0.3 g), and high cumulative dose (≈ 7000 min) to improve lumbar spine aBMD in postmenopausal women. Other parameters, although promising, need to be better investigated, considering, when applicable, the safety of the participants, especially in vibrations with higher magnitudes (≥ 1 g).
Collapse
Affiliation(s)
| | - Raphael Gonçalves de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil.
| | - Laís Campos de Oliveira
- Programa de Pós-Graduação em Ciências do Movimento Humano, Centro de Ciências da Saúde, Universidade Estadual do Norte do Paraná (UENP), Alameda Padre Magno, CEP: 86.400-000, Jacarezinho, Nova Alcântara PR, 841, Brazil
| | - Sebastião David Santos-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danúbia Cunha Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mario Bernardo-Filho
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Instituto de Biologia Roberto Alcântara Gomes e Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Fernandez P, Pasqualini M, Locrelle H, Normand M, Bonneau C, Lafage Proust MH, Marotte H, Thomas T, Vico L. The effects of combined amplitude and high-frequency vibration on physically inactive osteopenic postmenopausal women. Front Physiol 2022; 13:952140. [PMID: 36160873 PMCID: PMC9491321 DOI: 10.3389/fphys.2022.952140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: To evaluate whole-body vibration (WBV) osteogenic potential in physically inactive postmenopausal women using high-frequency and combined amplitude stimuli. Methods: Two-hundred fifty-five physically inactive postmenopausal women (55–75 years) with 10-year major osteoporotic fracture risk (3%–35%) participated in this 18-month study. For the first 12 months, the vibration group experienced progressive 20-min WBV sessions (up to 3 sessions/week) with rest periods (30–60 s) between exercises. Frequencies (30–50 Hz), with low (0.2–0.4 mm) and high (0.6–0.8 mm) amplitude stimuli were delivered via PowerPlate Pro5 platforms producing accelerations of (0.75–7.04 g). The last 6 months for the treatment group were a follow-up period similar to control. Serum bone remodelling markers [C-terminal crosslinked telopeptide of type-1 collagen (CTX), procollagen type-1 N-terminal propeptide (P1NP), bone alkaline phosphatase (BAP) and sclerostin] were measured at fasting. CTX and P1NP were determined by automated chemiluminescence immunoassay, bone alkaline phosphatase (BAP) by automated spectrophotometric immunoassay, and sclerostin by an enzyme-immunoassay. Bone mineral density (BMD) of the whole-body, proximal femur and lumbar vertebrae was measured by dual-energy X-ray absorptiometry (DXA). Bone microarchitecture of the distal non-dominant radius and tibia was measured by high-resolution peripheral quantitative computed tomography (HR-pQCT). Results: Femoral neck (p = 0.520) and spine BMD (p = 0.444) failed to improve after 12 months of WBV. Bone macro and microstructural parameters were not impacted by WBV, as well as estimated failure load at the distal radius (p = 0.354) and tibia (p = 0.813). As expected, most DXA and HR-pQCT parameters displayed age-related degradation in this postmenopausal population. BAP and CTX increased over time in both groups, with CTX more marginally elevated in the vibration group when comparing baseline changes to month-12 (480.80 pmol/L; p = 0.039) and month-18 (492.78 pmol/L; p = 0.075). However, no differences were found when comparing group concentrations only at month-12 (506.35 pmol/L; p = 0.415) and month-18 (518.33 pmol/L; p = 0.480), indicating differences below the threshold of clinical significance. Overall, HR-pQCT, DXA bone parameters and bone turnover markers remained unaffected. Conclusion: Combined amplitude and high-frequency training for one year had no ameliorating effect on DXA and HR-pQCT bone parameters in physically inactive postmenopausal women. Serum analysis did not display any significant improvement in formation and resorption markers and also failed to alter sclerostin concentrations between groups.
Collapse
Affiliation(s)
- Peter Fernandez
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- *Correspondence: Peter Fernandez,
| | - Marion Pasqualini
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| | - Hervé Locrelle
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Myriam Normand
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| | - Christine Bonneau
- Biology and Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Marie-Hélène Lafage Proust
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Hubert Marotte
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Thierry Thomas
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
- Rheumatology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Laurence Vico
- SAINBIOSE, U1059, Laboratory of Osteoarticular Tissue Biology, INSERM, University of Lyon, Saint-Etienne, France
| |
Collapse
|
11
|
Effects of physical exercise on bone mineral density in older postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Arch Osteoporos 2022; 17:102. [PMID: 35896850 DOI: 10.1007/s11657-022-01140-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/05/2022] [Indexed: 02/03/2023]
Abstract
Osteoporosis or decreased bone mineral density (BMD) is the most important risk factor for fractures, especially in older postmenopausal women (PMW). However, the interactions between exercise training and bone mineral density are not completely understood. We evaluated the effects of physical exercise on BMD in women aged ≥ 60 years postmenopausal. PURPOSE This systematic review and meta-analysis sets out to determine the effects of physical exercise on BMD in older postmenopausal women. METHODS A systematic search was conducted in Medline, Science Direct, Cochrane, PubMed, CINAHL, Google Scholar, Scopus, and ProQuest up to December 25, 2021. Fifty-three studies, which assessed a total of 2896 participants (mean age: between 60 and 82 years), were included and analyzed using a random-effects model to estimate weighted mean differences (WMD) with 95% confidence intervals (CI). RESULTS The meta-analysis found that exercise training significantly (p < 0.05) increased femoral neck (WMD: 0.01 g/cm2; 95% CI, 0.00 to 0.01], p = 0.0005; I2 = 57%; p < 0.0001), lumbar spine (WMD: 0.01 g/cm2, 95% CI, 0.01 to 0.02], I2 = 81%; p = 0.0001), and trochanter (WMD: 0.01 g/cm2, 95% CI 0.00, 0.02]; p = 0.009; I2 = 17%; p = 0.23). There were no significant differences between the intervention and control groups for total body and total hip BMD. CONCLUSION Our findings suggest that exercise training may improve bone mineral density in older PMW. This improvement is mediated by increases in the femoral neck, lumbar spine, and trochanter BMD. Further long-term studies are required to confirm these findings.
Collapse
|
12
|
Effects of whole body vibration in postmenopausal osteopenic women on bone mineral density, muscle strength, postural control and quality of life: the T-bone randomized trial. Eur J Appl Physiol 2022; 122:2331-2342. [PMID: 35864343 PMCID: PMC9560973 DOI: 10.1007/s00421-022-05010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Purpose Osteopenia is common in postmenopausal women and effective interventions increasing or stabilizing bone mineral density (BMD) to prevent fractures are urgently needed. Methods Sixty-five postmenopausal women diagnosed with osteopenia (T-score between -1.0 and -2.5) were randomly assigned to either a vibration training group (VT), a resistance training group (RT), or a control group (CG). BMD T-score values (primary endpoint) were assessed at baseline (T0) and after 12 months (T12), secondary endpoints (muscle strength, postural control, and health-related quality of life) at baseline (T0), after 6 months (T6), after 12 months (T12), and as follow-up after 15 months (T15). Results After the intervention period, neither the VT nor the RT showed any significant changes in BMD T-score values compared to the CG. Isokinetic strength improved significantly within all training groups, with the exception of the flexors of VT at an angular velocity of 240°/s. Health-related quality of life as well as postural control improved significantly for the RT only. Conclusions We conclude that participants of all three groups were able to maintain their BMD. The improvements in quality of life and postural control after resistance training are nevertheless meaningful for postmenopausal osteopenic women and support the importance of regular loadings of the musculoskeletal system. This study was retrospectively registered in January 2022 at the DRKS (S00027816) as clinical trial. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-05010-5.
Collapse
|
13
|
Liu Y, Fan Y, Chen X. Effects of Whole-Body Vibration Training with Different Body Positions and Amplitudes on Lower Limb Muscle Activity in Middle-Aged and Older Women. Dose Response 2022; 20:15593258221112960. [PMID: 35859854 PMCID: PMC9289914 DOI: 10.1177/15593258221112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The present study was designed to investigate the electromyographic (EMG)
response in leg muscles to whole-body vibration while using different body
positions and vibration amplitudes. Methods: An experimental study with repeated measures design involved a group of
community-dwelling middle-aged and older women (n = 15; mean age=60.8 ±
4.18 years). Muscle activity of the gluteus maximus (GM), rectus femoris
(RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and
gastrocnemius (GS) was measured by surface electromyography, which
participants were performing three different body positions during three WBV
amplitudes. The body positions included static semi-squat, static semi-squat
with elastic band loading, and dynamic semi-squat. Vibration stimuli tested
were 0 mm, 2 mm, and 4 mm amplitude and 30 Hz frequencies. And the maximum
accelerations produced by vibration stimuli with amplitudes of 2 mm and 4 mm
are approximately 1.83 g and 3.17 g. Results: Significantly greater muscle activity was recorded in VL, BF, and GS. When
WBV was applied to training, compared with the same training without WBV
(P < .05). There were significant main effects of
body positions on EMGrms for the GM, RF, and VM (P <
.05). Compared to static semi-squat, static semi-squat with elastic band
significantly increased the EMGrms of GM, and dynamic semi-squat
significantly increased the EMGrms of GM, RF and VM (P < .05). And there
were significant main effects of amplitudes on EMGrms for the GM, RF, and VM
(P < .05). The EMGrms of the VL, BF, and GS at 4 mm
were significantly higher than 0 mm, and the EMGrms of the VL and BF at 4 mm
were significantly higher than 2 mm. There was no significant body
interaction between body positions and amplitudes (P > .05). Conclusions: The EMG amplitudes of most leg muscles tested were significantly greater
during WBV exposure than in the no-WBV condition. The dynamic semi-squat
4 mm whole-body vibration training is recommended for middle-aged and older
women to improve lower limb muscle strength and function.
