1
|
da Cunha ET, Pedrolo AM, Arisi ACM. Effects of sublethal stress application on the survival of bacterial inoculants: a systematic review. Arch Microbiol 2023; 205:190. [PMID: 37055599 DOI: 10.1007/s00203-023-03542-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
The use of commercial bacterial inoculants formulated with plant-growth promoting bacteria (PGPB) in agriculture has shown significant prominence in recent years due to growth-promotion benefits provided to plants through different mechanisms. However, the survival and viability of bacterial cells in inoculants are affected during use and may decrease their effectiveness. Physiological adaptation strategies have attracted attention to solve the viability problem. This review aims to provide an overview of research on selecting sublethal stress strategies to increase the effectiveness of bacterial inoculants. The searches were performed in November 2021 using Web of Science, Scopus, PubMed, and Proquest databases. The keywords "nitrogen-fixing bacteria", "plant growth-promoting rhizobacteria", "azospirillum", "pseudomonas", "rhizobium", "stress pre-conditioning", "adaptation", "metabolic physiological adaptation", "cellular adaptation", "increasing survival", "protective agent" and "protective strategy" were used in the searches. A total of 2573 publications were found, and 34 studies were selected for a deeper study of the subject. Based on the studies analysis, gaps and potential applications related to sublethal stress were identified. The most used strategies included osmotic, thermal, oxidative, and nutritional stress, and the primary cell response mechanism to stress was the accumulation of osmolytes, phytohormones, and exopolysaccharides (EPS). Under sublethal stress, the inoculant survival showed positive increments after lyophilization, desiccation, and long-term storage processes. The effectiveness of inoculant-plants interaction also had positive increments after sublethal stress, improving plant development, disease control, and tolerance to environmental stresses compared to unappealed inoculants.
Collapse
Affiliation(s)
- Elisandra Triches da Cunha
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Marina Pedrolo
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil
| | - Ana Carolina Maisonnave Arisi
- CAL CCA UFSC, Food Science and Technology Department, Federal University of Santa Catarina, Rod. Admar Gonzaga, 1346, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
2
|
Bhutani N, Maheshwari R, Sharma N, Kumar P, Dang AS, Suneja P. Characterization of halo-tolerant plant growth promoting endophytic Bacillus licheniformis MHN 12. J Genet Eng Biotechnol 2022; 20:113. [PMID: 35920988 PMCID: PMC9349330 DOI: 10.1186/s43141-022-00407-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
Abstract
Background Endophytic bacteria overlay significant role in plant growth promotion, eliminating phyto-pathogens and combating stress-conditions. In the present study, we aimed to screen high salt tolerant bacteria and study their adaptive response to elevated salt concentrations. A total of 46 endophytic bacterial isolates from Vigna radiata were screened for salt tolerance. The high salt tolerant endophytic isolate was characterized for alteration in morphology, growth rate, protein profiling, and compatible solute concentrations. Results The isolate MHN12, based upon biochemical characterization and partial 16S rDNA sequencing identified as B. licheniformis (accession number MG273753) was able to tolerate up to 15% NaCl (Sodium Chloride) (2.6 M) concentration. The isolate possessed 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) activity along with indole acetic acid (IAA), siderophore, ammonia, organic acid and hydrogen cyanide (HCN) production. Accumulation of proline was apparent up to 7.5% NaCl concentration and declined afterwards. Ultrastructure analysis using TEM (transmission electron microscopy) revealed the morphological alteration from rods to filaments. Conclusion Acclimatization to salt stress and plant growth promoting activities could contribute to utilization of this bacterium as bioinoculant to enhance the crop yield and discourage the application of chemical fertilizers.
