1
|
Saati-Santamaría Z, Flores-Félix JD, Igual JM, Velázquez E, García-Fraile P, Martínez-Molina E. Speciation Features of Ferdinandcohnia quinoae sp. nov to Adapt to the Plant Host. J Mol Evol 2024; 92:169-180. [PMID: 38502221 PMCID: PMC10978704 DOI: 10.1007/s00239-024-10164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
The bacterial strain SECRCQ15T was isolated from seeds of Chenopodium quinoa in Spain. Phylogenetic, chemotaxonomic, and phenotypic analyses, as well as genome similarity indices, support the classification of the strain into a novel species of the genus Ferdinandcohnia, for which we propose the name Ferdinandcohnia quinoae sp. nov. To dig deep into the speciation features of the strain SECRCQ15T, we performed a comparative genomic analysis of the genome of this strain and those of the type strains of species from the genus Ferdinandcohnia. We found several genes related with plant growth-promoting mechanisms within the SECRCQ15T genome. We also found that singletons of F. quinoae SECRCQ15T are mainly related to the use of carbohydrates, which is a common trait of plant-associated bacteria. To further reveal speciation events in this strain, we revealed genes undergoing diversifying selection (e.g., genes encoding ribosomal proteins) and functions likely lost due to pseudogenization. Also, we found that this novel species contains 138 plant-associated gene-cluster functions that are unique within the genus Ferdinandcohnia. These features may explain both the ecological and taxonomical differentiation of this new taxon.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | | | - José M Igual
- Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Encarna Velázquez
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain.
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain.
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain.
| | - Eustoquio Martínez-Molina
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación en Agrobiotecnología (CIALE), Universidad de Salamanca, Salamanca, Spain
- Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA-CSIC, Salamanca, Spain
| |
Collapse
|
2
|
Xing R, Yang X, Sun H, Ye X, Liao H, Qin S, Chen Z, Zhou S. Extensive production and evolution of free radicals during composting. BIORESOURCE TECHNOLOGY 2022; 359:127491. [PMID: 35724905 DOI: 10.1016/j.biortech.2022.127491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The production of free radicals has been widely documented in natural systems, where they play an important role in most organic matter and contaminants transformation. Here, the production and evolution of free radicals were systematically investigated during composting. Results indicated that multiple reactive oxygen species and environmentally persistent free radicals (G-factor 2.003-2.004) were generated with dynamic changes during composting. The ·OH yield fluctuated significantly with a maximum content of 365.7-1,262.3 μmol/kg at the thermophilic phase of composting, which was closely correlated with the changes of Fe (II) (Pearson's r = 0.928-0.932) and the electron-donating capacity of humus (Pearson's r = 0.958-0.896) during composting. Further investigation suggested that microorganisms driven iron/humus redox conversion could contribute to the production and dynamic changes of free radical during composting. These findings highlight the abiotic processes involving free radicals, and provide a new perspective for humification and contaminants removal during composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinggui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Jovanovic J, Tretiak S, Begyn K, Rajkovic A. Detection of Enterotoxigenic Psychrotrophic Presumptive Bacillus cereus and Cereulide Producers in Food Products and Ingredients. Toxins (Basel) 2022; 14:toxins14040289. [PMID: 35448897 PMCID: PMC9030337 DOI: 10.3390/toxins14040289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the last decade, foodborne outbreaks and individual cases caused by bacterial toxins showed an increasing trend. The major contributors are enterotoxins and cereulide produced by Bacillus cereus, which can cause a diarrheal and emetic form of the disease, respectively. These diseases usually induce relatively mild symptoms; however, fatal cases have been reported. With the aim