Collapse
Affiliation(s)
- Yuxiu Liu
- Capital University of Physical Education and Sports, Beijing, China
| | - Yongzhao Fan
- Capital University of Physical Education and Sports, Beijing, China
| | - Xiaohong Chen
- Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
14
|
Whole-body vibration training for inpatient children and adolescents receiving chemotherapy for first cancer diagnosis: an exploratory feasibility study. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2022. [DOI: 10.1007/s12662-022-00820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractWhole-body vibration (WBV) is a feasible and potentially beneficial exercise strategy for managing neuromuscular impairments like decreased strength or flexibility, mobility limitations and bone health in pediatric cancer survivors. However, as starting rehabilitation as early as possible is recommended to preserve physical function, this study investigated the feasibility of WBV for patients receiving cancer treatment for first cancer diagnosis. Eleven patients (various types of cancer, ages 7–17) participated in the supervised WBV intervention concomitant to acute cancer treatment, which involved chemotherapy. Training was implemented as part of a general exercise program and offered 3 days per week during hospitalization (warm-up, four progressive training exercises comprising 60–120 s, 21–27 Hz, 2 mm peak-to-peak-displacement). Feasibility, which was defined as the absence of WBV-related serious adverse events leading to study dropout, was primarily evaluated. Training documentation was additionally analyzed. As a main result, no serious adverse events leading to study dropout were reported. However, two incidents of bleeding (adverse events) were observed in patients with bleeding tendencies and low platelets (thrombocytes < 30,000/μL). After adjusting the platelet count threshold for WBV participation to 30,000/μL, no further incidents occurred. Moreover, due to WBV-related side effects like physical exhaustion, 11% of all training sessions had to be stopped and another 11% required reductions in the vibration load. Patients participated in 48% of the planned sessions. While main reasons for non-attendance were medical issues (35%), only few WBV sessions were missed, not completed or needed modifications due to motivational issues. Consequently, WBV seems to be feasible for inpatient pediatric patients receiving chemotherapy for first cancer diagnosis, given a sufficiently high platelet count of at least 30,000/μL. Although WBV tolerance and training motivation appear high, patient’s reduced medical condition during hospitalization can negatively impact training progression and attendance. Future research is required to confirm our findings on feasibility and to assess efficiency of WBV training for pediatric cancer patients receiving cancer treatment.
Collapse
|
15
|
Beck B, Rubin C, Harding A, Paul S, Forwood M. The effect of low-intensity whole-body vibration with or without high-intensity resistance and impact training on risk factors for proximal femur fragility fracture in postmenopausal women with low bone mass: study protocol for the VIBMOR randomized controlled trial. Trials 2022; 23:15. [PMID: 34991684 PMCID: PMC8734256 DOI: 10.1186/s13063-021-05911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/03/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The prevailing medical opinion is that medication is the primary (some might argue, only) effective intervention for osteoporosis. It is nevertheless recognized that osteoporosis medications are not universally effective, tolerated, or acceptable to patients. Mechanical loading, such as vibration and exercise, can also be osteogenic but the degree, relative efficacy, and combined effect is unknown. The purpose of the VIBMOR trial is to determine the efficacy of low-intensity whole-body vibration (LIV), bone-targeted, high-intensity resistance and impact training (HiRIT), or the combination of LIV and HiRIT on risk factors for hip fracture in postmenopausal women with osteopenia and osteoporosis. METHODS Postmenopausal women with low areal bone mineral density (aBMD) at the proximal femur and/or lumbar spine, with or without a history of fragility fracture, and either on or off osteoporosis medications will be recruited. Eligible participants will be randomly allocated to one of four trial arms for 9 months: LIV, HiRIT, LIV + HiRIT, or control (low-intensity, home-based exercise). Allocation will be block-randomized, stratified by use of osteoporosis medications. Testing will be performed at three time points: baseline (T0), post-intervention (T1; 9 months), and 1 year thereafter (T2; 21 months) to examine detraining effects. The primary outcome measure will be total hip aBMD determined by dual-energy X-ray absorptiometry (DXA). Secondary outcomes will include aBMD at other regions, anthropometrics, and other indices of bone strength, body composition, physical function, kyphosis, muscle strength and power, balance, falls, and intervention compliance. Exploratory outcomes include bone turnover markers, pelvic floor health, quality of life, physical activity enjoyment, adverse events, and fracture. An economic evaluation will also be conducted. DISCUSSION No previous studies have compared the effect of LIV alone or in combination with bone-targeted HiRIT (with or without osteoporosis medications) on risk factors for hip fracture in postmenopausal women with low bone mass. Should either, both, or combined mechanical interventions be safe and efficacious, alternative therapeutic avenues will be available to individuals at elevated risk of fragility fracture who are unresponsive to or unwilling or unable to take osteoporosis medications. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (www. anzctr.org.au ) (Trial number ANZCTR12615000848505, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id = 368962 ); date of registration 14/08/2015 (prospectively registered). Universal Trial Number: U1111-1172-3652.
Collapse
Affiliation(s)
- Belinda Beck
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Clinton Rubin
- Department of Biomedical Engineering, State University of New York at Stony Brook, New York, NY USA
| | - Amy Harding
- Menzies Health Institute Queensland, School of Health Sciences and Social Work, Griffith University, Gold Coast, QLD Australia
| | - Sanjoy Paul
- Melbourne EpiCentre, University of Melbourne and Melbourne Health, Melbourne, VIC Australia
| | - Mark Forwood
- School of Pharmacy and Medical Sciences, Gold Coast, QLD Australia
| |
Collapse
|
16
|
Buchanan SR, Miller RM, Nguyen M, Black CD, Kellawan JM, Bemben MG, Bemben DA. Circulating microRNA responses to acute whole-body vibration and resistance exercise in postmenopausal women. Front Endocrinol (Lausanne) 2022; 13:1038371. [PMID: 36440217 PMCID: PMC9692005 DOI: 10.3389/fendo.2022.1038371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Evaluating alterations in circulating microRNA (c-miRNA) expression may provide deeper insight into the role of exercise in the attenuation of the negative effects of aging on musculoskeletal health. Currently, there are sparse data on c-miRNA responses to acute exercise in postmenopausal women. The purpose of this study was to characterize the effects of acute bouts of resistance exercise and whole-body vibration on expression of selected c-miRNAs in postmenopausal women aged 65-76 years (n=10). We also examined relationships between c-miRNAs and muscle strength and bone characteristics. This randomized crossover design study compared c-miRNA responses to a bout of resistance exercise (RE) (3 sets 10 reps 70% 1 repetition maximum (1RM), 5 exercises) and a bout of whole-body vibration (WBV) (5 sets 1 min bouts 20Hz 3.38mm peak to peak displacement, Vibraflex vibration platform). DXA was used to measure body composition and areal bone mineral density (aBMD) of the total body, AP lumbar spine, and dual proximal femur. pQCT was used to measure tibia bone characteristics (4%, 38%, 66% sites). Blood samples were collected before exercise (Pre), immediately-post (IP), 60 minutes post (60P), 24 hours (24H), and 48 hours (48H) after exercise to measure serum miR-21-5p, -23a-3p, -133a-3p, -148a-3p (qPCR) and TRAP5b (ELISA). There was a significant modality × time interaction for c-miR-21-5p expression (p=0.019), which decreased from 60P to 24H after WBV only. TRAP5b serum concentrations significantly increased IP then decreased below Pre at 24H for both WBV and RE (p<0.01). Absolute changes in TRAP5b were negatively correlated with c-miR-21-5p fold changes (r= -0.642 to -0.724, p<0.05) for both exercise modalities. There were significant negative correlations between baseline c-miRNAs and bone status variables (r= -0.639 to -0.877, p<0.05). Our findings suggest that whole-body vibration is a sufficient mechanical stimulus for altering c-miR-21-5p expression, whereas a high intensity resistance exercise protocol did not elicit any c-miRNA responses in postmenopausal women. Increases in the bone resorption marker, TRAP5b, were associated with greater downregulation of c-miR-21-5p expression.
Collapse
Affiliation(s)
- Samuel R. Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, United States
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- *Correspondence: Samuel R. Buchanan,
| | - Ryan M. Miller
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michelle Nguyen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Christopher D. Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - J. Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michael G. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Debra A. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
17
|
Gapper KS, Stevens S, Antoni R, Hunt J, Allison SJ. Acute Response of Sclerostin to Whole-body Vibration with Blood Flow Restriction. Int J Sports Med 2021; 42:1174-1181. [PMID: 33975366 PMCID: PMC8635793 DOI: 10.1055/a-1422-3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 02/27/2021] [Indexed: 11/07/2022]
Abstract
Blood flow restriction may augment the skeletal response to whole-body vibration. This study used a randomised, crossover design to investigate the acute response of serum sclerostin and bone turnover biomarkers to whole-body vibration with blood flow restriction. Ten healthy males (mean±standard deviation; age: 27±8 years) completed two experimental conditions separated by 7 days: (i) whole-body vibration (10 1-minute bouts of whole-body vibration with 30 s recovery) or (ii) whole-body vibration with lower-body blood flow restriction (10 cycles of 110 mmHg inflation with 30 s deflation during recovery). Fasting blood samples were obtained immediately before and immediately after exercise, then 1 hour, and 24 hours after exercise. Serum samples were analysed for sclerostin, cross-linked C-terminal telopeptide of type I collagen, and bone-specific alkaline phosphatase. There was a significant time × condition interaction for bone-specific alkaline phosphatase (p=0.003); bone-specific alkaline phosphatase values at 24 hours post-exercise were significantly higher following whole-body vibration compared to combined whole-body vibration and blood flow restriction (p=0.028). No significant time × condition interaction occurred for any other outcome measure (p>0.05). These findings suggest that a single session of whole-body vibration combined with blood flow restriction does not significantly affect serum sclerostin or bone turnover biomarkers.
Collapse
Affiliation(s)
- Kyle S Gapper
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Sally Stevens
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Rona Antoni
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Julie Hunt
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| | - Sarah J Allison
- Department of Bioscience & Medicine, University of Surrey,
Guildford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
18
|
Zhang S, Huang X, Zhao X, Li B, Cai Y, Liang X, Wan Q. Effect of exercise on bone mineral density among patients with osteoporosis and osteopenia: A systematic review and network meta-analysis. J Clin Nurs 2021; 31:2100-2111. [PMID: 34725872 DOI: 10.1111/jocn.16101] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
AIMS AND OBJECTIVES To systematically review and compare the efficacy of different exercise interventions on bone mineral density (BMD, g/cm2 ) in patients with osteoporosis and osteopenia. BACKGROUND It is vitally important to prevent and treat bone loss in patients with osteoporosis and osteopenia. Exercise can effectively increase bone density and slow down bone loss in middle-aged and older people. However, it is still unclear which type of exercise intervention is the most effective on bone mineral density. DESIGN Systematic review and network meta-analysis (NMA) according to PRISMA. METHODS Randomised controlled trials of different exercise treatments for osteopenia and primary osteoporosis were included. A Frequentist network meta-analysis was conducted to appraise the efficacy of different types of exercise. The outcome was bone mineral density of different parts of the body. RESULTS Ninety-seven studies were included. The network meta-analysis showed that combined exercise, resistance exercise, aerobic exercise and mind-body exercise had a significant effect in improving the bone density of lumbar spine. The surface under the cumulative ranking area (SUCRA) values for mind-body exercise was 0.99 and ranked first. For BMD of the femoral neck, all kinds of exercise interventions increased the bone density significantly compared with no exercise and the optimal type was mind-body exercise (SUCRA = 0.99). In terms of the total hip bone mineral density, aerobic exercise and resistance exercise could improve hip bone density, with the resistance exercise (SUCRA = 0.95) ranking as first. CONCLUSIONS This NMA demonstrated the mind-body exercise might be the optimal exercise type to increase the BMD of the lumbar spine and femoral neck and resistance exercise is the most promising type for total hip BMD.