Collapse
Affiliation(s)
- Namita Bhutani
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Rajat Maheshwari
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nidhi Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pradeep Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pooja Suneja
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
3
|
Essential role of extracytoplasmic proteins in the resistance of Gluconacetobacter diazotrophicus to cadmium. Res Microbiol 2022; 173:103922. [DOI: 10.1016/j.resmic.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
4
|
Zhang H, Shen W, Ma C, Li S, Chen J, Mou X, Cheng W, Lei P, Xu H, Gao N, Senoo K. Simultaneous Nitrogen Removal and Plant Growth Promotion Using Salt-tolerant Denitrifying Bacteria in Agricultural Wastewater. Microbes Environ 2022; 37:ME22025. [PMID: 36123022 PMCID: PMC9530716 DOI: 10.1264/jsme2.me22025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Excess nitrate (NO3-) and nitrite (NO2-) in surface waters adversely affect human and environmental health. Bacteria with the ability to remove nitrogen (N) have been isolated to reduce water pollution caused by the excessive use of N fertilizer. To obtain plant growth-promoting rhizobacteria (PGPR) with salt tolerance and NO3--N removal abilities, bacterial strains were isolated from plant rhizosphere soils, their plant growth-promoting effects were evaluated using tomato in plate assays, and their NO3--N removal abilities were tested under different salinity, initial pH, carbon source, and agriculture wastewater conditions. The results obtained showed that among the seven strains examined, five significantly increased the dry weight of tomato plants. Two strains, Pseudomonas stutzeri NRCB010 and Bacillus velezensis NRCB026, showed good plant growth-promoting effects, salinity resistance, and NO3--N removal abilities. The maximum NO3--N removal rates from denitrifying medium were recorded by NRCB010 (90.6%) and NRCB026 (92.0%) at pH 7.0. Higher NO3--N removal rates were achieved using glucose or glycerin as the sole carbon source. The total N (TN) removal rates of NRCB010 and NRCB026 were 90.6 and 66.7% in farmland effluents, respectively, and 79.9 and 81.6% in aquaculture water, respectively. These results demonstrate the potential of NRCB010 and NRCB026 in the development of novel biofertilizers and their use in reducing N pollution in water.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Changyi Ma
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shanshan Li
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Chen
- School of 2011, Nanjing Tech University, Nanjing 211816, China
| | - Xinfei Mou
- School of 2011, Nanjing Tech University, Nanjing 211816, China
| | - Wenwen Cheng
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- School of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- School of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nan Gao
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| |
Collapse
|
5
|
Leandro MR, Andrade LF, de Souza Vespoli L, Soares FS, Moreira JR, Pimentel VR, Barbosa RR, de Oliveira MVV, Silveira V, de Souza Filho GA. Combination of osmotic stress and sugar stress response mechanisms is essential for Gluconacetobacter diazotrophicus tolerance to high-sucrose environments. Appl Microbiol Biotechnol 2021; 105:7463-7473. [PMID: 34542687 DOI: 10.1007/s00253-021-11590-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Sugar-rich environments represent an important challenge for microorganisms. The osmotic and molecular imbalances resulting from this condition severely limit microbial metabolism and growth. Gluconacetobacter diazotrophicus is one of the most sugar-tolerant prokaryotes, able to grow in the presence of sucrose concentrations up to 30%. However, the mechanisms that control its tolerance to such conditions remain poorly exploited. The present work investigated the key mechanisms of tolerance to high sugar in G. diazotrophicus. Comparative proteomics was applied to investigate the main functional pathways regulated in G. diazotrophicus when cultivated in the presence of high sucrose. Among 191 proteins regulated by high sucrose, regulatory pathways related to sugar metabolism, nutrient uptake, compatible solute synthesis, amino acid metabolism, and proteolytic system were highlighted. The role of these pathways on high-sucrose tolerance was investigated by mutagenesis analysis, which revealed that the knockout mutants zwf::Tn5 (sugar metabolism), tbdr::Tn5 (nutrient uptake), mtlK::Tn5 (compatible solute synthesis), pepN::Tn5 (proteolytic system), metH::Tn5 (amino acid metabolism), and ilvD::Tn5 (amino acid metabolism) became more sensitive to high sucrose. Together, our results identified mechanisms involved in response to high sugar in G. diazotrophicus, shedding light on the combination of osmotolerance and sugar-tolerance mechanisms. KEY POINTS: • G. diazotrophicus intensifies glycolysis to metabolize the excess of sugar. • G. diazotrophicus turns down the uptake of nutrients in response to high sugar. • G. diazotrophicus requires amino acid availability to resist high sugar.
