1
|
Manzulli V, Schiavone A, Castellana S, Albenzio M, Cafiero MA, Camarda A, Capozzi L, D'Angelo F, Parisi A, Vasco I, Sciancalepore D, Marino L, Serrecchia L, Rondinone V, Campaniello M, Crescenzo G, Galante D, Pugliese N. Psychrobacter raelei sp. nov., isolated from a dog with peritonitis. Int J Syst Evol Microbiol 2024; 74. [PMID: 38683659 DOI: 10.1099/ijsem.0.006353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
A strain belonging to the genus Psychrobacter, named PraFG1T, was isolated from the peritoneal effusion of a stray dog during necropsy procedures. The strain was characterized by the phylogenetic analyses based on the nucleotide sequences of 16S and 23S rRNA genes and of gyrB, which placed the strain in the genus Psychrobacter. The nucleotide sequence of the chromosome confirmed the placement, showing an average nucleotide identity of 72.1, 77.7, and 77.5 % with the closest related species, namely Psychrobacter sanguinis, Psychrobacter piechaudii, and Psychrobacter phenylpyruvicus, respectively, thus indicating a novel species. The polyphasic characterization by biochemical and fatty acid profiling as well as MALDI-TOF supported those findings. The strain was halotolerant, capable of growing within a temperature range between 4 and 37 °C, it was positive for catalase and oxidase, indole producing, nitrate reducing, and not able to use 5-keto-d-gluconic acid as a carbon source. Taken together, the data suggest that strain PraFG1T could be considered as representing a novel species, with the name Psychrobacter raelei sp. nov. (type strain PraFG1T=CIP 111873T=LMG 32233T).
Collapse
Affiliation(s)
- Viviana Manzulli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Antonella Schiavone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
- Moredun Research Institute, Edinburgh, UK
| | - Stefano Castellana
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Putignano, Italy
| | - Marzia Albenzio
- Dipartimento di Scienze Agrarie, Alimenti, Risorse naturali e Ingegneria, Università di Foggia, Foggia, Italy
| | - Maria Assunta Cafiero
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Antonio Camarda
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Putignano, Italy
| | - Francesca D'Angelo
- Dipartimento di Scienze Agrarie, Alimenti, Risorse naturali e Ingegneria, Università di Foggia, Foggia, Italy
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Putignano, Italy
| | - Ilaria Vasco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Dario Sciancalepore
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| | - Leonardo Marino
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Valeria Rondinone
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Maria Campaniello
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Giuseppe Crescenzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| | - Domenico Galante
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Nicola Pugliese
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Italy
| |
Collapse
|
2
|
Wang H, Ren L, Liang Y, Zheng K, Guo R, Liu Y, Wang Z, Han Y, Zhang X, Shao H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Psychrobacter Phage Encoding an Antibiotics Resistance Gene Represents a Novel Caudoviral Family. Microbiol Spectr 2023; 11:e0533522. [PMID: 37272818 PMCID: PMC10434257 DOI: 10.1128/spectrum.05335-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/07/2023] [Indexed: 06/06/2023] Open
Abstract
Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.
Collapse
Affiliation(s)
- Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ruizhe Guo
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziyue Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ying Han
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Song H, Lee K, Hwang I, Yang E, Ha J, Kim W, Park S, Cho H, Choe JC, Lee SI, Jablonski P. Dynamics of Bacterial Communities on Eggshells and on Nest Materials During Incubation in the Oriental Tit (Parus minor). MICROBIAL ECOLOGY 2023; 85:429-440. [PMID: 35094098 DOI: 10.1007/s00248-021-01927-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Eggshell bacterial communities may affect hatching success and nestling's condition. Nest materials are in direct contact with the eggshells, but the relationships with the eggshell microbiome during incubation have not been fully elucidated. Here, we characterize eggshell and nest material bacterial communities and their changes during incubation in the Oriental Tit (Parus minor). Bacterial communities on the nest material were relatively stable and remained distinct from the eggshell communities and had higher diversity and greater phylogenetic clustering than the eggshell communities from the same nest, resulting in lower phylogenetic turnover rate of nest material microbiome during incubation than expected by chance. While the species diversity of both communities did not change during incubation, we found significantly greater changes in the structure of bacterial communities on the eggshell than on the nest material. However, eggshell microbiome remained distinct from nest material microbiome, suggesting independent dynamics of the two microbiomes during incubation. We detected an increase in the relative abundance of several bacterial taxa on the eggshell that likely come from the bird's skin, feathers, cloaca/intestine, or uropygial secretion which suggests some exchange of bacteria between the incubating bird and the eggshell. Furthermore, incubation appeared to promote the abundance of antibiotic producing taxa on the eggshell, which may hypothetically inhibit growth of many bacteria including pathogenic ones. Our results suggest that the future studies should focus on simultaneous monitoring of absolute abundance as well as relative abundance in communities on eggshells, nest materials, and the incubating bird's body.