to detected potential toxin producers that are able to grow at refrigerator temperatures and subsequently produce cereulide, we screened the prevalence of enterotoxin and cereulide toxin gene carriers and the psychrotrophic capacity of presumptive B. cereus obtained from 250 food products (cereal products, including rice and seeds/pulses, dairy-based products, dried vegetables, mixed food, herbs, and spices). Of tested food products, 226/250 (90.4%) contained presumptive B. cereus, which communities were further tested for the presence of nheA, hblA, cytK-1, and ces genes. Food products were mainly contaminated with the nheA B. cereus carriers (77.9%), followed by hblA (64.8%), ces (23.2%), and cytK-1 (4.4%). Toxigenic B. cereus communities were further subjected to refrigerated (4 and 7 °C) and mild abuse temperatures (10 °C). Overall, 77% (94/121), 86% (104/121), and 100% (121/121) were able to grow at 4, 7, and 10 °C, respectively. Enterotoxin and cereulide potential producers were detected in 81% of psychrotrophic presumptive B. cereus. Toxin encoding genes nheA, hblA, and ces gene were found in 77.2, 55, and 11.7% of tested samples, respectively. None of the psychrotrophic presumptive B. cereus were carriers of the cytotoxin K-1 encoding gene (cytK-1). Nearly half of emetic psychrotrophic B. cereus were able to produce cereulide in optimal conditions. At 4 °C none of the examined psychrotrophs produced cereulide. The results of this research highlight the high prevalence of B. cereus and the omnipresence of toxin gene harboring presumptive B. cereus that can grow at refrigerator temperatures, with a focus on cereulide producers.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
| | - Svitlana Tretiak
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Salisburylaan 133, D5 Ingang 78, 9820 Merelbeke, Belgium;
- Impextraco nv, Wiekevorstsesteenweg 38, 2220 Heist-op-den-Berg, Belgium
| | - Katrien Begyn
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
| | - Andreja Rajkovic
- Department of Food Technology, Safety, and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (J.J.); (K.B.)
- Correspondence:
| |
Collapse
|
4
|
Jovanovic J, Ornelis VFM, Madder A, Rajkovic A. Bacillus cereus food intoxication and toxicoinfection. Compr Rev Food Sci Food Saf 2021; 20:3719-3761. [PMID: 34160120 DOI: 10.1111/1541-4337.12785] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
Bacillus cereus is one of the leading etiological agents of toxin-induced foodborne diseases. Its omnipresence in different environments, spore formation, and its ability to adapt to varying conditions and produce harmful toxins make this pathogen a health hazard that should not be underestimated. Food poisoning by B. cereus can manifest itself as an emetic or diarrheal syndrome. The former is caused by the release of the potent peptide toxin cereulide, whereas the latter is the result of proteinaceous enterotoxins (e.g., hemolysin BL, nonhemolytic enterotoxin, and cytotoxin K). The final harmful effect is not only toxin and strain dependent, but is also affected by the stress responses, accessory virulence factors, and phenotypic properties under extrinsic, intrinsic, and explicit food conditions and host-related environment. Infamous portrait of B. cereus as a foodborne pathogen, as well as a causative agent of nongastrointestinal infections and even nosocomial complications, has inspired vast volumes of multidisciplinary research in food and clinical domains. As a result, extensive original data became available asking for a new, both broad and deep, multifaceted look into the current state-of-the art regarding the role of B. cereus in food safety. In this review, we first provide an overview of the latest knowledge on B. cereus toxins and accessory virulence factors. Second, we describe the novel taxonomy and some of the most pertinent phenotypic characteristics of B. cereus related to food safety. We link these aspects to toxin production, overall pathogenesis, and interactions with its human host. Then we reflect on the prevalence of different toxinotypes in foods opening the scene for epidemiological aspects of B. cereus foodborne diseases and methods available to prevent food poisoning including overview of the different available methods to detect B. cereus and its toxins.