Collapse
Affiliation(s)
| | - Xiuxiu Huang
- Peking University School of Nursing, Beijing, China
| | - Xiaoyan Zhao
- Peking University School of Nursing, Beijing, China
| | - Bei Li
- Peking University First Hospital, Beijing, China
| | - Ying Cai
- Peking University School of Nursing, Beijing, China
| | | | - Qiaoqin Wan
- Peking University School of Nursing, Beijing, China
| |
Collapse
|
19
|
Song W, Yang Y. The effect of whole-body vibration training with different amplitudes on bone mineral density in elderly women. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The effects of whole-body vibration training (WBVT) with same frequency and different amplitudes on bone mineral density (BMD) in the elderly is not reported. OBJECTIVE: To compare the effect of 45-Hz WBVT with different amplitudes on the BMD in elderly women. METHODS: Age-, height-, and weight-matched patients were assigned to a low-amplitude group (n= 19, amplitude of 2 mm), medium-amplitude group (n= 18, amplitude of 3 mm), high-amplitude group (n= 19, amplitude 4 mm), and control group (n= 20). The WBVT was conducted for 24 weeks in the three amplitude groups. The BMD at lumbar vertebrae L2-4 and the proximal femur was measured at 0 and 24 weeks. RESULTS: The BMD at lumbar vertebrae L2-4 was higher in the high-amplitude group than in the low-amplitude and middle-amplitude groups, and the BMD of the greater trochanter was significantly higher than that in the low-amplitude group (p< 0.05). The BMD of the greater trochanter was significantly higher in the middle- than low-amplitude group (p< 0.05). CONCLUSION: A higher amplitude should be considered when WBVT is performed in elderly patients to increase bone density and prevent osteoporosis.
Collapse
|
20
|
Osteoporosis Prevention, Screening, and Diagnosis: ACOG Clinical Practice Guideline No. 1. Obstet Gynecol 2021; 138:494-506. [PMID: 34412075 DOI: 10.1097/aog.0000000000004514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To provide updated evidence-based recommendations for the prevention, screening, and diagnosis of postmenopausal osteoporosis. TARGET POPULATION Postmenopausal patients without identified risk factors for fracture, low bone mineral density, or secondary osteoporosis related to medication or a medical condition. METHODS This guideline was developed using an a priori protocol in conjunction with a writing team consisting of two specialists in obstetrics and gynecology appointed by the ACOG Committee on Clinical Practice Guidelines-Gynecology and one external subject matter expert. ACOG medical librarians completed a comprehensive literature search for primary literature within the Cochrane Library, Cochrane Collaboration Registry of Controlled Trials, EMBASE, PubMed, and MEDLINE. Studies that moved forward to the full-text screening stage were assessed by two authors from the writing team on the basis of standardized inclusion and exclusion criteria. Included studies underwent quality assessment, and a modified GRADE (Grading of Recommendations, Assessment, Development and Evaluations) evidence-to-decision framework was applied to interpret and translate the evidence into recommendation statements. RECOMMENDATIONS This Clinical Practice Guideline includes updated recommendations on the role of exercise, calcium, and vitamin D in osteoporosis prevention; osteoporosis screening and diagnosis; rescreening intervals; and interventions to prevent falls. Recommendations are classified by strength and evidence quality. Ungraded Good Practice Points are included to provide guidance when a formal recommendation could not be made because of inadequate or nonexistent evidence.
Collapse
|
21
|
Mao L, Guo J, Hu L, Li L, Xu J, Zou J. The effects of biophysical stimulation on osteogenic differentiation and the mechanisms from ncRNAs. Cell Biochem Funct 2021; 39:727-739. [PMID: 34041775 DOI: 10.1002/cbf.3650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023]
Abstract
Ample proof showed that non-coding RNAs (ncRNAs) play a crucial role in proliferation and differentiation of osteoblasts and bone marrow stromal cells (BMSCs). Varied forms of biophysical stimuli like mechanical strain, fluid shear stress (FSS), microgravity and vibration are verified to regulate ncRNAs expression in osteogenic differentiation and influence the expression of target genes associated with osteogenic differentiation and ultimately regulate bone formation. The consequences of biophysical stimulation on osteogenic differentiation validate the prospect of exercise for the prevention and treatment of osteoporosis. In this review, we tend to summarize the studies on regulation of osteogenic differentiation by ncRNAs beneath biophysical stimulation and facilitate to reveal the regulatory mechanism of biophysical stimulation on ncRNAs, and provide an update for the prevention of bone metabolism diseases by exercise.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Linghui Hu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lexuan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
22
|
Li YH, Zhu D, Yang T, Cheng L, Sun J, Tan L. Crosstalk between the COX2-PGE2-EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation. J Cell Physiol 2020; 236:4764-4777. [PMID: 33275302 DOI: 10.1002/jcp.30198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022]
Abstract
Primary cilia have been found to function as mechanosensors in low-magnitude high-frequency vibration (LMHFV)-induced osteogenesis. The PGE2 also regulates bone homeostasis and mechanical osteogenesis through its receptor EP4 signaling, but its involvement in LMHFV-induced or in primary cilia-induced osteogenesis has not been investigated. We hypothesized that LMHFV stimulates osteoblast (OB) differentiation by activating the COX2-PGE2-EP pathway in a manner dependent on primary cilia and that primary cilia are also affected by the PGE2 pathway. In this study, through western blot analysis, RNA interference, enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, and cytochemical staining, we observed that COX2, mPGES-1, and PGE2 levels were markedly elevated in cells treated with LMHFV and were greatly decreased in LMHFV-treated cells following IFT88 silencing. EP4 expression was significantly increased in OBs following LMHFV treatment, but IFT88 silencing significantly blocked this increase. EP4 localized to the bases of primary cilia. LMHFV reduced the length and abundance of primary cilia, but the cells could self-repair their primary cilia after mechanical damage. EP4 antagonism significantly blocked the LMHFV-induced increase in IFT88 expression and blocked the recovery of primary cilia length and the proportion of cells with primary cilia. In addition, COX2 or EP4 antagonism disrupted LMHFV-induced osteogenesis. These results demonstrate the integration of and crosstalk between primary cilia and the COX2-PGE2-EP4 signaling pathway under mechanical stimulation.
Collapse
Affiliation(s)
- Yan-Hui Li
- Department of Cardiology and Echocardiography, The First Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Tianye Yang
- Department of Plastic and Cosmetic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Long Cheng
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Lei Tan
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Cheng L, Qian L, Chang S, He B. Effects of whole-body vibration training with the same amplitude and different frequencies on the proximal femoral bone density in elderly women. J Sports Med Phys Fitness 2020; 61:923-927. [PMID: 33146497 DOI: 10.23736/s0022-4707.20.11514-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study investigated the whole-body vibration training with the same amplitude and different vibration frequencies was used to compare the difference in bone mineral density (BMD) of the proximal femurs in elderly women. METHODS This study included three age-, height-, and weight-matched groups; the medium-frequency group (N.=19) received 24 weeks of whole-body vibration training with a vibration frequency of 20 Hz; the high-frequency group (N.=18) received 24 weeks of whole-body vibration training with a vibration frequency of 40 Hz; and the control group (N.=19) received no intervention. Changes in the BMD of the proximal femur on the dominant side in the three groups were measured using dual-energy X-ray absorptiometry. RESULTS According to the between-group comparison, the BMD of the greater trochanter and Ward's triangle in the middle-frequency group increased by 7.6% and 13.3%, respectively (P<0.05), while the BMD of the greater trochanter and Ward's triangle in the high-frequency group increased by 10.6% and 16.9%, respectively (P<0.05). There was no significant difference in BMD between the medium-frequency group and the high-frequency group at 24 weeks (P>0.05). CONCLUSIONS Whole-body vibration training with a frequency of 20 Hz and 40 Hz improved the BMD of the proximal femurs in elderly women to varying degrees but had no significant effect on femoral neck BMD. Under the same amplitude conditions, an increase in vibration frequency did not cause further changes in BMD.
Collapse
Affiliation(s)
- Liang Cheng
- Chengdu Sport University, Chengdu, China.,Sichuan Sports College, Chengdu, China
| | - Li Qian
- Sichuan Sports College, Chengdu, China
| | | | | |
Collapse
|
24
|
Tan J, Shi X, Witchalls J, Waddington G, Lun Fu AC, Wu S, Tirosh O, Wu X, Han J. Effects of Pre-exercise Acute Vibration Training on Symptoms of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. J Strength Cond Res 2020; 36:2339-2348. [PMID: 32796411 DOI: 10.1519/jsc.0000000000003789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tan, J, Shi, X, Witchalls, J, Waddington, G, Lun Fu, AC, Wu, S, Tirosh, O, Wu, X, and Han, J. Effects of pre-exercise acute vibration training on symptoms of exercise-induced muscle damage: a systematic review and meta-analysis. J Strength Cond Res XX(X): 000-000, 2020-Exercise-induced muscle damage (EIMD) normally occurs after unaccustomed high-intensity eccentric exercises. Symptoms of EIMD include delayed-onset muscle soreness (DOMS), tenderness, stiffness, swelling, reduced strength, and increased creatine kinase (CK) levels in the blood. Vibration training (VT) may be useful as a pre-exercise intervention in attenuating EIMD on the basis of tonic vibration reflex (TVR) through a more efficient distribution of contractile stress over muscle fibers. The objective of this meta-analysis is to examine the effects of acute VT on symptoms of EIMD when performed as the pre-exercise intervention. Randomized controlled trials (RCTs) published in the 8 databases of Cochrane Library, PubMed, Embase, Web of Science, EBSCO, China National Knowledge Infrastructure, Airiti Library and WanFang Data from 1966 (the earliest available time) to January 2019 were searched. A total of 2,324 records were identified and 448 articles were screened with the title and abstract. Two investigators identified eligible studies, extracted data, and assessed the risk of bias independently. Review Manager 5.3 designed by Cochrane was used for the current meta-analysis. Six RCTs involving 180 subjects were included in the analysis. A low-to-moderate methodological quality of the included studies was revealed using the physiotherapy evidence database scale. The results showed that acute VT was superior to the control group for the reduction of DOMS on pain visual analogue scale at 24, 48 hours and pressure pain threshold at 24 hours. In addition, superior effects of acute VT were also found on the indirect markers of muscle damage including CK at 24, 72 hours, and lactate dehydrogenase at 24 hours. The current meta-analysis has collated the evidence to demonstrate that receiving acute VT before unaccustomed high-intensity eccentric exercises may be effective in attenuating markers of muscle damage and the development of DOMS when compared with a control group. The possible mechanisms of this effect could be attributed to an improved synchronization of muscle fiber caused by TVR, which could result in even distribution of exterior loads and eventually attenuate disruptions of muscle fibers. In addition, increased blood flow may also be helpful to prevent accumulation of metabolic substances and attenuate subsequent symptoms of EIMD. Vibration training may be used as a pre-exercise intervention to alleviate symptoms of EIMD caused by unaccustomed high-intensity eccentric exercise. Because of the limited quantity and quality of included studies, more high-quality studies are required to ascertain the effect of VT on symptoms of EIMD.