Collapse
Affiliation(s)
- Mariana Ramos Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leandro Fernandes Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano de Souza Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabiano Silva Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Julia Rosa Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Vivian Ribeiro Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Roberta Ribeiro Barbosa
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Marcos Vinícius Viana de Oliveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual Do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Leandro MR, Vespoli LDS, Andrade LF, Soares FS, Boechat AL, Pimentel VR, Moreira JR, Passamani LZ, Silveira V, de Souza Filho GA. DegP protease is essential for tolerance to salt stress in the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Microbiol Res 2020; 243:126654. [PMID: 33285429 DOI: 10.1016/j.micres.2020.126654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022]
Abstract
The use of plant growth-promoting bacteria represents an alternative to the massive use of mineral fertilizers in agriculture. However, some abiotic stresses commonly found in the environment, like salinity, can affect the efficiency of this approach. Here, we investigated the key mechanisms involved in the response of the plant growth-promoting bacterium Gluconacetobacter diazotrophicus to salt stress by using morphological and cell viability analyses, comparative proteomics, and reverse genetics. Our results revealed that the bacteria produce filamentous cells in response to salt at 100 mM and 150 mM NaCl. However, such a response was not observed at higher concentrations, where cell viability was severely affected. Proteomic analysis showed that salt stress modulates proteins involved in several pathways, including iron uptake, outer membrane efflux, osmotic adjustment, cell division and elongation, and protein transport and quality control. Proteomic data also revealed the repression of several extracytoplasmic proteins, especially those located at periplasm and outer membrane. The role of such pathways in the tolerance to salt stress was analyzed by the use of mutant defectives for Δtbdr (iron uptake), ΔmtlK and ΔotsA (compatible solutes synthesis), and ΔdegP (quality control of nascent extracytoplasmic proteins). ΔdegP presented the highest sensitivity to salt stress, Δtbdr, andΔmtlK also showed increased sensitivity, but ΔotsA was not affected. This is the first demonstration that DegP protein, a protease with minor chaperone activity, is essential for tolerance to salt stress in G. diazotrophicus. Our data contribute to a better understanding of the molecular bases that control the bacterial response/tolerance to salt stress, shedding light on quality control of nascent extracytoplasmic proteins.
Collapse
Affiliation(s)
- Mariana Ramos Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano de Souza Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Leandro Fernandes Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabiano Silva Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Ana Laura Boechat
- Instituto de Química (Departamento de Bioquímica), Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, Brazil
| | - Vivian Ribeiro Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Julia Rosa Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Lucas Zanchetta Passamani
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte, Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Leandro M, Andrade L, Vespoli L, Moreira J, Pimentel V, Soares F, Passamani L, Silveira V, de Souza Filho G. Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Res Microbiol 2020; 172:103785. [PMID: 33035671 DOI: 10.1016/j.resmic.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance.
Collapse
Affiliation(s)
- Mariana Leandro
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Leandro Andrade
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Luciano Vespoli
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Julia Moreira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vivian Pimentel
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Fabiano Soares
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Lucas Passamani
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Vanildo Silveira
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Gonçalo de Souza Filho
- Laboratório de Biotecnologia (Setor de Biologia Integrativa), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Zeng X, Huang JJ, Hua B, Champagne P. Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances. BIORESOURCE TECHNOLOGY 2020; 310:123309. [PMID: 32344242 DOI: 10.1016/j.biortech.2020.123309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Nitrogenous wastewater is difficult to treat using conventional microorganisms in high salinity and acidic/alkaline environments. Two halotolerant bacteria, heterotrophic nitrifying Stenotrophomonas sp. MSNA-1 and aerobic denitrifying Pseudomonas sp. MSD4, were isolated, and the amplification of functional genes provided the evidences of nitrogen removal performance. The results regarding salinity and pH resistance showed that strain MSNA-1 is robust at salinities of 0-15% and pH of 3-10. It can remove 51.2% of NH4+-N (180 mg/L) at salinity of 10% (pH: 7) and 49.2% of NH4+-N under pH 4 (salinity: 3%). For strain MSD4, it is robust at salinities of 0-10% and pH of 5-11. It can remove 62.4% of TN (100 mg/L) at salinity of 7% (pH: 7) and 72.2% of TN under pH 9 (salinity: 3%). Their excellent salinity and pH resistances make them promising candidates for treating nitrogenous wastewaters under extreme conditions with low operational cost.