Collapse
Affiliation(s)
- Hokyung Song
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - Keesan Lee
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
| | - Injae Hwang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
| | - Eunjeong Yang
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
| | - Jungmoon Ha
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
| | - Woojoo Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
| | - Sungjin Park
- Office of Planning & Strategy, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea
- Seoul National University Forests, Taehwasan, 572 Docheogwit-ro, Docheok-myeon, Gwangju-si, Gyeonggi-do, South Korea
| | - Hyunjoon Cho
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - Jae Chun Choe
- Interdisciplinary Program of EcoCreative, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, 03760, Seoul, South Korea
| | - Sang-Im Lee
- Department of New Biology, DGIST, 333 Techno Jungang-daero, 42988, Daegu, South Korea.
| | - Piotr Jablonski
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, Seoul, South Korea.
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679, Warsaw, Poland.
| |
Collapse
|
4
|
Park YJ, Kang GU, Jeong M, Singh V, Kim J, Lee K, Choi EJ, Kim HJ, Lee S, Lee SY, Oem JK, Shin JH. Bacterial Profiles of Brain in Downer Cattle with Unknown Etiology. Microorganisms 2022; 11:microorganisms11010098. [PMID: 36677388 PMCID: PMC9862898 DOI: 10.3390/microorganisms11010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Downer cow can be caused by muscular paralysis, neurological damage, metabolic disorder, and/or the complication of microbial infection. However, downer cow with unknown etiology is issued because of the non-detection of its bacterial etiological agent. In this study, differences in the bacterial community in brain tissues between downer cattle with unknown etiology and healthy slaughtered cattle are investigated. Bacterial diversity and representative genera between downer and normal cattle were significantly different (p < 0.05). There are significant differences in representative genera of downer and normal cattle, especially the significance, fold change, and area under the receiver operating characteristic curve score (p < 0.05). Furthermore, the prediction of functional genes in brain microbiota between the downer and normal cattle revealed differences in the cluster of orthologous gene categories, such as lipid transport and metabolism, secondary metabolite biosynthesis, and signal transduction (p < 0.05). This study revealed a significant difference in microbiota between the downer and normal cattle. Thus, we demonstrate that representative genera from downer cattle through 16S rRNA gene amplicon sequencing and microbiota analysis have the potential as candidates for bacterial etiological agents for downer cow.
Collapse
Affiliation(s)
- Yeong-Jun Park
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gi-Ung Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Vineet Singh
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongho Kim
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Republic of Korea
| | - Kyunghyun Lee
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
| | - Eun-Jin Choi
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
| | - Heui-Jin Kim
- Animal and Plant Quarantine Agency, Kimcheon-si 39660, Republic of Korea
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sook-Young Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Republic of Korea
| | - Jae-Ku Oem
- College of Veterinary Medicine, Jeonbuk National University, Iksan-si 54596, Republic of Korea
- Correspondence: (J.-K.O.); (J.-H.S.)
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: (J.-K.O.); (J.-H.S.)
| |
Collapse
|
5
|
Morsli M, Lavigne JP, Drancourt M. Direct Metagenomic Diagnosis of Community-Acquired Meningitis: State of the Art. Front Microbiol 2022; 13:926240. [PMID: 35865915 PMCID: PMC9294516 DOI: 10.3389/fmicb.2022.926240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Current routine diagnosis of community-acquired meningitis (CAM) by multiplex real-time polymerase chain reaction (RT-PCR) is limited in the number of tested pathogens and their full characterisation, requiring additional in vitro investigations to disclose genotype and antimicrobial susceptibility. We reviewed 51 studies published through December 2021 reporting metagenomic next generation sequencing (mNGS) directly applied to the cerebrospinal fluid (CSF). This approach, potentially circumventing the above-mentioned limitations, indicated 1,248 investigated patients, and 617 patients dually investigated by routine diagnosis and mNGS, in whom 116 microbes were detected, including 50 by mNGS only, nine by routine methods only, and 57 by both routine methods and mNGS. Of 217 discordant CSF findings, 103 CSF samples were documented by mNGS only, 87 CSF samples by routine methods only, and 27 CSF samples in which the pathogen identified by mNGS was different than that found using routine methods. Overall, mNGS allowed for diagnosis and genomic surveillance of CAM causative pathogens in real-time, with a cost which is competitive with current routine multiplex RT-PCR. mNGS could be implemented at point-of-care (POC) laboratories as a part of routine investigations to improve the diagnosis and molecular epidemiology of CAM, particularly in the event of failure of routine assays.