Collapse
Affiliation(s)
- Jingwang Tan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaojian Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jeremy Witchalls
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Gordon Waddington
- Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia
| | - Allan C Lun Fu
- Discipline of Physiotherapy, Faculty of Health Sciences, the University of Sydney, Sydney, Australia
| | - Sam Wu
- Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Australia
| | - Oren Tirosh
- Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Australia
| | - Xueping Wu
- School of Physical Education and Sport Training, Shanghai University of Sport, Shanghai, China
| | - Jia Han
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia.,Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
25
|
Pérez-Gómez J, Adsuar JC, García-Gordillo MÁ, Muñoz P, Romo L, Maynar M, Gusi N, P. C. R. Twelve Weeks of Whole Body Vibration Training Improve Regucalcin, Body Composition and Physical Fitness in Postmenopausal Women: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3940. [PMID: 32498351 PMCID: PMC7312189 DOI: 10.3390/ijerph17113940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022]
Abstract
(1) Background: Regucalcin or senescence marker protein 30 (SMP30) is a Ca2+ binding protein discovered in 1978 with multiple functions reported in the literature. However, the impact of exercise training on SMP30 in humans has not been analyzed. Aging is associated with many detrimental physiological changes that affect body composition, functional capacity, and balance. The present study aims to investigate the effects of whole body vibration (WBV) in postmenopausal women. (2) Methods: A total of 13 women (aged 54.3 ± 3.4 years) participated in the study. SMP30, body composition (fat mass, lean mass, and bone mass) and physical fitness (balance, time up and go (TUG) and 6-min walk test (6MWT)) were measured before and after the 12 weeks of WBV training. (3) Results: The WBV training program elicited a significant increase in SPM30 measured in plasma (27.7%, p = 0.004) and also in 6MWT (12.5%, p < 0.001). The WBV training also significantly reduced SPM30 measured in platelets (38.7%, p = 0.014), TUG (23.1%, p < 0.001) and total body fat mass (4.4%, p = 0.02). (4) Conclusions: There were no significant differences in balance, lean mass or bone mass. The present study suggests that 12 weeks of WBV has the potential to improve SPM30, fat mass, TUG and 6MWT in postmenopausal women.
Collapse
Affiliation(s)
- Jorge Pérez-Gómez
- HEME Research Group, University of Extremadura, 10003 Cáceres, Spain; (J.C.A.); (P.M.); (L.R.)
| | - José Carmelo Adsuar
- HEME Research Group, University of Extremadura, 10003 Cáceres, Spain; (J.C.A.); (P.M.); (L.R.)
| | | | - Pilar Muñoz
- HEME Research Group, University of Extremadura, 10003 Cáceres, Spain; (J.C.A.); (P.M.); (L.R.)
| | - Lidio Romo
- HEME Research Group, University of Extremadura, 10003 Cáceres, Spain; (J.C.A.); (P.M.); (L.R.)
| | - Marcos Maynar
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain; (M.M.); (N.G.)
| | - Narcis Gusi
- Faculty of Sport Science, University of Extremadura, 10003 Cáceres, Spain; (M.M.); (N.G.)
| | - Redondo P. C.
- Department of Physiology, University of Extremadura, 10003 Cáceres, Spain;
| |
Collapse
|
26
|
Mohammad Rahimi GR, Smart NA, Liang MTC, Bijeh N, Albanaqi AL, Fathi M, Niyazi A, Mohammad Rahimi N. The Impact of Different Modes of Exercise Training on Bone Mineral Density in Older Postmenopausal Women: A Systematic Review and Meta-analysis Research. Calcif Tissue Int 2020; 106:577-590. [PMID: 32055889 DOI: 10.1007/s00223-020-00671-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
Effectiveness of exercise on bone mass is closely related to the mode of exercise training regimen, as well as the study design. This study aimed to determine the effect of different modes of exercise training on lumbar spine and femoral neck bone mineral density (BMD) in older postmenopausal women (PMW). PubMed, CINAHL, Medline, Google Scholar, and Scopus databases and reference lists of included studies were searched up until March 25, 2019 for randomized controlled trials (RCTs) that evaluated the effectiveness of various modes of exercise training in PMW. Sixteen RCTs with 1624 subjects were included. Our study found no significant change in both lumbar spine and femoral neck BMD following exercise training (MD: 0.01 g/cm2; 95% confidence interval (CI) [- 0.01, 0.02] and MD: 0.00 g/cm2; 95% CI [- 0.01, 0.01], respectively). However, subgroup analysis by type of exercise training revealed that lumbar spine BMD (MD: 0.01; 95% CI [0.00, 0.02]) raised significantly when whole-body vibration (WBV) was employed as intervention compared with RCTs that utilized aerobic (MD: - 0.01; 95% CI [- 0.02, - 0.01]), resistance (MD: 0.01; 95% CI [- 0.04, 0.06]), and combined training (MD: 0.03; 95% CI [- 0.01, 0.08]). On the other hand, lumbar spine BMD (MD: - 0.01; 95% CI [- 0.02, - 0.01]) reduced significantly when aerobic exercise training was used as intervention compared with RCTs that utilized resistance training, combined training, and WBV. By contrast, these analyses did not have significant effect on change in femoral neck BMD. WBV is an effective method to improve lumbar spine BMD in older PMW.
Collapse
Affiliation(s)
- Gholam Rasul Mohammad Rahimi
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Sport Sciences, Vahdat Institute of Higher Education, Torbat-e-Jam, Iran
| | - Neil A Smart
- School of Science and Technology, University of New England, Armidale, Australia
| | - Michael T C Liang
- Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona, CA, USA
| | - Nahid Bijeh
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alsaeedi L Albanaqi
- School of Science and Technology, University of New England, Armidale, Australia
- Turaif General Hospital, Ministry of Health, Turaif, Kingdom of Saudi Arabia
| | - Mehrdad Fathi
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arghavan Niyazi
- Department of Exercise Physiology, Sanabad Golbahar Institute of Higher Education, Golbahar, Iran
| | | |
Collapse
|
27
|
Sen EI, Esmaeilzadeh S, Eskiyurt N. Effects of whole-body vibration and high impact exercises on the bone metabolism and functional mobility in postmenopausal women. J Bone Miner Metab 2020; 38:392-404. [PMID: 31897748 DOI: 10.1007/s00774-019-01072-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION This study determined the effects of whole-body vibration (WBV) and high-impact exercises on postmenopausal women. MATERIALS AND METHODS In this randomized controlled 6-month interventional trial, 58 eligible postmenopausal women were assigned to WBV training group, high-impact training group, or control group. Bone mineral density (BMD) of the lumbar spine and femur were measured by dual-energy X-ray absorptiometry. Additionally, the serum osteocalcin (OC) and C-terminal telopeptide of type I collagen levels were also measured. The functional mobility was assessed using the Timed Up and Go (TUG) test, and fall index was measured using static posturography. The health-related quality of life (HRQoL) and depressive symptoms were assessed using the Quality of Life Questionnaire of the European Foundation for Osteoporosis and Beck Depression Inventory, respectively. RESULTS The BMD at the femoral neck (p = 0.003) and L2-L4 (p = 0.005) regions increased significantly in the WBV group compared to the control group. However, in the high-impact exercise group there were no significant effects on the lumbar spine and femoral neck. The serum OC decreased significantly in the WBV group and increased significantly in both the high-impact exercise and control groups (p < 0.001). The TUG scores decreased significantly in both training groups compared to the control group (p < 0.05). Finally, in both exercise groups, HRQoL and depressive symptoms improved (p < 0.001). CONCLUSIONS Our data suggest that the WBV can prevent bone loss in postmenopausal women. These findings also indicate that WBV and high-impact training programs improve functional mobility, HRQoL and depressive symptoms in postmenopausal women.
