1
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Kohler R, Segvich DM, Reul O, Metzger CE, Allen MR, Wallace JM. Romosozumab rescues impaired bone mass and strength in a murine model of diabetic kidney disease. Bone Rep 2024; 21:101774. [PMID: 38778834 PMCID: PMC11108809 DOI: 10.1016/j.bonr.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
As international incidence of diabetes and diabetes-driven comorbidities such as chronic kidney disease (CKD) continue to climb, interventions are needed that address the high-risk skeletal fragility of what is a complex disease state. Romosozumab (Romo) is an FDA-approved sclerostin inhibitor that has been shown to increase bone mineral density and decrease fracture rates in osteoporotic patients with mild to severe CKD, but its effect on diabetes-weakened bone is unknown. We aimed to test Romo's performance in a model of combined diabetes and CKD. 6-week old male C57BL/6 mice were randomly divided into control (CON) and disease model (STZ-Ad) groups, using a previously established streptozotocin- and adenine-diet-induced model. After 16 weeks of disease induction, both CON and STZ-Ad groups were subdivided into two treatment groups and given weekly subcutaneous injections of 100 μL vehicle (phosphorus buffered saline, PBS) or 10 mg/kg Romo. Mice were euthanized after 4 weeks of treatment via cardiac exsanguination and cervical dislocation. Hindlimb bones and L4 vertebrae were cleaned of soft tissue, wrapped in PBS-soaked gauze and stored at -20C. Right tibiae, femora, and L4s were scanned via microcomputed tomography; tibiae were then tested to failure in 4-pt bending while L4s were compression tested. Romo treatment significantly increased cortical and trabecular bone mass in both STZ-Ad and CON animals. These morphological improvements created corresponding increases in cortical bending strength and trabecular compression strength, with STZ-Ad treated mice surpassing vehicle CON mice in all trabecular mechanics measures. These results suggest that Romo retains its efficacy at increasing bone mass and strength in diabetic kidney disease.
Collapse
Affiliation(s)
- Rachel Kohler
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Dyann M. Segvich
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Olivia Reul
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
| | - Corinne E. Metzger
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
3
|
Kim KM, Kim KJ, Han K, Rhee Y. Associations Between Physical Activity and the Risk of Hip Fracture Depending on Glycemic Status: A Nationwide Cohort Study. J Clin Endocrinol Metab 2024; 109:e1194-e1203. [PMID: 37850407 DOI: 10.1210/clinem/dgad601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
CONTEXT Although physical activity (PA) is recognized to reduce fracture risk, whether its benefits differ according to glycemic status remains unknown. OBJECTIVE We investigated the effect of PA on incident hip fracture (HF) according to glycemic status. METHODS We studied 3 723 097 patients older than 50 without type 1 diabetes mellitus (DM) or past fractures. HF risks were calculated using Cox proportional hazard regression. Participants were categorized by glycemic status into 5 groups: normal glucose tolerance, impaired fasting glucose, new-onset type 2 DM, type 2 DM less than 5 years, and type 2 DM of 5 years or greater. PA was evaluated using the Korean adaptation of the International Physical Activity Questionnaire Short Form. RESULTS The highest HF risk were associated with the lowest PA level (<500 metabolic equivalent task [MET]-min/wk). While similar risks emerged across MET 500 to 1000, 1000 to 1500, and greater than 1500 categories, the relationship showed variations in different glycemic status groups. Exceptions were particularly noted in women with normoglycemia. However, a consistent inverse pattern, with few exceptions, was observed both in men and women with type 2 DM of 5 years or greater. Furthermore, the benefit of PA in the prevention of HFs was most evident in participants with type 2 DM of 5 years or greater. Compared to the reference group (lowest physical activity level <500 MET-min/wk within type 2 DM ≥5 years), the adjusted hazard ratios were 0.74 (0.62-0.88) in men and 0.74 (0.62-0.89) in women, suggesting a significant reduction in risk. CONCLUSION Higher PA levels are associated with a lower risk of HF. This protective effect of PA on fracture risk is greatest in patients with DM, particularly in those with DM of 5 years or greater.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Division of Endocrinology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do 16995, Republic of Korea
| | - Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yumie Rhee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Rodríguez VA, Picotto G, Rivoira MA, Rigalli A, Tolosa de Talamoni N. The combined treatment of insulin and naringin improves bone properties in rats with type 1 diabetes mellitus. Appl Physiol Nutr Metab 2024; 49:213-222. [PMID: 37820387 DOI: 10.1139/apnm-2023-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We have studied the effects of individual and combined treatment of insulin (I) and naringin (NAR) on the bone structure and biomechanical properties of femurs from streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into five groups: (1) controls, (2) STZ-induced diabetic rats, (3) STZ-induced diabetic rats treated with I, (4) STZ-induced diabetic rats treated with NAR, and (5) STZ-induced diabetic rats treated with I + NAR. Bone mineral density (BMD), bone histomorphometry, biomechanical testing, and bone biomarker expressions were accomplished in femur of all animals, as well as serum biochemical analyses. The combined treatment of I + NAR increased the body weight and the femur BMD from STZ-induced diabetic rats. The bone biomechanical properties and the bone morphology of the femurs from STZ-induced diabetic rats were also improved by the combined treatment. The increased number of osteoclasts in STZ-induced diabetic rats was partially prevented by I, NAR, or I + NAR. NAR or I + NAR completely blocked the decrease in the number of osteocalcin (+) cells in the femur from STZ-induced diabetic rats. RUNX family transcription factor 2 immunostaining was much lower in STZ-induced diabetic rats than in control animals; the combination of I + NAR totally blocked this effect. The combined treatment not only ameliorated bone quality and function, but also normalized the variables related to glucose metabolism. Therefore, the combination of I + NAR might be a better therapeutic strategy than the individual I or NAR administration to reduce bone complications in diabetic patients.
Collapse
Affiliation(s)
- Valeria A Rodríguez
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Gabriela Picotto
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - María A Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | | | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| |
Collapse
|
5
|
Rubin MR, Dhaliwal R. Role of advanced glycation endproducts in bone fragility in type 1 diabetes. Bone 2024; 178:116928. [PMID: 37802378 DOI: 10.1016/j.bone.2023.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
The excess fracture risk observed in adults with type 1 diabetes (T1D) is inexplicable in the presence of only modest reductions in areal bone mineral density (BMD). Accumulation of advanced glycation endproducts (AGEs) in bone has been invoked as one explanation for the increased bone fragility in diabetes. The evidence linking AGEs and fractures in individuals with T1D is sparse, although the association has been observed in individuals with type 2 diabetes. Recent data show that in T1D, AGEs as measured by skin intrinsic fluorescence, are a risk factor for lower BMD. Further research in T1D is needed to ascertain whether there is a causal relationship between fractures and AGEs. If confirmed, this would pave the way for finding interventions that can slow AGE accumulation and thus reduce fractures in T1D.
Collapse
Affiliation(s)
- Mishaela R Rubin
- Metabolic Bone Disease Unit, Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, United States of America
| | - Ruban Dhaliwal
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, United States of America.
| |
Collapse
|
6
|
Skjødt MK, Abrahamsen B. New Insights in the Pathophysiology, Epidemiology, and Response to Treatment of Osteoporotic Vertebral Fractures. J Clin Endocrinol Metab 2023; 108:e1175-e1185. [PMID: 37186550 DOI: 10.1210/clinem/dgad256] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
CONTEXT Vertebral fractures (VFs) make up an important but challenging group of fractures often caused by osteoporosis. Osteoporotic fractures pose unique diagnostic challenges in generally requiring imaging for diagnosis. The objective of this narrative mini-review is to provide an overview of these recent advances in our knowledge of VF pathophysiology and epidemiology with particular focus on endocrine diseases, prevention, and treatment. EVIDENCE ACQUISITION We searched PubMed on May 23, 2022, for studies of VFs in humans. Results were limited to papers available as full-text publications in English, published from 2020 and onward. This yielded 3457 citations. This was supplemented by earlier publications selected to add context to the recent findings. EVIDENCE SYNTHESIS Studies addressed VF risk in hyperthyreosis, hyperparathyroidism, acromegaly, Cushing syndrome, primary aldosteronism, and diabetes. For pharmaceutical treatment, new studies or analyses were identified for romosozumab and for weekly teriparatide. Several studies, including studies in the immediate pipeline, were intervention studies with vertebroplasty or kyphoplasty, including combination with stem cells or pharmaceuticals. CONCLUSIONS Endocrinologists should be aware of the high likelihood of osteoporotic VFs in patients with endocrine diseases. Though licensed treatments are able to substantially reduce the occurrence of VFs in patients with osteoporosis, the vast majority of recent or ongoing randomized controlled trials in the VF area focus on advanced invasive therapy of the fracture itself.