Collapse
Affiliation(s)
- Jelena Jovanovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Vincent F M Ornelis
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Wang X, Xia J, Ding S, Zhang S, Li M, Shang Z, Lu J, Ding J. Removing organic matters from reverse osmosis concentrate using advanced oxidation-biological activated carbon process combined with Fe 3+/humus-reducing bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110945. [PMID: 32684517 DOI: 10.1016/j.ecoenv.2020.110945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The high-concentration wastewater produced in the industrial reverse osmosis (RO) process contains a large amount of refractory organic matters, which will have serious impacts on the natural environment and human health. Among them, contaminants can be transformed by humus-reducing bacteria based on humus. In this study, O3- assisted UV-Fenton method was applied as pretreatment. Biological activated carbon (BAC) technology in which humus-reducing bacteria were the dominant bacteria, enhanced by electron donor and Fe3+, was used to dispose of RO concentrate (ROC). The results showed that water treatment process combining oxidation with biological filtration had a positive effect on the removal of stubborn contaminants in ROC. The system was strengthened by adding electron donor and Fe3+, and the chemical oxygen demand (COD) removal efficiency was up to 80.1%. However, when the removal efficiency of UV254 absorbing pollutants reached optimal value (87.3%), that means only Fe3+ was added.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jiaohui Xia
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Shaoxuan Ding
- Faculty of Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Shuo Zhang
- College of Engineering, Northeastern University, Boston, 02115, UK
| | - Menghong Li
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Zhenxiao Shang
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Jie Lu
- Department of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Jincheng Ding
- College of Chemical Engineering, Shandong University of Technology, Zibo, 255000, China
| |
Collapse
|
6
|
Chen P, Wang D, Ren Q, Wu J, Jiang Y, Wu Z, Pan Y, Zhong Y, Guan Y, Chen K, Zhang G. Bacillus aerolatus sp. nov., a novel member of the genus Bacillus, isolated from bioaerosols in a school playground. Arch Microbiol 2020; 202:2373-2378. [PMID: 32583126 DOI: 10.1007/s00203-020-01955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
A Gram-positive, endospore-forming, rod-shaped bacterium with a single flagellum, and a motile strain, designated CX253, was isolated from bioaerosols. The isolate is facultatively anaerobic, is able to grow at 25-45 ℃ (optimum 37 ℃) and pH 6.5-10.0 (optimum 7.5), and can tolerate up to 5.0% NaCl (w/v) under aerobic conditions. The diagnostic diamino acid in the cell wall of strain CX253T is meso-diaminopimelic acid, while major isoprenoid quinone is menaquinone 6 (MK-6) along with a smaller amount of MK-7 (20%). The polar lipid profile is composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phospholipids and glycolipids. The major cellular fatty acid is iso-C15:0 and anteiso-C15:0. Phylogenetic analysis based on 16S rRNA gene and genome sequence grouped strain CX253T into the genus Bacillus. The strain was most closely related to Bacillus thermotolerans CCTCC AB 2012108 T by comparison of 16S rRNA gene sequence (97.2% similarity) and to Bacillus wudalianchiensis CCTCC AB 2015266 T by comparison of gyrB gene sequence (80.1% similarity). The draft genome of strain CX253T comprised 3,929,195 bp with a G + C content of 43.3 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strain CX253T and phylogenetically related Bacillus species were lower than 95% and 70%, respectively. Thus, the polyphasic evidence generated through phenotypic, chemotaxonomic and genomic methods confirmed that strain CX253T (= GDMCC 1.1608 T = KACC 21318 T) was a novel species of the genus Bacillus, for which the name Bacillus aerolatus sp. nov. is proposed.