Collapse
Affiliation(s)
- Ekin Ilke Sen
- Department of Physical Medicine and Rehabilitation, Istanbul Faculty of Medicine, Istanbul University, Millet Cad, 34093, Istanbul, Turkey.
| | - Sina Esmaeilzadeh
- Department of Physical Medicine and Rehabilitation, Istanbul Faculty of Medicine, Istanbul University, Millet Cad, 34093, Istanbul, Turkey
| | - Nurten Eskiyurt
- Department of Physical Medicine and Rehabilitation, Istanbul Faculty of Medicine, Istanbul University, Millet Cad, 34093, Istanbul, Turkey
| |
Collapse
|
28
|
de Oliveira LC, de Oliveira RG, de Almeida Pires-Oliveira DA. Effects of Whole-Body Vibration Versus Pilates Exercise on Bone Mineral Density in Postmenopausal Women: A Randomized and Controlled Clinical Trial. J Geriatr Phys Ther 2020; 42:E23-E31. [PMID: 29443867 DOI: 10.1519/jpt.0000000000000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE Decreased bone mineral density (BMD) is a common condition in postmenopausal women that can be managed with impact activities. Among the activities studied are the whole-body vibration (WBV) and muscle-strengthening exercises. The purpose of this study was to compare the effects of WBV versus Pilates exercise on BMD in postmenopausal women. METHODS In this study, 51 postmenopausal women were randomized into 3 groups: vibration (n = 17), Pilates (n = 17), and control (n = 17). Outcomes were the areal bone mineral density (aBMD) (lumbar spine, femoral neck, total hip, trochanter, intertrochanter, and ward's area) assessed by dual-energy x-ray absorptiometry at baseline and follow-up. The interventions were performed 3 times a week for 6 months, totaling 78 sessions. The analysis was performed with intention-to-treat and covariance analyses adjusted for baseline outcomes. RESULTS After 6 months, 96.1% of the participants completed the follow-up. The analyses demonstrated significant mean between-group differences in favor of the interventions: vibration versus control, for the aBMD of the lumbar spine (0.014 g/cm; 95% confidence interval [CI], 0.006-0.022; P = .018, d = 1.21) and trochanter (0.018 g/cm; 95% CI, 0.006-0.030; P = .012, d = 1.03); and Pilates versus control, for the aBMD of the lumbar spine (0.016 g/cm; 95% CI, 0.007-0.025; P = .008, d = 1.15) and trochanter (0.020 g/cm; 95% CI, 0.010-0.031; P = .005, d = 1.28). CONCLUSION In postmenopausal women, 3 weekly sessions of WBV or Pilates administered for 6 months provided an equal effect on BMD.
Collapse
|
29
|
Valenzuela PL, Castillo-García A, Morales JS, Izquierdo M, Serra-Rexach JA, Santos-Lozano A, Lucia A. Physical Exercise in the Oldest Old. Compr Physiol 2019; 9:1281-1304. [PMID: 31688965 DOI: 10.1002/cphy.c190002] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Societies are progressively aging, with the oldest old (i.e., those aged >80-85 years) being the most rapidly expanding population segment. However, advanced aging comes at a price, as it is associated with an increased incidence of the so-called age-related conditions, including a greater risk for loss of functional independence. How to combat sarcopenia, frailty, and overall intrinsic capacity decline in the elderly is a major challenge for modern medicine, and exercise appears to be a potential solution. In this article, we first summarize the physiological mechanisms underlying the age-related deterioration in intrinsic capacity, particularly regarding those phenotypes related to functional decline. The main methods available for the physical assessment of the oldest old are then described, and finally the multisystem benefits that exercise (or "exercise mimetics" in those situations in which volitional exercise is not feasible) can provide to this population segment are reviewed. In summary, lifetime physical exercise can help to attenuate the loss of many of the properties affected by aging, especially when the latter is accompanied by an inactive lifestyle and benefits can also be obtained in frail individuals who start exercising at an advanced age. Multicomponent programs combining mainly aerobic and resistance training should be included in the oldest old, particularly during disuse situations such as hospitalization. However, evidence is still needed to support the effectiveness of passive physical strategies including neuromuscular electrical stimulation or vibration for the prevention of disuse-induced negative adaptations in those oldest old people who are unable to do physical exercise. © 2019 American Physiological Society. Compr Physiol 9:1281-1304, 2019.
Collapse
Affiliation(s)
- Pedro L Valenzuela
- Department of Systems Biology, University of Alcalá, Madrid, Spain
- Department of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain
| | | | - Javier S Morales
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Mikel Izquierdo
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Health Sciences, Public University of Navarra, Navarrabiomed, Idisna, Pamplona, Spain
| | - José A Serra-Rexach
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
- Department of Geriatric, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alejandro Santos-Lozano
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain and Research Institute Hospital 12 de Octubre (ì+12'), Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain
- Biomedical Research Networking Center on Frailty and Healthy Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
30
|
Marín-Cascales E, Rubio-Arias JÁ, Alcaraz PE. Effects of Two Different Neuromuscular Training Protocols on Regional Bone Mass in Postmenopausal Women: A Randomized Controlled Trial. Front Physiol 2019; 10:846. [PMID: 31354513 PMCID: PMC6635564 DOI: 10.3389/fphys.2019.00846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Osteoporosis is a condition associated with a greater incidence of fractures, and one of the main health-related concerns in postmenopausal women. To counteract possible reductions in bone properties, physical exercise has been proposed as an effective strategy. Particularly, training interventions with a high osteogenic potential are recommended. Purpose: To analyze the effect of 24 weeks of whole-body vibration and multi-component training on lumbar spine and femoral neck bone mass, and to determine what type of training produces greater adaptations in postmenopausal women. Methods: A total of 38 women completed the study (Clinical Gov database ID: NCT01966562). Participants were randomly assigned to one of the study groups: whole-body vibration group (WBVG), multi-component training group (MTG), or control group (CG). The experimental groups performed a progressive 24-week training (3 sessions/week) program. Bone mineral density (BMD) and bone mineral content (BMC) at the lumbar spine and femoral neck were assessed by Dual-energy X-ray absorptiometry. Results: Significantly and clinically relevant increases in lumbar spine bone mass (BMD: F = 3.29; p = 0.03; +5.15%; BMC: F = 2.90; p = 0.05; +10.58%) were observed in WBVG. MTG showed clinically important pre-post-changes on lumbar spine BMC (+7.78%), although there was no statistical significance (F = 1.97; p = 0.14). At the femoral neck, no statistically significant increases on bone mass were obtained in either training group. No changes were obtained in any variable in the CG. Additionally, no statistically significant differences were found between groups. Conclusion: The results indicated that 24 weeks of supervised WBV and MT may counteract the rapid loss of bone mass after the cessation of menstruation, thus improving postmenopausal women bone health. However, in the absence of statistically significant differences between groups, it is not possible to determine which training protocol produces greater adaptations. Clinical Trial Registration: www.ClinicalTrialsgov, identifier: NCT01966562.
Collapse
Affiliation(s)
- Elena Marín-Cascales
- Research Center for High Performance Sport, Catholic University of Murcia, Murcia, Spain
| | - Jacobo Á. Rubio-Arias
- Research Center for High Performance Sport, Catholic University of Murcia, Murcia, Spain
- Faculty of Sport Sciences, Catholic University of Murcia, Murcia, Spain
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport, Catholic University of Murcia, Murcia, Spain
- Faculty of Sport Sciences, Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
31
|
Naranjo Hernández A, Díaz del Campo Fontecha P, Aguado Acín MP, Arboleya Rodríguez L, Casado Burgos E, Castañeda S, Fiter Aresté J, Gifre L, Gómez Vaquero C, Candelas Rodríguez G, Francisco Hernández FM, Guañabens Gay N. Recomendaciones de la Sociedad Española de Reumatología sobre osteoporosis. ACTA ACUST UNITED AC 2019; 15:188-210. [DOI: 10.1016/j.reuma.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
|
32
|
Wang XQ, Gu W, Chen BL, Wang X, Hu HY, Zheng YL, Zhang J, Zhang HY, Chen PJ. Effects of whole-body vibration exercise for non-specific chronic low back pain: an assessor-blind, randomized controlled trial. Clin Rehabil 2019; 33:1445-1457. [PMID: 31099264 DOI: 10.1177/0269215519848076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To confirm the benefits of whole-body vibration exercise for pain intensity and functional disability in patients with non-specific chronic low back pain. DESIGN Single-blind randomized controlled trial. SETTING Outpatient. SUBJECTS Eighty-nine patients with non-specific chronic low back pain met the inclusion criteria, they were randomly allocated to either the intervention group (n = 45) or the control group (n = 44). INTERVENTION The intervention group received whole-body vibration exercises three times a week for 12 weeks. The control group received general exercise protocol three times a week for 12 weeks. MAIN OUTCOMES The primary outcome measures were pain intensity and functional disability measured by the visual analog scale scores and Oswestry Disability Index. The secondary outcome measures included lumbar joint position sense, quality of life (Short Form Health Survey 36) and overall treatment effect (Global Perceived Effect). RESULTS A total of 84 subjects completed the 12-week study program. After 12 weeks, compared with the control group, the mean visual analog scale and Oswestry Disability Index scores decreased by additional 1 point (95% confidence interval (CI) = -1.22 to -0.78; P < 0.001), 3.81 point (95% CI, -4.98, -2.63; P < 0.001) based on adjusted analysis in the intervention group. And the intervention group provided additional beneficial effects for in terms of lumbar joint position sense (P < 0.05), quality of life (P < 0.05), and Global Perceived Effect (P = 0.012). CONCLUSION The study demonstrated that whole-body vibration exercise could provide more benefits than general exercise for relieving pain and improving functional disability in patients with non-specific chronic low back pain.
Collapse
Affiliation(s)
- Xue-Qiang Wang
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,2 Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Wei Gu
- 3 Department of Rehabilitation Medicine, Affiliated to Traditional Chinese Medicine Faculty, Changhai Hospital, Shanghai, China
| | - Bing-Lin Chen
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xin Wang
- 3 Department of Rehabilitation Medicine, Affiliated to Traditional Chinese Medicine Faculty, Changhai Hospital, Shanghai, China
| | - Hao-Yu Hu
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Juan Zhang
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Han-Yu Zhang
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- 1 Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,2 Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
33
|
Sharma-Ghimire P, Chen Z, Sherk V, Bemben M, Bemben D. Sclerostin and parathyroid hormone responses to acute whole-body vibration and resistance exercise in young women. J Bone Miner Metab 2019; 37:358-367. [PMID: 29956019 DOI: 10.1007/s00774-018-0933-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/29/2018] [Indexed: 01/18/2023]
Abstract
Whole-body vibration (WBV) has been shown to improve bone mineral density, and muscle strength and power. No studies to date have examined sclerostin and parathyroid hormone (PTH) responses to WBV combined with resistance exercise (RE). This randomized crossover study compared acute serum sclerostin and PTH responses to RE and WBV + RE in young women (n = 9) taking oral contraceptives. Participants were exposed to 5 1-min bouts of vibration (20 Hz, 3.38 peak-peak displacement, separated by 1 min of rest) before high intensity resistance exercise. Fasting blood samples were obtained before (PRE), immediately after WBV (POSTWBV), immediately post RE (IP) and 30 min post RE (30P). Pre-exercise sclerostin and PTH levels were not significantly different between conditions. Sclerostin levels significantly (p < 0.05) increased from PRE to IP for the WBV + RE condition, then decreased back to the pre-exercise level. PTH significantly decreased from PRE to 30P (p < 0.05) and IP to 30P (p < 0.01) for both conditions. Correcting for hemoconcentration eliminated the significant sclerostin responses, but the significant decrease in PTH remained (p < 0.05). There were no significant relationships found between sclerostin and PTH. In conclusion, sclerostin concentrations increased in response to the WBV + RE condition, which may have been mediated by plasma volume shifts. There was no transient PTH increase, but it showed a large decrease at 30P for both conditions. Based on these findings, the addition of WBV exposures prior to high intensity RE did not alter sclerostin and PTH responses to RE in young women.