Collapse
Affiliation(s)
- Michael Kriegbaum Skjødt
- Department of Medicine 1, Holbæk Hospital, DK-4300 Holbæk, Denmark
- OPEN-Open Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark and Odense University Hospital, DK-5000 Odense, Denmark
| | - Bo Abrahamsen
- Department of Medicine 1, Holbæk Hospital, DK-4300 Holbæk, Denmark
- OPEN-Open Patient Data Explorative Network, Department of Clinical Research, University of Southern Denmark and Odense University Hospital, DK-5000 Odense, Denmark
- NDORMS, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Oxford University Hospitals, Oxford OX3 7LD, UK
| |
Collapse
|
7
|
Zhang J, Xu Z, Fu Y, Chen L. Prediction of the Risk of Bone Mineral Density Decrease in Type 2 Diabetes Mellitus Patients Based on Traditional Multivariate Logistic Regression and Machine Learning: A Preliminary Study. Diabetes Metab Syndr Obes 2023; 16:2885-2898. [PMID: 37744700 PMCID: PMC10517691 DOI: 10.2147/dmso.s422515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose There remains a lack of a machine learning (ML) model incorporating body composition to assess the risk of bone mineral density (BMD) decreases in type 2 diabetes mellitus (T2DM) patients. We aimed to use ML algorithms and the traditional multivariate logistic regression to establish prediction models for BMD decreases in T2DM patients over 50 years of age, and compare the performance of the two methods. Patients and Methods This cross-sectional study was conducted among 450 patients with T2DM from 1 August 2016 to 31 December 2022. The participants were divided into a normal BMD group and a decreased BMD group. Traditional multivariate logistic regression and six ML algorithms were selected to construct male and female models. Two nomograms were constructed to evaluate the risk of BMD decreases in the male and female T2DM patients, respectively. The ML models with the highest area under the curve (AUC) were compared with the traditional multivariate logistic regression models in terms of discriminant ability and clinical applicability. Results The optimal ML model was the extreme gradient boost (XGBoost) model. The AUCs of the traditional multivariate logistic regression and the XGBoost models were 0.722 and 0.800 in the male testing dataset, respectively, and 0.876 and 0.880 in the female testing dataset, respectively. The decision curve analysis results suggested that using the XGBoost models to predict the risk of BMD decreases obtained more net benefits compared with the traditional models in both sexes. Conclusion We preliminarily proved that the XGBoost models outperformed most other ML models in both sexes and achieved higher accuracy than traditional analyses. Due to the limited sample size in the study, it is necessary to validate our findings in larger prospective cohort studies.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Zhenghui Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Yu Fu
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| | - Lu Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
8
|
Kwon H, Han KD, Kim BS, Moon SJ, Park SE, Rhee EJ, Lee WY. Acromegaly and the long-term fracture risk of the vertebra and hip: a national cohort study. Osteoporos Int 2023; 34:1591-1600. [PMID: 37222744 DOI: 10.1007/s00198-023-06800-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
In this national cohort study, the patients with acromegaly had significantly higher risks of clinical vertebral (HR 2.09 [1.58-2.78]) and hip (HR 2.52 [1.61-3.95]) fractures than the controls. The increased fracture risk in patients with acromegaly was time-dependent and was observed even during the early period of follow-up. PURPOSE Acromegaly is characterized by the overproduction of growth hormone (GH) and insulin-like growth factor-1 (IGF-1), both play important roles in regulating bone metabolism. We investigated the risk of vertebral and hip fractures in patients with acromegaly compared to age- and sex-matched controls. METHODS This nationwide population-based cohort study included 1,777 patients with acromegaly aged 40 years or older in 2006-2016 and 8,885 age- and sex-matched controls. A Cox proportional hazards model was used to estimate the adjusted hazard ratio (HR) [95% confidence interval]. RESULTS The mean age was 54.3 years and 58.9% were female. For approximately 8.5 years of follow-up, the patients with acromegaly had significantly higher risks of clinical vertebral (HR 2.09 [1.58-2.78]) and hip (HR 2.52 [1.61-3.95]) fractures than the controls in the multivariate analyses. There were significant differences in the risks of clinical vertebral (P < 0.0001) and hip (P < 0.0001) fractures between the patients with acromegaly and the controls in the Kaplan-Meier survival analysis. The multivariable-adjusted HRs for clinical vertebral fractures comparing the patients with acromegaly with controls during and excluding the first 7 years of observation were 1.69 [1.15-2.49] and 2.70 [1.75-4.17], respectively. The HRs for hip fractures during and excluding the first 7 years of observation were 2.29 [1.25-4.18] and 3.36 [1.63-6.92], respectively. CONCLUSIONS The patients with acromegaly had a higher risk of hip fractures as well as clinical vertebral fractures than the controls. The increased fracture risk in patients with acromegaly was time-dependent and was observed even during the early period of follow-up.