Collapse
Affiliation(s)
- Xiaoying Zeng
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China
| | - Jinhui Jeanne Huang
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China.
| | - Binbin Hua
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China
| | - Pascale Champagne
- College of Environmental Science and Engineering/Sino-Canada Joint R&D Centre for Water and Environmental Safety, Nankai University, Tianjin 300071, PR China; Department of Civil Engineering, Queen's University, Kinston, Ontario K7L 3N6, Canada
| |
Collapse
|
9
|
Hamill PG, Stevenson A, McMullan PE, Williams JP, Lewis ADR, S S, Stevenson KE, Farnsworth KD, Khroustalyova G, Takemoto JY, Quinn JP, Rapoport A, Hallsworth JE. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci Rep 2020; 10:5948. [PMID: 32246056 PMCID: PMC7125082 DOI: 10.1038/s41598-020-62552-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 01/01/2023] Open
Abstract
Measures of microbial growth, used as indicators of cellular stress, are sometimes quantified at a single time-point. In reality, these measurements are compound representations of length of lag, exponential growth-rate, and other factors. Here, we investigate whether length of lag phase can act as a proxy for stress, using a number of model systems (Aspergillus penicillioides; Bacillus subtilis; Escherichia coli; Eurotium amstelodami, E. echinulatum, E. halophilicum, and E. repens; Mrakia frigida; Saccharomyces cerevisiae; Xerochrysium xerophilum; Xeromyces bisporus) exposed to mechanistically distinct types of cellular stress including low water activity, other solute-induced stresses, and dehydration-rehydration cycles. Lag phase was neither proportional to germination rate for X. bisporus (FRR3443) in glycerol-supplemented media (r2 = 0.012), nor to exponential growth-rates for other microbes. In some cases, growth-rates varied greatly with stressor concentration even when lag remained constant. By contrast, there were strong correlations for B. subtilis in media supplemented with polyethylene-glycol 6000 or 600 (r2 = 0.925 and 0.961), and for other microbial species. We also analysed data from independent studies of food-spoilage fungi under glycerol stress (Aspergillus aculeatinus and A. sclerotiicarbonarius); mesophilic/psychrotolerant bacteria under diverse, solute-induced stresses (Brochothrix thermosphacta, Enterococcus faecalis, Pseudomonas fluorescens, Salmonella typhimurium, Staphylococcus aureus); and fungal enzymes under acid-stress (Terfezia claveryi lipoxygenase and Agaricus bisporus tyrosinase). These datasets also exhibited diversity, with some strong- and moderate correlations between length of lag and exponential growth-rates; and sometimes none. In conclusion, lag phase is not a reliable measure of stress because length of lag and growth-rate inhibition are sometimes highly correlated, and sometimes not at all.
Collapse
Affiliation(s)
- Philip G Hamill
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - James P Williams
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Abiann D R Lewis
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Sudharsan S
- Department of Chemistry, PGP College of Arts and Science, NH-7, Karur Main Road, Paramathi, Namakkal, Tamil Nadu, 637 207, India
| | - Kath E Stevenson
- Special Collections and Archives, McClay Library, Queen's University Belfast, 10 College Park Avenue, Belfast, BT7 1LP, Northern Ireland
| | - Keith D Farnsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Galina Khroustalyova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Jon Y Takemoto
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT, 84322, USA
| | - John P Quinn
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland.
| |
Collapse
|
10
|
Furtado BU, Gołębiewski M, Skorupa M, Hulisz P, Hrynkiewicz K. Bacterial and Fungal Endophytic Microbiomes of Salicornia europaea. Appl Environ Microbiol 2019; 85:e00305-19. [PMID: 31003988 PMCID: PMC6581177 DOI: 10.1128/aem.00305-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/14/2019] [Indexed: 01/21/2023] Open
Abstract
We examined Salicornia europaea, a nonmycorrhizal halophyte associated with specific and unique endophytic bacteria and fungi. The microbial community structure was analyzed at two sites differing in salinization history (anthropogenic and naturally saline site), in contrasting seasons (spring and fall) and in two plant organs (shoots and roots) via 16S rRNA and internal transcribed spacer amplicon sequencing. We observed distinct communities at the two sites, and in shoots and roots, while the season was of no importance. The bacterial community was less diverse in shoot libraries than in roots, regardless of the site and season, whereas no significant differences were observed for the fungal community. Proteobacteria and Bacteroidetes dominated bacterial assemblages, and Ascomycetes were the most frequent fungi. A root core microbiome operational taxonomic unit belonging to the genus Marinimicrobium was identified. We detected a significant influence of the Salicornia bacterial community on the fungal one by means of cocorrespondence analysis. In addition, pathways and potential functions of the bacterial community in Salicornia europaea were inferred and discussed. We can conclude that bacterial and fungal microbiomes of S. europaea are determined by the origin of salinity at the sites. Bacterial communities seemed to influence fungal ones, but not the other way around, which takes us closer to understanding of interactions between the two microbial groups. In addition, the plant organs of the halophyte filter the microbial community composition.IMPORTANCE Endophytes are particularly fascinating because of their multifaceted lifestyle, i.e., they may exist as either free-living soil microbes or saprobic ones or pathogens. Endophytic communities of halophytes may be different than those in other plants because salinity acts as an environmental filter. At the same time, they may contribute to the host's adaptation to adverse environmental conditions, which may be of importance in agriculture.