Collapse
Affiliation(s)
- Pragya Sharma-Ghimire
- Bone Density Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK, 73019, USA
| | - Zhaojing Chen
- Bone Density Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK, 73019, USA
| | - Vanessa Sherk
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michael Bemben
- Bone Density Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK, 73019, USA
| | - Debra Bemben
- Bone Density Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK, 73019, USA.
| |
Collapse
|
34
|
Zheng W, Li X, Liu D, Li J, Yang S, Gao Z, Wang Z, Yokota H, Zhang P. Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy. FASEB J 2019; 33:4077-4088. [PMID: 30485126 PMCID: PMC6404578 DOI: 10.1096/fj.201801851r] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
Abstract
Osteoarthritis (OA) is a disease characterized by cartilage damage and abnormal remodeling of subchondral bone. Our previous study showed that in the early stage of OA, knee loading exerts protective effects by suppressing osteoclastogenesis through Wnt signaling, but little is known about loading effects at the late OA stage. Endoplasmic reticulum (ER) stress and autophagy are known to be involved in the late OA stage. We determined the effects of mechanical loading on ER stress and autophagy in OA mice. One hundred seventy-four mice were used for a surgery-induced OA model. In the first set of experiments, 60 mice were devoted to evaluation of the role of ER stress and autophagy in the development of OA. In the second set, 114 mice were used to assess the effect of knee loading on OA. Histologic, cellular, microcomputed tomography, and electron microscopic analyses were performed to evaluate morphologic changes, ER stress, and autophagy. Mechanical loading increased phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and regulated expressions of autophagy markers LC3II/I and p62. Osteoarthritic mice also exhibited an elevated ratio of calcified cartilage to total articular cartilage (CC/TAC), and synovial hyperplasia with increased lining cells was found. At the early disease stage, subchondral bone plate thinning and reduced subchondral bone volume fraction (B.Ar/T.Ar) were observed. At the late disease stages, subchondral bone plate thickened concomitant with increased B.Ar/T.Ar. Mice subjected to mechanical loading exhibited resilience to cartilage destruction and a correspondingly reduced Osteoarthritis Research Society International score at 4 and 8 wk, as well as a decrease in synovitis and CC/TAC. While chondrocyte numbers in the OA group was notably decreased, mechanical loading restored chondrogenic differentiation. These results demonstrate that mechanical loading can retard the pathologic progression of OA at its early and late stages. The observed effects of loading are associated with the regulations of ER stress and autophagy.-Zheng, W., Li, X., Liu, D., Li, J., Yang, S., Gao, Z., Wang, Z., Yokota, H., Zhang, P. Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhe Gao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhaonan Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indiana, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Economic-Technological Development Area, International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Key Laboratory of Hormones and Development, Ministry of Health, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
- Department of Biomedical Engineering, Indiana University–Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
35
|
Zaidell LN, Pollock RD, James DC, Bowtell JL, Newham DJ, Sumners DP, Mileva KN. Lower Body Acceleration and Muscular Responses to Rotational and Vertical Whole-Body Vibration at Different Frequencies and Amplitudes. Dose Response 2019; 17:1559325818819946. [PMID: 30670936 PMCID: PMC6327349 DOI: 10.1177/1559325818819946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/23/2018] [Accepted: 11/20/2018] [Indexed: 12/02/2022] Open
Abstract
Aim: The aim of this study was to characterize acceleration transmission and neuromuscular responses to rotational vibration (RV) and vertical vibration (VV) at different frequencies and amplitudes. Methods: Twelve healthy males completed 2 experimental trials (RV vs VV) during which vibration was delivered during either squatting (30°; RV vs VV) or standing (RV only) with 20, 25, and 30 Hz, at 1.5 and 3.0 mm peak-to-peak amplitude. Vibration-induced accelerations were assessed with triaxial accelerometers mounted on the platform and bony landmarks at ankle, knee, and lumbar spine. Results: At all frequency/amplitude combinations, accelerations at the ankle were greater during RV (all P < .03) with the greatest difference observed at 30 Hz, 1.5 mm. Transmission of RV was also influenced by body posture (standing vs squatting, P < .03). Irrespective of vibration type, vibration transmission to all skeletal sites was generally greater at higher amplitudes but not at higher frequencies, especially above the ankle joint. Acceleration at the lumbar spine increased with greater vibration amplitude but not frequency and was highest with RV during standing. Conclusions/Implications: The transmission of vibration during whole-body vibration (WBV) is dependent on intensity and direction of vibration as well as body posture. For targeted mechanical loading at the lumbar spine, RV of higher amplitude and lower frequency vibration while standing is recommended. These results will assist with the prescription of WBV to achieve desired levels of mechanical loading at specific sites in the human body.
Collapse
Affiliation(s)
- Lisa N Zaidell
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - Ross D Pollock
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Darren C James
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| | - Joanna L Bowtell
- Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Di J Newham
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | | | - Katya N Mileva
- Sport and Exercise Science Research Centre, London South Bank University, London, United Kingdom
| |
Collapse
|
36
|
Benedetti MG, Furlini G, Zati A, Letizia Mauro G. The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4840531. [PMID: 30671455 PMCID: PMC6323511 DOI: 10.1155/2018/4840531] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/28/2018] [Accepted: 12/04/2018] [Indexed: 01/13/2023]
Abstract
Physical exercise is considered an effective means to stimulate bone osteogenesis in osteoporotic patients. The authors reviewed the current literature to define the most appropriate features of exercise for increasing bone density in osteoporotic patients. Two types emerged: (1) weight-bearing aerobic exercises, i.e., walking, stair climbing, jogging, and Tai Chi. Walking alone did not appear to improve bone mass; however it is able to limit its progressive loss. In fact, in order for the weight-bearing exercises to be effective, they must reach the mechanical intensity useful to determine an important ground reaction force. (2) Strength and resistance exercises: these are carried out with loading (lifting weights) or without (swimming, cycling). For this type of exercise to be effective a joint reaction force superior to common daily activity with sensitive muscle strengthening must be determined. These exercises appear extremely site-specific, able to increase muscle mass and BMD only in the stimulated body regions. Other suggested protocols are multicomponent exercises and whole body vibration. Multicomponent exercises consist of a combination of different methods (aerobics, strengthening, progressive resistance, balancing, and dancing) aimed at increasing or preserving bone mass. These exercises seem particularly indicated in deteriorating elderly patients, often not able to perform exercises of pure reinforcement. However, for these protocols to be effective they must always contain a proportion of strengthening and resistance exercises. Given the variability of the protocols and outcome measures, the results of these methods are difficult to quantify. Training with whole body vibration (WBV): these exercises are performed with dedicated devices, and while it seems they have effect on enhancing muscle strength, controversial findings on improvement of BMD were reported. WBV seems to provide good results, especially in improving balance and reducing the risk of falling; in this, WBV appears more efficient than simply walking. Nevertheless, contraindications typical of senility should be taken into account.
Collapse
Affiliation(s)
- Maria Grazia Benedetti
- Physical Medicine and Rehabilitation Unit, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Furlini
- Physical Medicine and Rehabilitation Unit, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandro Zati
- Physical Medicine and Rehabilitation Unit, IRCCS-Istituto Ortopedico Rizzoli, Bologna, Italy
| | | |
Collapse
|
37
|
Bemben D, Stark C, Taiar R, Bernardo-Filho M. Relevance of Whole-Body Vibration Exercises on Muscle Strength/Power and Bone of Elderly Individuals. Dose Response 2018; 16:1559325818813066. [PMID: 30559636 PMCID: PMC6291875 DOI: 10.1177/1559325818813066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/02/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
Beneficial effects are associated with whole-body vibration exercises (WBVEs). Increases in muscular strength/power, flexibility, and gait speed; improvements in bone mineral density, balance, and the quality of life; and decreased pain and risk of falls are reported. The aim is to present a review about the importance of WBVE for elderly individuals, considering clinical studies and meta-analyses, on bone and muscle strength/power. There is evidence supporting beneficial effect of WBVE in postmenopausal women (PW); however, effects in PW with osteoporosis are unclear. Age-related decrease in muscle mass and function contribute to undesirable health conditions, including death risk. The WBVEs improve muscle strength/power, functional independence measure, balance, and various fall risk factors, and mobility, measured by Timed Up and Go test, increased significantly after WBVE. An explanation for the absence of positive effects in some outcomes could be related to discrepancies in WBVE protocols as well as the populations tested. It is concluded that WBVE is effective for counteracting the loss of muscle strength associated with sarcopenia in elderly individuals. Balance and leg and plantar flexor strength improvements due to WBV indicate benefit to reduce risk and incidence of falls, frailty, and fracture risks. However, long-term feasibility of WBVE for musculoskeletal and bone health in elderly individuals needs further investigation.
Collapse
Affiliation(s)
- Debra Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA
| | - Christina Stark
- Children's and Adolescent's Hospital, and Cologne Centre for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Redha Taiar
- Redha Taiar, Université de Reims Champagne-Ardenne, Reims, France
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
38
|
Marin-Puyalto J, Gomez-Cabello A, Gonzalez-Agüero A, Gomez-Bruton A, Matute-Llorente A, Casajús JA, Vicente-Rodríguez G. Is Vibration Training Good for Your Bones? An Overview of Systematic Reviews. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5178284. [PMID: 30519579 PMCID: PMC6241242 DOI: 10.1155/2018/5178284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/24/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023]
Abstract
Whole-body vibration (WBV) intervention studies and reviews have been increasing lately. However, the results regarding its effects on bone tissue in different populations are still inconclusive. The goal of this overview was to summarize systematic reviews assessing the effects of WBV training on bone parameters. Three electronic databases were scanned for systematic reviews and meta-analyses evaluating the effects of WBV on bone tissue. The search had no time restrictions and was limited to articles written in English. Vibration protocols and the main bone parameters included in each review were extracted. Methodological quality was assessed and analyses were conducted stratifying by age. 17 reviews and meta-analyses fulfilled the inclusion criteria. No increase or small improvements in bone mineral density (BMD) after WBV interventions were observed in reviews regarding postmenopausal women. One intervention study regarding young adults was included and reported no bone-related benefits from WBV. Most reviews including children and adolescents with compromised bone mass showed an improvement of BMD at lower limbs, lumbar spine, and whole body. In conclusion, WBV interventions seem to help children and adolescents with compromised bone mass to increase their BMD, but these improvements are limited in postmenopausal women and there is insufficient evidence for young adults. Further research is also needed to identify the ideal parameters of WBV training focused on bone health.