Collapse
Affiliation(s)
- Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Bong-Sung Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea.
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-Ro, Jongno-Gu, Seoul, 03181, Republic of Korea.
| |
Collapse
|
9
|
Abstract
The number of older adults with type 1 diabetes (T1D) is increasing due to an overall increase in life expectancy and improvement in diabetes management and treatment of complications. They are a heterogeneous cohort due to the dynamic process of aging and the presence of comorbidities and diabetes-related complications. A high risk for hypoglycemia unawareness and severe hypoglycemia has been described. Periodic assessment of health status and adjustment of glycemic goals to mitigate hypoglycemia is imperative. Continuous glucose monitoring, insulin pump, and hybrid closed-loop systems are promising tools to improve glycemic control and mitigate hypoglycemia in this age group.
Collapse
Affiliation(s)
- Elena Toschi
- Joslin Diabetes Center; Beth Israel Deaconess Medical Center; Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Weber DR, Long F, Zemel BS, Kindler JM. Glycemic Control and Bone in Diabetes. Curr Osteoporos Rep 2022; 20:379-388. [PMID: 36214991 PMCID: PMC9549036 DOI: 10.1007/s11914-022-00747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent developments on the effects of glycemic control and diabetes on bone health. We discuss the foundational cellular mechanisms through which diabetes and impaired glucose control impact bone biology, and how these processes contribute to bone fragility in diabetes. RECENT FINDINGS Glucose is important for osteoblast differentiation and energy consumption of mature osteoblasts. The role of insulin is less clear, but insulin receptor deletion in mouse osteoblasts reduces bone formation. Epidemiologically, type 1 (T1D) and type 2 diabetes (T2D) associate with increased fracture risk, which is greater among people with T1D. Accumulation of cortical bone micro-pores, micro-vascular complications, and AGEs likely contribute to diabetes-related bone fragility. The effects of youth-onset T2D on peak bone mass attainment and subsequent skeletal fragility are of particular concern. Further research is needed to understand the effects of hyperglycemia on skeletal health through the lifecycle, including the related factors of inflammation and microvascular damage.
Collapse
Affiliation(s)
- David R Weber
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia,, PA, USA
| | - Fanxin Long
- Department of Orthopedic Surgery, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Babette S Zemel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of GI, Hepatology & Nutrition, Roberts Center for Pediatric Research, 2716 South Street, 14th Floor/Room 14471, Philadelphia, PA, 19146, USA.
| | - Joseph M Kindler
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
11
|
Sewing L, Potasso L, Baumann S, Schenk D, Gazozcu F, Lippuner K, Kraenzlin M, Zysset P, Meier C. Bone Microarchitecture and Strength in Long-Standing Type 1 Diabetes. J Bone Miner Res 2022; 37:837-847. [PMID: 35094426 PMCID: PMC9313576 DOI: 10.1002/jbmr.4517] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes (T1DM) is associated with an increased fracture risk, specifically at nonvertebral sites. The influence of glycemic control and microvascular disease on skeletal health in long-standing T1DM remains largely unknown. We aimed to assess areal (aBMD) and volumetric bone mineral density (vBMD), bone microarchitecture, bone turnover, and estimated bone strength in patients with long-standing T1DM, defined as disease duration ≥25 years. We recruited 59 patients with T1DM (disease duration 37.7 ± 9.0 years; age 59.9 ± 9.9 years.; body mass index [BMI] 25.5 ± 3.7 kg/m2 ; 5-year median glycated hemoglobin [HbA1c] 7.1% [IQR 6.82-7.40]) and 77 nondiabetic controls. Dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT) at the ultradistal radius and tibia, and biochemical markers of bone turnover were assessed. Group comparisons were performed after adjustment for age, gender, and BMI. Patients with T1DM had lower aBMD at the hip (p < 0.001), distal radius (p = 0.01), lumbar spine (p = 0.04), and femoral neck (p = 0.05) as compared to controls. Cross-linked C-telopeptide (CTX), a marker of bone resorption, was significantly lower in T1DM (p = 0.005). At the distal radius there were no significant differences in vBMD and bone