Collapse
Affiliation(s)
- Madjid Morsli
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Jean Philippe Lavigne
- VBIC, INSERM U1047, Université de Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, Nîmes, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Laboratoire de Microbiologie, Assistance Publique-Hôpitaux de Marseille, IHU Méditerranée Infection, Marseille, France
- *Correspondence: Michel Drancourt,
| |
Collapse
|
6
|
Zhang K, Wang X, Gong X, Sui J. Gut Microbiome Differences in Rescued Common Kestrels (Falco tinnunculus) Before and After Captivity. Front Microbiol 2022; 13:858592. [PMID: 35794924 PMCID: PMC9251364 DOI: 10.3389/fmicb.2022.858592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Gut microbes significantly impact animal health, yet research on the gut microbiota of most birds, especially raptors, is lacking. This study investigated the effects of dietary and environmental changes on the composition and abundance of gut microbiota in 17 rescued common kestrels (Falco tinnunculus) through 16S rRNA gene high-throughput sequencing of microorganisms in the feces of the birds. Firmicutes (relative abundance, 43.63%), Proteobacteria (37.26%), Actinobacteria (7.31%), and Bacteroidetes (5.48%) were the dominant phyla in the gut microbiota of the common kestrels. A comparison of the gut microbiota before and after captivity revealed that community composition and abundance of the common kestrel gut microbiota differed among different living conditions including diet and environment. At the phylum level, the abundance of Firmicutes was higher (P < 0.05), and that of Proteobacteria was lower (P < 0.05), after captivity (54.62 and 27.16%, respectively) compared with before captivity (33.67 and 46.41%, respectively), but no significant differences were found among other phyla. At the genus level, the abundance of Lactobacillus was higher (P < 0.05) after captivity (15.77%) compared with the abundance before captivity (5.02%). Hierarchical clustering and principal component analyses showed that common kestrels in different living conditions exhibited differences (P < 0.05) in gut microbiota at phylum and genus levels. Functional prediction of gene sequences using PICRUSt2 further revealed that pathways related to glucose metabolism and amino acid metabolism were enhanced (P < 0.05) after captivity. Collectively, the findings from this study demonstrated that the relative abundance of specific microbes in the gut of the rescued common kestrels either increased or decreased, and that dietary and environment changes might be the predominant factors affecting the gut microbiota of these birds during rescue or captivity.
Collapse
|
7
|
MOREIRA ELIZANDRAR, OTTONI JÚLIAR, DE OLIVEIRA VALÉRIAM, PASSARINI MICHELRODRIGOZ. Potential for resistance to freezing by non-virulent bacteria isolated from Antarctica. AN ACAD BRAS CIENC 2022; 94:e20210459. [DOI: 10.1590/0001-3765202220210459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - JÚLIA R. OTTONI
- Universidade Federal da Integração Latino-Americana (UNILA), Brazil
| | | | | |
Collapse
|
8
|
Graff K, Dominguez SR, Messacar K. Metagenomic Next-Generation Sequencing for Diagnosis of Pediatric Meningitis and Encephalitis: A Review. J Pediatric Infect Dis Soc 2021; 10:S78-S87. [PMID: 34951470 PMCID: PMC8703254 DOI: 10.1093/jpids/piab067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metagenomic next-generation sequencing is a novel diagnostic test with the potential to revolutionize the diagnosis of pediatric meningitis and encephalitis through unbiased detection of bacteria, viruses, parasites, and fungi in cerebrospinal fluid. Current literature is mostly observational with variable indications, populations, and timing of testing with resulting variability in diagnostic yield and clinical impact. Diagnostic stewardship strategies are needed to direct testing toward high-impact pediatric populations, to optimize timing of testing, to ensure appropriate interpretation of results, and to guide prompt optimization of antimicrobials. This review highlights the high clinical potential of this test, though future studies are needed to gather clinical impact and cost-effectiveness data for specific indications in pediatric populations.
Collapse
Affiliation(s)
- Kelly Graff
- Section of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA,Corresponding Author: Kelly E. Graff, MD, Pediatric Infectious Diseases, Children’s Hospital Colorado, B055, 13123 E 16th Ave, Aurora, CO 80045, USA. E-mail:
| | - Samuel R Dominguez
- Section of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Pathology and Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Kevin Messacar
- Section of Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
9
|
|
10
|
Zhang L, Wang L, Dai Y, Tao T, Wang J, Wu Y, Zeng X, Zhang J. Effect of Sow Intestinal Flora on the Formation of Endometritis. Front Vet Sci 2021; 8:663956. [PMID: 34222396 PMCID: PMC8249707 DOI: 10.3389/fvets.2021.663956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Endometritis is the main cause of decreased reproductive performance of sows, while one of the most important factors in the etiology of sow endometritis is an aberration of birth canal microbiota. Therefore, people began to pay attention to the microbiota structure and composition of the birth canal of sows with endometritis. Interestingly, we found that the risk of endometritis was increased in the sows with constipation in clinical practice, which may imply that the intestinal flora is related to the occurrence of endometritis. Therefore, understanding the relationship between birth canal microbiota and intestinal microbiota of the host has become exceptionally crucial. In this study, the microbiota of birth canal secretions and fresh feces of four healthy and four endometritis sows were analyzed via sequencing the V3 + V4 region of bacterial 16S ribosomal (rDNA) gene. The results showed a significant difference between endometritis and healthy sows birth canal flora in composition and abundance. Firmicutes (74.36%) and Proteobacteria were the most dominant phyla in birth canal microbiota of healthy sows. However, the majority of beneficial bacteria that belonging to Firmicutes phylum (e.g., Lactobacillus and Enterococcus) declined in endometritis sow. The abundance of Porphyromonas, Clostridium sensu stricto 1, Streptococcus, Fusobacterium, Actinobacillus, and Bacteroides increased significantly in the birth canal microbiota of endometritis sows. Escherichia–Shigella and Bacteroides were the common genera in the birth canal and intestinal flora of endometritis sows. The abundance of Escherichia–Shigella and Bacteroides in the intestines of sows suffering from endometritis were significantly increased than the intestinal microbiota of the healthy sows. We speculated that some intestinal bacteria (such as Escherichia–Shigella and Bacteroides) might be bound up with the onset of sow endometritis based on intestinal microbiota analysis in sows with endometritis and healthy sows. The above results can supply a theoretical basis to research the pathogenesis of endometritis and help others understand the relationship with the microbiota of sow's birth canal and gut.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Linkang Wang