Collapse
Affiliation(s)
- Jorge Marin-Puyalto
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
| | - Alba Gomez-Cabello
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro Universitario de la Defensa, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Alejandro Gonzalez-Agüero
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Alejandro Gomez-Bruton
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Angel Matute-Llorente
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - Jose A. Casajús
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| | - German Vicente-Rodríguez
- Faculty of Health and Sport Science (FCSD), Department of Physiatry and Nursing. Universidad de Zaragoza, Ronda Misericordia 5, 22001 Huesca, Spain
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain
- EXERNET Red de Investigación en Ejercicio Físico y Salud para Poblaciones Especiales, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Spain
| |
Collapse
|
39
|
Physical strategies to prevent disuse-induced functional decline in the elderly. Ageing Res Rev 2018; 47:80-88. [PMID: 30031068 DOI: 10.1016/j.arr.2018.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/08/2018] [Accepted: 07/09/2018] [Indexed: 01/07/2023]
Abstract
Disuse situations can have serious adverse health consequences in the elderly, including mainly functional impairment with subsequent increase in the risk of falls or morbimortality. The present review provides clinicians and care givers with detailed and practical information on the feasibility and effectiveness of physical strategies that are currently available to prevent or attenuate the functional decline that occurs secondarily to disuse situations in the elderly, notably in the hospital setting. In this context, active approaches such as resistance exercises and maximal voluntary contractions, which can be performed both isometrically and dynamically, are feasible during most immobilization situations including in hospitalized old people and represent powerful tools for the prevention of muscle atrophy. Aerobic exercise should also be prescribed whenever possible to reduce the loss of cardiovascular capacity associated with disuse periods. Other feasible strategies for patients who are unwilling or unable to perform volitional exercise comprise neuromuscular electrical stimulation, vibration, and blood flow restriction. However, they should ideally be applied synchronously with voluntary exercise to obtain synergistic benefits.
Collapse
|
40
|
Marín-Cascales E, Alcaraz PE, Ramos-Campo DJ, Martinez-Rodriguez A, Chung LH, Rubio-Arias JÁ. Whole-body vibration training and bone health in postmenopausal women: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e11918. [PMID: 30142802 PMCID: PMC6112924 DOI: 10.1097/md.0000000000011918] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aims of the present systematic review and meta-analysis were to evaluate published, randomized controlled trials that investigate the effects on whole-body vibration (WBV) training on total, femoral neck, and lumbar spine bone mineral density (BMD) in postmenopausal women, and identify the potential moderating factors explaining the adaptations to such training. METHODS From a search of electronic databases (PubMed, Web of Science, and Cochrane) up until September 2017, a total 10 studies with 14 WBV groups met the inclusion criteria. Three different authors tabulated, independently, the selected indices in identical predetermined forms. The methodological quality of all studies was evaluated according to the modified PEDro scale. For each trial, differences within arms were calculated as mean differences (MDs) and their 95% confidence intervals between pre- and postintervention values. The effects on bone mass between exercise and control groups were also expressed as MDs. Both analyses were performed in the total sample and in a specific class of postmenopausal women younger than 65 years of age (excluding older women). RESULTS The BMD of 462 postmenopausal women who performed WBV or control protocol was evaluated. Significant pre-post improvements in BMD of the lumbar spine were identified following WBV protocols (P = .03). Significant differences in femoral neck BMD (P = .03) were also found between intervention and control groups when analyzing studies that included postmenopausal women younger than 65 years. CONCLUSIONS WBV is an effective method to improve lumbar spine BMD in postmenopausal and older women and to enhance femoral neck BMD in postmenopausal women younger than 65 years.
Collapse
Affiliation(s)
| | - Pedro E. Alcaraz
- Research Center for High Performance Sport
- Faculty of Sport Sciences – Catholic University of Murcia, UCAM, Murcia
| | - Domingo J. Ramos-Campo
- Research Center for High Performance Sport
- Faculty of Sport Sciences – Catholic University of Murcia, UCAM, Murcia
| | | | - Linda H. Chung
- Research Center for High Performance Sport
- Faculty of Sport Sciences – Catholic University of Murcia, UCAM, Murcia
| | - Jacobo Á. Rubio-Arias
- Research Center for High Performance Sport
- Faculty of Sport Sciences – Catholic University of Murcia, UCAM, Murcia
| |
Collapse
|
41
|
Baker MK, Peddle-McIntyre CJ, Galvão DA, Hunt C, Spry N, Newton RU. Whole Body Vibration Exposure on Markers of Bone Turnover, Body Composition, and Physical Functioning in Breast Cancer Patients Receiving Aromatase Inhibitor Therapy: A Randomized Controlled Trial. Integr Cancer Ther 2018; 17:968-978. [PMID: 29952241 PMCID: PMC6142085 DOI: 10.1177/1534735418781489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Women with breast cancer are often prescribed
aromatase inhibitors, which can cause rapid loss of bone mass leading to
significant potential for morbidity. Vibration training has been shown to be
helpful in reducing bone turnover in postmenopausal women without cancer.
Aim: To examine the effect of vibration stimulus on markers of
bone turnover in breast cancer patients receiving aromatase inhibitors.
Methods: Thirty-one breast cancer survivors undergoing
treatment with aromatase inhibitors were randomized to vibration stimulus (n =
14) or usual care control (n = 17). Low-frequency and low-magnitude vibration
stimulus (27-32 Hz, 0.3g) was delivered in supervised sessions
via standing on a vibration platform for 20 minutes, 3 times per week for 12
weeks. The primary outcome was blood markers of bone resorption (serum
N-telopeptide X/creatine) and formation (serum type 1 procollagen N-terminal
propeptide; P1NP). Other study outcomes body composition as well as measures of
physical functioning. Outcomes were compared between groups using analysis of
covariance adjusted for baseline values as well as time on aromatase inhibitors.
Outcomes: On average, participants were 61.5 years old and
overweight (ie, body mass index = 28.5 kg/m2). Following vibration
training, there was no significant difference between groups for bone resorption
(adjusted group difference 0.5, P = .929) or formation
(adjusted group difference 5.3, P = .286). There were also no
changes in any measure of physical functioning body composition.
Conclusions: Short-term low-magnitude vibration stimulus does
not appear to be useful for reducing markers of bone turnover secondary to
aromatase inhibitors in breast cancer patients; nor is it useful in improving
physical function or symptoms. However, further investigations with larger
samples and higher doses of vibration are warranted. Trial
Registration: Australian and New Zealand Clinical Trials Registry
(ACTRN12611001094965).
Collapse
Affiliation(s)
- Michael K Baker
- 1 Australian Catholic University, Strathfield, New South Wales, Australia
| | | | - Daniel A Galvão
- 2 Edith Cowan University, Joondalup, Western Australia, Australia
| | - Catherine Hunt
- 3 Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Nigel Spry
- 2 Edith Cowan University, Joondalup, Western Australia, Australia.,3 Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Robert U Newton
- 2 Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
42
|
Oliveira LC, Oliveira RG, Pires-Oliveira DA. Effects of the Pilates exercise compared to whole body vibration and no treatment controls on muscular strength and quality of life in postmenopausal women: A randomized controlled trial. ISOKINET EXERC SCI 2018. [DOI: 10.3233/ies-184118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Laís C. Oliveira
- Health Sciences Center, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, PR, Brazil
| | - Raphael G. Oliveira
- Health Sciences Center, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, PR, Brazil
| | | |
Collapse
|
43
|
Use of whole body vibration in individuals with chronic stroke: Transmissibility and signal purity. J Biomech 2018; 73:80-91. [DOI: 10.1016/j.jbiomech.2018.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/18/2018] [Accepted: 03/09/2018] [Indexed: 11/23/2022]
|
44
|
Gómez-Bruton A, González-Agüero A, Matute-Llorente A, Julián C, Lozano-Berges G, Gómez-Cabello A, Garatachea N, Casajús JA, Vicente-Rodríguez G. Effects of Whole Body Vibration on Tibia Strength and Structure of Competitive Adolescent Swimmers: A Randomized Controlled Trial. PM R 2018; 10:889-897. [PMID: 29626614 DOI: 10.1016/j.pmrj.2018.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 03/16/2018] [Accepted: 03/31/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Swimming has no effect on bone mass or structure. Therefore, adolescent swimmers present similar bone strength values when compared to normo-active controls, and lower values when compared to weight-bearing athletes. It thus seems necessary to try to improve bone structure and strength of adolescent swimmers through a weight-bearing intervention in order to reduce the risk of suffering osteoporosis later in life. OBJECTIVE To evaluate the effects of a 6-month whole body vibration (WBV) intervention on bone strength and structure of adolescent swimmers. DESIGN Randomized controlled trial. SETTING Research center. PARTICIPANTS A total of 51 swimmers (14.4 ± 2.0 years) participated in the study. METHODS Swimmers were randomly allocated into 2 groups: 20 swimmers (9 females) who only performed their swimming training, and 31 swimmers (15 females) who performed their swimming training and received a WBV intervention (3.6-11.6 g) 3 times per week during 6 months (VIB). OUTCOME MEASUREMENTS Peripheral quantitative computed tomography was performed in the nondominant tibia of all swimmers at 4%, 38%, and 66% of the tibia length before and after the intervention. RESULTS No differences between groups in any bone structure variable were found at pre- or postintervention. Both groups presented similar improvements in time, and no group by time interactions were found, suggesting that the WBV intervention was not intense enough to achieve positive changes in bone strength or structure. CONCLUSION WBV, at the chosen intensities and durations, had no effect on adolescent swimmers' bone strength or structure. Future studies should test other weight-bearing interventions aiming to improve bone strength and structure of adolescent swimmers. LEVEL OF EVIDENCE II.