microarchitecture between both groups. In contrast, patients with T1DM had lower cortical thickness (estimate [95% confidence interval]: -0.14 [-0.24, -0.05], p < 0.01) and lower cortical vBMD (-28.66 [-54.38, -2.93], p = 0.03) at the ultradistal tibia. Bone strength and bone stiffness at the tibia, determined by homogenized finite element modeling, were significantly reduced in T1DM compared to controls. Both the altered cortical microarchitecture and decreased bone strength and stiffness were dependent on the presence of diabetic peripheral neuropathy. In addition to a reduced aBMD and decreased bone resorption, long-standing, well-controlled T1DM is associated with a cortical bone deficit at the ultradistal tibia with reduced bone strength and stiffness. Diabetic neuropathy was found to be a determinant of cortical bone structure and bone strength at the tibia, potentially contributing to the increased nonvertebral fracture risk. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lilian Sewing
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
| | - Laura Potasso
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sandra Baumann
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
| | - Denis Schenk
- ARTORG Center, University of Bern, Bern, Switzerland
| | - Furkan Gazozcu
- Department of Osteoporosis, University Hospital Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, University Hospital Bern, Bern, Switzerland
| | | | | | - Christian Meier
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.,Endocrine Clinic and Laboratory, Basel, Switzerland
| |
Collapse
|
12
|
Sobh MM, Abdalbary M, Elnagar S, Nagy E, Elshabrawy N, Abdelsalam M, Asadipooya K, El-Husseini A. Secondary Osteoporosis and Metabolic Bone Diseases. J Clin Med 2022; 11:2382. [PMID: 35566509 PMCID: PMC9102221 DOI: 10.3390/jcm11092382] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Fragility fracture is a worldwide problem and a main cause of disability and impaired quality of life. It is primarily caused by osteoporosis, characterized by impaired bone quantity and or quality. Proper diagnosis of osteoporosis is essential for prevention of fragility fractures. Osteoporosis can be primary in postmenopausal women because of estrogen deficiency. Secondary forms of osteoporosis are not uncommon in both men and women. Most systemic illnesses and organ dysfunction can lead to osteoporosis. The kidney plays a crucial role in maintaining physiological bone homeostasis by controlling minerals, electrolytes, acid-base, vitamin D and parathyroid function. Chronic kidney disease with its uremic milieu disturbs this balance, leading to renal osteodystrophy. Diabetes mellitus represents the most common secondary cause of osteoporosis. Thyroid and parathyroid disorders can dysregulate the osteoblast/osteoclast functions. Gastrointestinal disorders, malnutrition and malabsorption can result in mineral and vitamin D deficiencies and bone loss. Patients with chronic liver disease have a higher risk of fracture due to hepatic osteodystrophy. Proinflammatory cytokines in infectious, autoimmune, and hematological disorders can stimulate osteoclastogenesis, leading to osteoporosis. Moreover, drug-induced osteoporosis is not uncommon. In this review, we focus on causes, pathogenesis, and management of secondary osteoporosis.
Collapse
Affiliation(s)
- Mahmoud M. Sobh
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mohamed Abdalbary
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| | - Sherouk Elnagar
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Eman Nagy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Nehal Elshabrawy
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Mostafa Abdelsalam
- Mansoura Nephrology and Dialysis Unit, Mansoura University, Mansoura 35516, Egypt; (M.M.S.); (M.A.); (S.E.); (E.N.); (N.E.); (M.A.)
| | - Kamyar Asadipooya
- Division of Endocrinology, University of Kentucky, Lexington, KY 40506, USA;
| | - Amr El-Husseini
- Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
13
|
Lai SW. Diabetes mellitus and hip fracture. Osteoporos Int 2022; 33:953-954. [PMID: 35175394 DOI: 10.1007/s00198-022-06309-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Affiliation(s)
- S-W Lai
- Department of Public Health, College of Public Health, and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
- Department of Family Medicine, China Medical University Hospital, No. 2, Yu-De Road, Taichung City, 404, Taiwan.