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yimin Dai
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianyu Tao
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jingqi Wang
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yunzheng Wu
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiu Zeng
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jinhua Zhang
- Institute of Animal Disease Prevent and Control, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
11
|
Tsamis KI, Sakkas H, Giannakis A, Ryu HS, Gartzonika C, Nikas IP. Evaluating Infectious, Neoplastic, Immunological, and Degenerative Diseases of the Central Nervous System with Cerebrospinal Fluid-Based Next-Generation Sequencing. Mol Diagn Ther 2021; 25:207-229. [PMID: 33646562 PMCID: PMC7917176 DOI: 10.1007/s40291-021-00513-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cerebrospinal fluid (CSF) is a clear and paucicellular fluid that circulates within the ventricular system and the subarachnoid space of the central nervous system (CNS), and diverse CNS disorders can impact its composition, volume, and flow. As conventional CSF testing suffers from suboptimal sensitivity, this review aimed to evaluate the role of next-generation sequencing (NGS) in the work-up of infectious, neoplastic, neuroimmunological, and neurodegenerative CNS diseases. Metagenomic NGS showed improved sensitivity—compared to traditional methods—to detect bacterial, viral, parasitic, and fungal infections, while the overall performance was maximized in some studies when all diagnostic modalities were used. In patients with primary CNS cancer, NGS findings in the CSF were largely concordant with the molecular signatures derived from tissue-based molecular analysis; of interest, additional mutations were identified in the CSF in some glioma studies, reflecting intratumoral heterogeneity. In patients with metastasis to the CNS, NGS facilitated diagnosis, prognosis, therapeutic management, and monitoring, exhibiting higher sensitivity than neuroimaging, cytology, and plasma-based molecular analysis. Although evidence is still rudimentary, NGS could enhance the diagnosis and pathogenetic understanding of multiple sclerosis in addition to Alzheimer and Parkinson disease. To conclude, NGS has shown potential to aid the research, facilitate the diagnostic approach, and improve the management outcomes of all the aforementioned CNS diseases. However, to establish its role in clinical practice, the clinical validity and utility of each NGS protocol should be determined. Lastly, as most evidence has been derived from small and retrospective studies, results from randomized control trials could be of significant value.
Collapse
Affiliation(s)
- Konstantinos I Tsamis
- Department of Neurology, University Hospital of Ioannina, 45500, Ioannina, Greece. .,School of Medicine, European University Cyprus, 2404, Nicosia, Cyprus.
| | - Hercules Sakkas
- Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexandros Giannakis
- Department of Neurology, University Hospital of Ioannina, 45500, Ioannina, Greece
| | - Han Suk Ryu
- Department of Pathology, Seoul National University Hospital, Seoul, 03080, Korea
| | - Constantina Gartzonika
- Microbiology Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Ilias P Nikas
- School of Medicine, European University Cyprus, 2404, Nicosia, Cyprus
| |
Collapse
|
12
|
Li ZY, Dang D, Wu H. Next-generation Sequencing of Cerebrospinal Fluid for the Diagnosis of Unexplained Central Nervous System Infections. Pediatr Neurol 2021; 115:10-20. [PMID: 33310532 DOI: 10.1016/j.pediatrneurol.2020.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Central nervous system infections cause substantial morbidity and mortality in pediatric patients. However, in approximately half of the clinical cases, the etiology is unidentified. As an unbiased molecular diagnostic technology, next-generation sequencing is gradually being applied to investigate central nervous system infections. This review summarizes and critiques the literature on this new technology for etiologic identification of unexplained central nervous system infections in pediatric patients and discusses the future prospects for development of this technology in pediatrics. METHODS A comprehensive PubMed search was conducted of articles published from January 1, 2008, to June 26, 2020 in order to retrieve all available studies on this topic. Other relevant articles were identified from recent reviews and the bibliographies of the retrieved full-text articles. RESULTS Among the 441 studies retrieved, 26 pediatric studies, comprising 15 case reports and 11 case series, used next-generation sequencing as a diagnostic tool. In these 26 studies, next-generation sequencing was performed on cerebrospinal fluid samples from 529 pediatric patients, and potential causal pathogens were identified in 22.1% of the cases. CONCLUSION There is increasing evidence that next-generation sequencing can play a role in identifying the causes of unexplained encephalitis, meningoencephalitis, and meningitis in pediatric patients, although the diagnostic value of next-generation sequencing is difficult to quantify. There is an increasing need for close collaboration between laboratory scientists and clinicians. We believe that further clinical studies should be performed to evaluate the performance of next-generation sequencing for individual targets and in high-risk populations.