Collapse
Affiliation(s)
- Bliss Ursula Furtado
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Monika Skorupa
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Piotr Hulisz
- Department of Soil Science and Landscape Management, Faculty of Earth Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
11
|
de Oliveira MVV, Intorne AC, Vespoli LDS, Andrade LF, Pereira LDM, Rangel PL, de Souza Filho GA. Essential role of K + uptake permease (Kup) for resistance to sucrose-induced stress in Gluconacetobacter diazotrophicus PAl 5. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:85-90. [PMID: 27886654 DOI: 10.1111/1758-2229.12503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Microorganisms are constantly challenged by stressful conditions, such as sugar-rich environments. Such environments can cause an imbalance of biochemical activities and compromise cell multiplication. Gluconacetobacter diazotrophicus PAl 5 is among the most sugar-tolerant bacteria, capable of growing in the presence of up to 876 mM sucrose. However, the molecular mechanisms involved in its response to high sucrose remain unknown. The present work aimed to identify sucrose-induced stress resistance genes in G. diazotrophicus PAl 5. Screening of a Tn5 transposon insertion library identified a mutant that was severely compromised in its resistance to high sucrose concentrations. Molecular characterization revealed that the mutation affected the kupA gene, which encodes a K+ uptake transporter (KupA). Functional complementation of the mutant with the wild type kupA gene recovered the sucrose-induced stress resistance phenotype. High sucrose resistance assay, under different potassium concentrations, revealed that KupA acts as a high-affinity K+ transporter, which is essential for resistance to sucrose-induced stress, when extracellular potassium levels are low. This study is the first to show the essential role of the KupA protein for resistance to sucrose-induced stress in bacteria by acting as a high-affinity potassium transporter in G. diazotrophicus PAl 5.
Collapse
Affiliation(s)
- Marcos V V de Oliveira
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Aline C Intorne
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Luciano de S Vespoli
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Leandro F Andrade
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Leandro de M Pereira
- Laboratório de Biologia Parasitária, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Rio Grande do Sul, Brazil
| | - Patrícia L Rangel
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil
| | - Gonçalo A de Souza Filho
- Laboratório de Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, UENF, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
12
|
Hu F, Wu Q, Song S, She R, Zhao Y, Yang Y, Zhang M, Du F, Soomro MH, Shi R. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiol 2016; 16:287. [PMID: 27919228 PMCID: PMC5139128 DOI: 10.1186/s12866-016-0904-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hemoglobin is a rich source of biological peptides. As a byproduct and even wastewater of poultry-slaughtering facilities, chicken blood is one of the most abundant source of hemoglobin. RESULTS In this study, the chicken hemoglobin antimicrobial peptides (CHAP) were isolated and the antimicrobial and bactericidal activities were tested by the agarose diffusion assay, minimum inhibitory concentration (MIC) analysis, minimal bactericidal concentration (MBC) analysis, and time-dependent inhibitory and bactericidal assays. The results demonstrated that CHAP had potent and rapid antimicrobial activity against 19 bacterial strains, including 9 multidrug-resistant bacterial strains. Bacterial biofilm and NaCl permeability assays, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were further performed to detect the mechanism of its antimicrobial effect. Additionally, CHAP showed low hemolytic activity, embryo toxicity, and high stability in different temperatures and animal plasma. CONCLUSION CHAP may have great potential for expanding production and development value in animal medication, the breeding industry and environment protection.
Collapse
Affiliation(s)
- Fengjiao Hu
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiaoxing Wu
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Shuang Song
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ruiping She
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yue Zhao
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yifei Yang
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Meikun Zhang
- Beijing Huadu Broiler Corporations, Beijing, 102211, China
| | - Fang Du
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Majid Hussain Soomro
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ruihan Shi
- Department of Veterinary Pathology and Public Health, Key Laboratory of Zoonosis of Ministry of Agriculture College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| |
Collapse
|