| |
Collapse
|
14
|
Ha J, Baek KH. Response to letter, re. "Comparison of fracture risk between type 1 and type 2 diabetes: a comprehensive real-world data". Osteoporos Int 2022; 33:955-956. [PMID: 35175393 DOI: 10.1007/s00198-022-06336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Affiliation(s)
- J Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - K-H Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Dhaliwal R, Ewing SK, Vashishth D, Semba RD, Schwartz AV. Greater Carboxy-Methyl-Lysine Is Associated With Increased Fracture Risk in Type 2 Diabetes. J Bone Miner Res 2022; 37:265-272. [PMID: 34820902 PMCID: PMC8828668 DOI: 10.1002/jbmr.4466] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023]
Abstract
Accumulation of advanced glycation end-products (AGE) in bone alters collagen structure and function. Fluorescent AGEs are associated with fractures but less is known regarding non-fluorescent AGEs. We examined associations of carboxy-methyl-lysine (CML), with incident clinical and prevalent vertebral fractures by type 2 diabetes (T2D) status, in the Health, Aging, and Body Composition cohort of older adults. Incident clinical fractures and baseline vertebral fractures were assessed. Cox regression was used to analyze the associations between serum CML and clinical fracture incidence, and logistic regression for vertebral fracture prevalence. At baseline, mean ± standard deviation (SD) age was 73.7 ± 2.8 and 73.6 ± 2.9 years in T2D (n = 712) and non-diabetes (n = 2332), respectively. Baseline CML levels were higher in T2D than non-diabetes (893 ± 332 versus 771 ± 270 ng/mL, p < 0.0001). In multivariate models, greater CML was associated with higher risk of incident clinical fracture in T2D (hazard ratio [HR] 1.49; 95% confidence interval [CI], 1.24-1.79 per 1-SD increase in log CML) but not in non-diabetes (HR 1.03; 95% CI, 0.94-1.13; p for interaction = 0.001). This association was independent of bone mineral density (BMD), glycated hemoglobin (hemoglobin A1c), weight, weight loss, smoking, cystatin-C, and medication use. CML was not significantly associated with the odds of prevalent vertebral fractures in either group. In conclusion, higher CML levels are associated with increased risk of incident clinical fractures in T2D, independent of BMD. These results implicate CML in the pathogenesis of bone fragility in diabetes. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ruban Dhaliwal
- Metabolic Bone Disease Center, State University of New York Upstate Medical University, New York, NY, USA
| | - Susan K. Ewing
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, New York, NY, USA
| | - Richard D. Semba
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann V. Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
16
|
Chen W, Mao M, Fang J, Xie Y, Rui Y. Fracture risk assessment in diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:961761. [PMID: 36120431 PMCID: PMC9479173 DOI: 10.3389/fendo.2022.961761] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Growing evidence suggests that diabetes mellitus is associated with an increased risk of fracture. Bone intrinsic factors (such as accumulation of glycation end products, low bone turnover, and bone microstructural changes) and extrinsic factors (such as hypoglycemia caused by treatment, diabetes peripheral neuropathy, muscle weakness, visual impairment, and some hypoglycemic agents affecting bone metabolism) probably contribute to damage of bone strength and the increased risk of fragility fracture. Traditionally, bone mineral density (BMD) measured by dual x-ray absorptiometry (DXA) is considered to be the gold standard for assessing osteoporosis. However, it cannot fully capture the changes in bone strength and often underestimates the risk of fracture in diabetes. The fracture risk assessment tool is easy to operate, giving it a certain edge in assessing fracture risk in diabetes. However, some parameters need to be regulated or replaced to improve the sensitivity of the tool. Trabecular bone score, a noninvasive tool, indirectly evaluates bone microstructure by analyzing the texture sparsity of trabecular bone, which is based on the pixel gray level of DXA. Trabecular bone score combined with BMD can effectively improve the prediction ability of fracture risk. Quantitative computed tomography is another noninvasive examination of bone microstructure. High-resolution peripheral quantitative computed tomography can measure volume bone mineral density. Quantitative computed tomography combined with microstructure finite element analysis can evaluate the mechanical properties of bones. Considering the invasive nature, the use of microindentation and histomorphometry is limited in clinical settings. Some studies found that the changes in bone turnover markers in diabetes might be associated with fracture risk, but further studies are needed to confirm this. This review focused on summarizing the current development of these assessment tools in diabetes so as to provide references for clinical practice. Moreover, these tools can reduce the occurrence of fragility fractures in diabetes through early detection and intervention.
Collapse
Affiliation(s)
- Weiwei Chen
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Min Mao
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
- *Correspondence: Min Mao,
| | - Jin Fang
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Yikai Xie
- Department of Endocrinology, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Yongjun Rui
- Department of Orthopeadics Surgery, Wuxi No.9 People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|