Collapse
Affiliation(s)
- Zhen Yu Li
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Dan Dang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Hui Wu
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
13
|
Proteolytic, Lipolytic and Amylolytic Bacteria Reservoir of Turkey; Cold-Adaptive Bacteria in Detergent Industry. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Kämpfer P, Glaeser SP, Irgang R, Fernández-Negrete G, Poblete-Morales M, Fuentes-Messina D, Cortez-San Martín M, Avendaño-Herrera R. Psychrobacter pygoscelis sp. nov. isolated from the penguin Pygoscelis papua. Int J Syst Evol Microbiol 2020; 70:211-219. [DOI: 10.1099/ijsem.0.003739] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - Rute Irgang
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
| | | | - Matías Poblete-Morales
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
| | - Derie Fuentes-Messina
- Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Chile
| | - Marcelo Cortez-San Martín
- Laboratorio de Virología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Ruben Avendaño-Herrera
- Universidad Andrés Bello, Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| |
Collapse
|
15
|
Han D, Li Z, Li R, Tan P, Zhang R, Li J. mNGS in clinical microbiology laboratories: on the road to maturity. Crit Rev Microbiol 2019; 45:668-685. [PMID: 31691607 DOI: 10.1080/1040841x.2019.1681933] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metagenomic next-generation sequencing (mNGS) is increasingly being applied in clinical laboratories for unbiased culture-independent diagnosis. Whether it can be a next routine pathogen identification tool has become a topic of concern. We review the current implementation of this new technology for infectious disease diagnostics and discuss the feasibility of transforming mNGS into a routine diagnostic test. Since 2008, numerous studies from over 20 countries have revealed the practicality of mNGS in the work-up of undiagnosed infectious diseases. mNGS performs well in identifying rare, novel, difficult-to-detect and coinfected pathogens directly from clinical samples and presents great potential in resistance prediction by sequencing the antibiotic resistance genes, providing new diagnostic evidence that can be used to guide treatment options and improve antibiotic stewardship. Many physicians recognized mNGS as a last resort method to address clinical infection problems. Although several hurdles, such as workflow validation, quality control, method standardisation, and data interpretation, remain before mNGS can be implemented routinely in clinical laboratories, they are temporary and can be overcome by rapidly evolving technologies. With more validated workflows, lower cost and turnaround time, and simplified interpretation criteria, mNGS will be widely accepted in clinical practice. Overall, mNGS is transforming the landscape of clinical microbiology laboratories, and to ensure that it is properly utilised in clinical diagnosis, both physicians and microbiologists should have a thorough understanding of the power and limitations of this method.
Collapse
Affiliation(s)
- Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Ziyang Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| |
Collapse
|
16
|
Zur Hausen H, Bund T, de Villiers EM. Infectious Agents in Bovine Red Meat and Milk and Their Potential Role in Cancer and Other Chronic Diseases. Curr Top Microbiol Immunol 2019; 407:83-116. [PMID: 28349283 DOI: 10.1007/82_2017_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Red meat and dairy products have frequently been suggested to represent risk factors for certain cancers, chronic neurodegenerative diseases, and autoimmune and cardiovascular disorders. This review summarizes the evidence and investigates the possible involvement of infectious factors in these diseases. The isolation of small circular single-stranded DNA molecules from serum and dairy products of Eurasian Aurochs (Bos taurus)-derived cattle, obviously persisting as episomes in infected cells, provides the basis for further investigations. Gene expression of these agents in human cells has been demonstrated, and frequent infection of humans is implicated by the detection of antibodies in a high percentage of healthy individuals. Epidemiological observations suggest their relationship to the development multiple sclerosis, to heterophile antibodies, and to N-glycolylneuraminic acid (Neu5Gc) containing cell surface receptors.
Collapse
Affiliation(s)
- Harald Zur Hausen
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Timo Bund
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | | |
Collapse
|
17
|
Bonwitt J, Tran M, Droz A, Gonzalez A, Glover WA. Psychrobacter sanguinis Wound Infection Associated with Marine Environment Exposure, Washington, USA. Emerg Infect Dis 2019; 24:1942-1944. [PMID: 30226173 PMCID: PMC6154140 DOI: 10.3201/eid2410.171821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report a 26-year-old man with Psychrobacter sanguinis cellulitis of a wound sustained during ocean fishing in Washington, USA, in 2017. Psychrobacter spp. are opportunistic pathogens found in a wide range of environments. Clinicians should be aware of Psychrobacter spp. and perform 16S rRNA sequencing if this pathogen is suspected.