Collapse
Affiliation(s)
- Alejandro Gómez-Bruton
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON); Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain(∗)
| | - Alejandro González-Agüero
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain(†)
| | - Angel Matute-Llorente
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain(‡)
| | - Cristina Julián
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain(§)
| | - Gabriel Lozano-Berges
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain(¶)
| | - Alba Gómez-Cabello
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Centro Universitario de la Defensa, Zaragoza, Spain(#)
| | - Nuria Garatachea
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain(∗∗)
| | - Jose A Casajús
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Huesca, Spain(††)
| | - German Vicente-Rodríguez
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Zaragoza, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERON), Zaragoza, Spain; Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain; Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Spain(‡‡).
| |
Collapse
|
45
|
Ebing J, Gast U, Hauptmann C, Felsenberg D, Belavý DL. Hypertrophy and Explosive-Reactive Functioning in Sedentary Men After 10 Weeks of Whole-Body Vibration. J Strength Cond Res 2018; 32:27-36. [DOI: 10.1519/jsc.0000000000001728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Jepsen DB, Thomsen K, Hansen S, Jørgensen NR, Masud T, Ryg J. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis. BMJ Open 2017; 7:e018342. [PMID: 29289937 PMCID: PMC6027066 DOI: 10.1136/bmjopen-2017-018342] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/27/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the effect of whole-body vibration exercise (WBV) on fracture risk in adults ≥50 years of age. DESIGN A systematic review and meta-analysis calculating relative risk ratios, fall rate ratio and absolute weighted mean difference using random effects models. Heterogeneity was estimated using I2 statistics, and the Cochrane Collaboration's risk of bias tool and the GRADE approach were used to evaluate quality of evidence and summarise conclusions. DATA SOURCES The databases PubMed, Embase and the Cochrane Central Register from inception to April 2016 and reference lists of retrieved publications. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Randomised controlled trials examining the effect of WBV on fracture risk in adults ≥50 years of age. The primary outcomes were fractures, fall rates and the proportion of participants who fell. Secondary outcomes were bone mineral density (BMD), bone microarchitecture, bone turnover markers and calcaneal broadband attenuation (BUA). RESULTS 15 papers (14 trials) met the inclusion criteria. Only one study had fracture data reporting a non-significant fracture reduction (risk ratio (RR)=0.47, 95% CI 0.14 to 1.57, P=0.22) (moderate quality of evidence). Four studies (n=746) showed that WBV reduced the rate of falls with a rate ratio of 0.67 (95% CI 0.50 to 0.89, P=0.0006; I2=19%) (moderate quality of evidence). Furthermore, data from three studies (n=805) found a trend towards falls reduction (RR=0.76, 95% CI 0.48 to 1.20, P=0.24; I2=24%) (low quality of evidence). Finally, moderate to low quality of evidence showed no overall effect on BMD and only sparse data were available regarding microarchitecture parameters, bone turnover markers and BUA. CONCLUSIONS WBV reduces fall rate but seems to have no overall effect on BMD or microarchitecture. The impact of WBV on fractures requires further larger adequately powered studies. This meta-analysis suggests that WBV may prevent fractures by reducing falls. PROSPERO REGISTRATION NUMBER CRD42016036320; Pre-results.
Collapse
Affiliation(s)
- Ditte Beck Jepsen
- Department of Geriatric Medicine, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katja Thomsen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Geriatric Medicine, Odense University Hospital, Svendborg, Denmark
| | - Stinus Hansen
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- OPEN-Odense Patient data Explorative Network, Odense University Hospital/ University of Southern Denmark, Odense, Denmark
| | - Tahir Masud
- Department of Geriatric Medicine, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Geriatric Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jesper Ryg
- Department of Geriatric Medicine, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
47
|
Gómez-Bruton A, González-Agüero A, Matute-Llorente A, Julián C, Lozano-Berges G, Gómez-Cabello A, Casajús JA, Vicente-Rodríguez G. Do 6 months of whole-body vibration training improve lean mass and bone mass acquisition of adolescent swimmers? Arch Osteoporos 2017; 12:69. [PMID: 28733931 DOI: 10.1007/s11657-017-0362-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 07/10/2017] [Indexed: 02/03/2023]
Abstract
UNLABELLED Swimming has little effect on bone mass. Therefore, adolescent swimmers should complement their water training with a short and intense weight-bearing training, aiming to increase their bone acquisition. Forty swimmers performed a six-month whole-body vibration (WBV) training. WBV had no effect on adolescent swimmers' bone mass or lean mass. PURPOSE The aims of the present study were to evaluate the effects of a whole-body vibration (WBV) intervention on bone mineral density (BMD), bone mineral content (BMC) and lean mass (LM) in adolescent swimmers. METHODS Forty male and female adolescent swimmers (VIB; mean age 14.2 ± 1.9 years) completed the WBV protocol that consisted of 15 min of training 3 days per week during a 6-month period (ranging from 3.6 to 11.6 g), while 23 swimmers (SWI; mean age 15.0 ± 2.2 years) continued with their regular swimming training alone. VIB were divided into tertiles according to training compliance in order to evaluate if any dose-effect relation existed. BMD, BMC and LM were measured longitudinally by dual energy X-ray at the whole body, lumbar-spine and hip. RESULTS No group by time interactions and no differences in change percentage were found for BMD, BMC or LM in any of the measured variables. The mean change percentage of the subtotal body (whole body minus the head) for VIB and SWI, respectively, was 2.3 vs. 2.4% for BMD, 5.7 vs 5.7% for BMC and 7.3 vs. 8.0% for lean mass. Moreover, no indication for dose-response was observed. CONCLUSIONS The proposed WBV protocol had no effect on BMD, BMC and LM in adolescent swimmers. Other types of training should be used in this population to improve both bone and lean mass.
Collapse
Affiliation(s)
- A Gómez-Bruton
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - A González-Agüero
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - A Matute-Llorente
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - C Julián
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - G Lozano-Berges
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - A Gómez-Cabello
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.,Centro Universitario de la Defensa, Zaragoza, Spain
| | - J A Casajús
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain.,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain.,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - G Vicente-Rodríguez
- GENUD (Growth, Exercise, NUtrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Grupo GENUD Edificio SAI 2ª planta, Zaragoza, Spain. .,Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Ronda Misericordia 5, 22001, Huesca, Spain. .,Instituto Agroalimentario de Aragón (IA2), Zaragoza, Spain. .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
48
|
McMillan LB, Zengin A, Ebeling PR, Scott D. Prescribing Physical Activity for the Prevention and Treatment of Osteoporosis in Older Adults. Healthcare (Basel) 2017; 5:healthcare5040085. [PMID: 29113119 PMCID: PMC5746719 DOI: 10.3390/healthcare5040085] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022] Open
Abstract
Osteoporosis is an age-related disease, characterised by low bone mineral density (BMD) and compromised bone geometry and microarchitecture, leading to reduced bone strength. Physical activity (PA) has potential as a therapy for osteoporosis, yet different modalities of PA have varying influences on bone health. This review explores current evidence for the benefits of PA, and targeted exercise regimes for the prevention and treatment of osteoporosis in older adults. In particular, the outcomes of interventions involving resistance training, low- and high-impact weight bearing activities, and whole-body vibration therapy are discussed. Finally, we present recommendations for future research that may maximise the potential of exercise in primary and secondary prevention of osteoporosis in the ageing population.
Collapse
Affiliation(s)
- Lachlan B McMillan
- School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia.
| | - Ayse Zengin
- School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia.
| | - Peter R Ebeling
- School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia.
| | - David Scott
- School of Clinical Sciences at Monash Health, Monash Medical Centre, Monash University, Clayton, VIC 3168, Australia.
- Department of Medicine, Melbourne Medical School (Western Campus), The University of Melbourne, St Albans, Melbourne, VIC 3021, Australia.
- Australian Institute for Musculoskeletal Science (AIMSS), Sunshine Hospital, St Albans, Melbourne, VIC 3021, Australia.
| |
Collapse
|
49
|
Geyer C. Postmenopausal Osteoporosis: The Role of Lifestyle in Maintaining Bone Mass and Reducing Fracture Risk. Am J Lifestyle Med 2017; 11:125-128. [PMID: 30202323 PMCID: PMC6125034 DOI: 10.1177/1559827616682938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Postmenopausal osteoporosis is a significant contributor to morbidity and mortality. Medications can provide effective treatment but their use can be complicated by side effects. This case illustrates the role that diet, supplements, and specific exercises can play in preventing and treating bone loss and reducing fracture risk.
Collapse
|
50
|
Puhar I, Ma L, Suleimenova D, Chronopoulos V, Mattheos N. The effect of local application of low-magnitude high-frequency vibration on the bone healing of rabbit calvarial defects-a pilot study. J Orthop Surg Res 2016; 11:159. [PMID: 27931261 PMCID: PMC5144494 DOI: 10.1186/s13018-016-0494-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this pilot study was to evaluate the effect of local application of low-magnitude high-frequency vibration (LMHFV) on the bone healing of rabbit calvarial defects that were augmented with different grafting materials and membranes. Methods Four calvarial defects were created in each of two New Zealand rabbits and filled with the following materials: biphasic calcium phosphate (BCP), deproteinized bovine bone mineral covered with a non-cross-linked collagen membrane (BO/BG), biphasic calcium phosphate covered with a strontium hydroxyapatite-containing collagen membrane (BCP/SR), and non-cross-linked collagen membrane (BG). Four defects in one rabbit served as a control, while the other was additionally subjected to the local LMHFV protocol of 40 Hz, 16 min per day. The rabbits were sacrificed 1 week after surgery. Histomorphometric analysis was performed to determine the percentages of different tissue compartments. Results Compared to the control defects, the higher percentage of osteoid tissue was found in LMHFV BG defects (35.3 vs. 19.3%), followed by BCP/SR (17.3 vs. 2.0%) and BO/BG (9.3 vs. 1.0%). The fraction occupied by the residual grafting material varied from 40.3% in BO/BG to 22.3% in BCP/SR LMHFV defects. Two-way models revealed that material type was only significant for the osteoid (P= 0.045) and grafting material (P = 0.001) percentages, while the vibration did not provide any statistical significance for all histomorphometric outcomes (P > 0.05). Conclusion Local application of LMHFV did not appear to offer additional benefit in the initial healing phase of rabbit calvarial defects. Histomorphometric measurements after 1 week of healing demonstrated more pronounced signs of early bone formation in both rabbits that were related with material type and independent of LMHFV.
Collapse
Affiliation(s)
- Ivan Puhar
- Department of Periodontology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia.,Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Li Ma
- Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Dina Suleimenova
- Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | | | - Nikos Mattheos
- Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|