Collapse
|
18
|
Benefits and Drawbacks of Harboring Plasmid pP32BP2, Identified in Arctic Psychrophilic Bacterium Psychrobacter sp. DAB_AL32B. Int J Mol Sci 2019; 20:ijms20082015. [PMID: 31022896 PMCID: PMC6514802 DOI: 10.3390/ijms20082015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022] Open
Abstract
Psychrobacter sp. DAB_AL32B, originating from Spitsbergen island (Arctic), carries the large plasmid pP32BP2 (54,438 bp). Analysis of the pP32BP2 nucleotide sequence revealed the presence of three predicted phenotypic modules that comprise nearly 30% of the plasmid genome. These modules appear to be involved in fimbriae synthesis via the chaperone-usher pathway (FIM module) and the aerobic and anaerobic metabolism of carnitine (CAR and CAI modules, respectively). The FIM module was found to be functional in diverse hosts since it facilitated the attachment of bacterial cells to abiotic surfaces, enhancing biofilm formation. The CAI module did not show measurable activity in any of the tested strains. Interestingly, the CAR module enabled the enzymatic breakdown of carnitine, but this led to the formation of the toxic by-product trimethylamine, which inhibited bacterial growth. Thus, on the one hand, pP32BP2 can enhance biofilm formation, a highly advantageous feature in cold environments, while on the other, it may prevent bacterial growth under certain environmental conditions. The detrimental effect of harboring pP32BP2 (and its CAR module) seems to be conditional, since this replicon may also confer the ability to use carnitine as an alternative carbon source, although a pathway to utilize trimethylamine is most probably necessary to make this beneficial. Therefore, the phenotype determined by this CAR-containing plasmid depends on the metabolic background of the host strain.
Collapse
|
19
|
Reconstruction of the Genomes of Drug-Resistant Pathogens for Outbreak Investigation through Metagenomic Sequencing. mSphere 2019; 4:4/1/e00529-18. [PMID: 30651402 PMCID: PMC6336080 DOI: 10.1128/msphere.00529-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms. Culture-independent methods that target genome fragments have shown promise in identifying certain pathogens, but the holy grail of comprehensive pathogen genome detection from microbiologically complex samples for subsequent forensic analyses remains a challenge. In the context of an investigation of a nosocomial outbreak, we used shotgun metagenomic sequencing of a human fecal sample and a neural network algorithm based on tetranucleotide frequency profiling to reconstruct microbial genomes and tested the same approach using rectal swabs from a second patient. The approach rapidly and readily detected the genome of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in the patient fecal specimen and in the rectal swab sample, achieving a level of strain resolution that was sufficient for confident transmission inference during a highly clonal outbreak. The analysis also detected previously unrecognized colonization of the patient by vancomycin-resistant Enterococcus faecium, another multidrug-resistant bacterium. IMPORTANCE The study results reported here perfectly demonstrate the power and promise of clinical metagenomics to recover genome sequences of important drug-resistant bacteria and to rapidly provide rich data that inform outbreak investigations and treatment decisions, independently of the need to culture the organisms.
Collapse
|
20
|
Ciok A, Dziewit L. Exploring the genome of Arctic Psychrobacter sp. DAB_AL32B and construction of novel Psychrobacter-specific cloning vectors of an increased carrying capacity. Arch Microbiol 2018; 201:559-569. [PMID: 30448872 PMCID: PMC6579772 DOI: 10.1007/s00203-018-1595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Cold-active bacteria are currently of great interest in biotechnology, and their genomic and physiological features have been extensively studied. One of the model psychrotolerant bacteria are Psychrobacter spp. Analysis of Arctic psychrophilic Psychrobacter sp. DAB_AL32B genome content provided an insight into its overall stress response, and genes conferring protection against various life-limiting factors (i.e., low temperature, increased ultraviolet radiation, oxidative stress and osmotic pressure) were recognized and described. Moreover, it was revealed that the strain carries a large plasmid pP32BP2. Its replication system was used for the construction of two novel shuttle vectors (pPS-NR-Psychrobacter-Escherichia coli-specific plasmid and pPS-BR-Psychrobacter-various Proteobacteria-specific plasmid) of an increased carrying capacity, which may be used for genetic engineering of Psychrobacter spp.
Collapse
Affiliation(s)
- Anna Ciok
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
21
|
Oechslin CP, Lenz N, Liechti N, Ryter S, Agyeman P, Bruggmann R, Leib SL, Beuret CM. Limited Correlation of Shotgun Metagenomics Following Host Depletion and Routine Diagnostics for Viruses and Bacteria in Low Concentrated Surrogate and Clinical Samples. Front Cell Infect Microbiol 2018; 8:375. [PMID: 30406048 PMCID: PMC6206298 DOI: 10.3389/fcimb.2018.00375] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/05/2018] [Indexed: 12/16/2022] Open
Abstract
The etiologic cause of encephalitis, meningitis or meningo-encephalitis is unknown in up to 70% of cases. Clinical shotgun metagenomics combined with host depletion is a promising technique to identify infectious etiologies of central nervous system (CNS) infections. We developed a straightforward eukaryotic host nucleic acid depletion method that preserves intact viruses and bacteria for subsequent shotgun metagenomics screening of clinical samples, focusing on cerebrospinal fluid (CSF). A surrogate CSF sample for a CNS infection paradigm was used to evaluate the proposed depletion method consisting of selective host cell lysis, followed by enzymatic degradation of the liberated genomic DNA for final depletion with paramagnetic beads. Extractives were subjected to reverse transcription, followed by whole genome amplification and next generation sequencing. The effectiveness of the host depletion method was demonstrated in surrogate CSF samples spiked with three 1:100 dilutions of Influenza A H3N2 virus (qPCR Ct-values 20.7, 28.8, >42/negative). Compared to the native samples, host depletion increased the amount of the virus subtype reads by factor 7127 and 132, respectively, while in the qPCR negative sample zero vs. 31 (1.4E-4 %) virus subtype reads were detected (native vs. depleted). The workflow was applied to thirteen CSF samples of patients with meningo-/encephalitis (two bacterial, eleven viral etiologies), a serum of an Andes virus infection and a nose swab of a common cold patient. Unlike surrogate samples, host depletion of the thirteen human CSF samples and the nose swab did not result in more reads indicating presence of damaged pathogens due to, e.g., host immune response. Nevertheless, previously diagnosed pathogens in the human CSF samples (six viruses, two bacteria), the serum, and the nose swab (Human rhinovirus A31) were detected in the depleted and/or the native samples. Unbiased evaluation of the taxonomic profiles supported the diagnosed pathogen in two native CSF samples and the native and depleted serum and nose swab, while detecting various contaminations that interfered with pathogen identification at low concentration levels. In summary, damaged pathogens and contaminations complicated analysis and interpretation of clinical shotgun metagenomics data. Still, proper consideration of these issues may enable future application of metagenomics for clinical diagnostics.
Collapse
Affiliation(s)
- Corinne P. Oechslin
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nicole Lenz
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nicole Liechti
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Sarah Ryter
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
| | - Philipp Agyeman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Infectious Diseases Division, Department of Paediatrics, University Hospital Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Christian M. Beuret
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
| |
Collapse
|
22
|
Borthong J, Omori R, Sugimoto C, Suthienkul O, Nakao R, Ito K. Comparison of Database Search Methods for the Detection of Legionella pneumophila in Water Samples Using Metagenomic Analysis. Front Microbiol 2018; 9:1272. [PMID: 29971047 PMCID: PMC6018159 DOI: 10.3389/fmicb.2018.01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Metagenomic analysis has become a powerful tool to analyze bacterial communities in environmental samples. However, the detection of a specific bacterial species using metagenomic analysis remains difficult due to false positive detections of sequences shared between different bacterial species. In this study, 16S rRNA amplicon and shotgun metagenomic analyses were conducted on samples collected along a stream and ponds in the campus of Hokkaido University. We compared different database search methods for bacterial detection by focusing on Legionella pneumophila. In this study, we used L. pneumophila-specific nested PCR as a gold standard to evaluate the results of the metagenomic analysis. Comparison with the results from L. pneumophila-specific nested PCR indicated that a blastn search of shotgun reads against the NCBI-NT database led to false positive results and had problems with specificity. We also found that a blastn search of shotgun reads against a database of the catalase-peroxidase (katB) gene detected L. pneumophila with the highest area under the receiver operating characteristic curve among the tested search methods; indicating that a blastn search against the katB gene database had better diagnostic ability than searches against other databases. Our results suggest that sequence searches targeting long genes specifically associated with the bacterial species of interest is a prerequisite to detecting the bacterial species in environmental samples using metagenomic analyses.
Collapse
Affiliation(s)
- Jednipit Borthong
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| |
Collapse
|
23
|
Forbes JD, Knox NC, Peterson CL, Reimer AR. Highlighting Clinical Metagenomics for Enhanced Diagnostic Decision-making: A Step Towards Wider Implementation. Comput Struct Biotechnol J 2018; 16:108-120. [PMID: 30026887 PMCID: PMC6050174 DOI: 10.1016/j.csbj.2018.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Clinical metagenomics (CMg) is the discipline that refers to the sequencing of all nucleic acid material present within a clinical specimen with the intent to recover clinically relevant microbial information. From a diagnostic perspective, next-generation sequencing (NGS) offers the ability to rapidly identify putative pathogens and predict their antimicrobial resistance profiles to optimize targeted treatment regimens. Since the introduction of metagenomics nearly a decade ago, numerous reports have described successful applications in an increasing variety of biological specimens, such as respiratory secretions, cerebrospinal fluid, stool, blood and tissue. Considerable advancements in sequencing and computational technologies in recent years have made CMg a promising tool in clinical microbiology laboratories. Moreover, costs per sample and turnaround time from specimen receipt to clinical management continue to decrease, making the prospect of CMg more feasible. Many difficulties, however, are associated with CMg and warrant further improvements such as the informatics infrastructure and analytical pipelines. Thus, the current review focuses on comprehensively assessing applications of CMg for diagnostic and subtyping purposes.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Christy-Lynn Peterson
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Aleisha R. Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Lang T, Zou S, Huang K, Guo M, Liu X, He X. Safety assessment of transgenic canola RF3 with bar and barstar gene on Sprague-Dawley (SD) rats by 90-day feeding test. Regul Toxicol Pharmacol 2017; 91:226-234. [DOI: 10.1016/j.yrtph.2017.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
|
25
|
Ai JW, Zhang HC, Cui P, Xu B, Gao Y, Cheng Q, Li T, Wu H, Zhang WH. Dynamic and direct pathogen load surveillance to monitor disease progression and therapeutic efficacy in central nervous system infection using a novel semi-quantitive sequencing platform. J Infect 2017; 76:307-310. [PMID: 29146298 DOI: 10.1016/j.jinf.2017.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jing-Wen Ai
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Hao-Cheng Zhang
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Peng Cui
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Bin Xu
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Yan Gao
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Qi Cheng
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China
| | - Tao Li
- Shanghai public Health Clinical Center, Shanghai, China
| | - Honglong Wu
- Binhai Genomics Institute, Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin, China
| | - Wen-Hong Zhang
- Department of infectious disease, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Leo S, Gaïa N, Ruppé E, Emonet S, Girard M, Lazarevic V, Schrenzel J. Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing. Int J Mol Sci 2017; 18:ijms18092011. [PMID: 28930150 PMCID: PMC5618659 DOI: 10.3390/ijms18092011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022] Open
Abstract
The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus, Corynebacterium jeikeium and Rothia dentocariosa, the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.
Collapse
Affiliation(s)
- Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Nadia Gaïa
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Etienne Ruppé
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Stephane Emonet
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
- Bacteriology Laboratory, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland.
- Service of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
- Bacteriology Laboratory, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland.
| |
Collapse
|
27
|
Hurtado-Ortiz R, Nazimoudine A, Criscuolo A, Hugon P, Mornico D, Brisse S, Bizet C, Clermont D. Psychrobacter pasteurii and Psychrobacter piechaudii sp. nov., two novel species within the genus Psychrobacter. Int J Syst Evol Microbiol 2017; 67:3192-3197. [PMID: 28840795 DOI: 10.1099/ijsem.0.002065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six Gram-negative, non-motile, non-spore-forming, non-pigmented, oxidase- and catalase-positive bacterial strains were deposited in 1972, in the Collection of the Institut Pasteur (CIP), Paris, France. The strains, previously identified as members of the genus Moraxella on the basis of their phenotypic and biochemical characteristics, were placed within the genus Psychrobacter based on the results from comparative 16S rRNA gene sequence studies. Their closest phylogenetic relatives were Psychrobacter sanguinis CIP 110993T, Psychrobacter phenylpyruvicus CIP 82.27T and Psychrobacter lutiphocae CIP 110018T. The DNA G+C contents were between 42.1 and 42.7 mol%. The predominant fatty acids were C18 : 1ω9c, C16 : 0, C12 : 0 3-OH, and C18 : 0. Average nucleotide identity between the six strains and their closest phylogenetic relatives, as well as their phenotypic characteristics, supported the assignment of these strains to two novel species within the genus Psychrobacter. The proposed names for these strains are Psychrobacter pasteurii sp. nov., for which the type strain is A1019T (=CIP 110853T=CECT 9184T), and Psychrobacter piechaudii sp. nov., for which the type strain is 1232T (=CIP110854T=CECT 9185T).
Collapse
Affiliation(s)
- Raquel Hurtado-Ortiz
- CRBIP-Centre de Ressources Biologiques, Institut Pasteur, Paris, France.,CIP-Collection of Institut Pasteur, Institut Pasteur, Paris, France
| | | | - Alexis Criscuolo
- Hub Bioinformatique et Biostatistique - C3BI, USR 3756 IP CNRS - Institut Pasteur, Paris, France
| | - Perrine Hugon
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
| | - Damien Mornico
- Hub Bioinformatique et Biostatistique - C3BI, USR 3756 IP CNRS - Institut Pasteur, Paris, France
| | - Sylvain Brisse
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3525, Paris, France.,Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, Paris, France
| | - Chantal Bizet
- CIP-Collection of Institut Pasteur, Institut Pasteur, Paris, France.,CRBIP-Centre de Ressources Biologiques, Institut Pasteur, Paris, France
| | | |
Collapse
|
28
|
Lim S, Yu HJ, Lee S, Joo EJ, Yeom JS, Woo HY, Park H, Kwon MJ. First Case ofPsychrobacter sanguinisBacteremia in a Korean Patient. ANNALS OF CLINICAL MICROBIOLOGY 2017. [DOI: 10.5145/acm.2017.20.3.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sangeun Lim
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hui-Jin Yu
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seungjun Lee
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jeong Joo
- Division of Infectious Diseases, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Yeon Woo
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyosoon Park
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jung Kwon
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|