Collapse
Affiliation(s)
- Pei Chen
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - DeDong Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - QiaoQiao Ren
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - JiGuo Wu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - YunXia Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - ZhenDong Wu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - YiMin Pan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Ying Guan
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Kuncai Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - GuoXia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Xie J, Cheng K, Zhao D, Yang G, Qiao Z, Qiu S, Yu X, Liu H, Li T, Feng H, Yao S, Zhai L. Bacillus aquiflavi sp. nov., isolated from yellow water of strongly flavored Chinese baijiu. Int J Syst Evol Microbiol 2020; 70:3406-3412. [PMID: 32375947 DOI: 10.1099/ijsem.0.004185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, strictly aerobic and rod-shaped bacterium, designated as 3 H-10T, was isolated from a yellow water sample collected from the manufacturing process of strong flavor Chinese baijiu in Yibin region of Sichuan province (PR China). Oval endospores were formed at the subtermini of cells with swollen sporangia. The isolate was able to grow at temperatures of 20-45 °C (optimum growth at 37 °C), at pH 6.0-10.0 (optimum growth at pH 8.0) and in the presence of 0-2 % (w/v) NaCl (optimum growth with 0 % NaCl). Ribose was the major cell-wall sugar, and meso-diaminopimelic acid (meso-DAP) was the diagnostic amino acid. The main polar lipids of 3 H-10T included diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). MK-7 was predominant menaquinone and iso-C15 : 0 (60.7 %) was the major fatty acid. Comparisons of 16S rRNA gene sequence indicated that 3 H-10T was most closely related to Bacillus mesophilus SA4T (96.30 %), Bacillus ginsengihumi Gsoil 114T (96.27 %) and Bacillus shackletonii LMG 18435T (96.27 %). The average nucleotide identity (ANI) values between strain 3 H-10T and the three type strains mentioned above were 69.56, 70.19 and 70.67 %, respectively. The genomic DNA G+C content was 35.4 mol%. On the basis of its phenotypic, chemotaxonomic and phylogenetic properties, strain 3 H-10T represents a novel species of the genus Bacillus, for which the name Bacillus aquiflavi sp. nov. is proposed. The type strain is Bacillus aquiflavi 3 H-10T (=CICC 24755T=JCM 33703T).
Collapse
Affiliation(s)
- Jiuyan Xie
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Kun Cheng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd. Yibin, Sichuan 644000, PR China.,Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, Sichuan 644000, PR China
| | - Guanrong Yang
- Si Chuan Liquor Group Co., Ltd. Si Chuan Liquor Research Institute, Chengdu, Sichuan 610041, PR China
| | - Zongwei Qiao
- Wuliangye Yibin Co., Ltd. Yibin, Sichuan 644000, PR China.,Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, Sichuan 644000, PR China
| | - Shengqiang Qiu
- Si Chuan Liquor Group Co., Ltd. Si Chuan Liquor Research Institute, Chengdu, Sichuan 610041, PR China
| | - Xuejian Yu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Hongqiang Liu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Ting Li
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Huijun Feng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| | - Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing 100015, PR China
| |
Collapse
|
8
|
Sun QL, Yu C, Luan ZD, Lian C, Hu YH, Sun L. Description of Bacillus kexueae sp. nov. and Bacillus manusensis sp. nov., isolated from hydrothermal sediments. Int J Syst Evol Microbiol 2018; 68:829-834. [PMID: 29458542 DOI: 10.1099/ijsem.0.002594] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-staining-positive, strictly aerobic bacilli, designated as strains Ma50-5T and Ma50-6T, were isolated from the hydrothermal sediments of Manus Basin in the western Pacific Ocean. Based on 16S rRNA gene sequence, strains Ma50-5T and Ma50-6T were most closely related to Bacillus alveayuensis (97.0 and 97.2 % identity, respectively). The 16S rRNA gene sequence identity between strains Ma50-5T and Ma50-6T was 97.4 %. The identities between strains Ma50-5T and Ma50-6T and other closely related organisms were below 97.0 %. The G+C contents of the genomic DNA of strains Ma50-5T and Ma50-6T were 43.4 and 47.6 mol%, respectively. The major fatty acids (>10 %) of both strains were iso-C15 : 0 and iso-C17 : 0. The predominant isoprenoid quinone detected in both strains was menaquinone-7. Phylogenetic, physiological, biochemical and morphological analyses suggested that strains Ma50-5T and Ma50-6T represent two novel species of the genus Bacillus, for which the names Bacillus kexueae sp. nov. (type strain Ma50-5T=KCTC 33881T=CCTCC AB 2017020T) and Bacillus manusensis sp. nov. (type strain Ma50-6T=KCTC 33882T=CCTCC AB 2017019T), respectively, are proposed.
Collapse
Affiliation(s)
- Qing-Lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Chao Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhen-Dong Luan
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Chao Lian
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Yong-Hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
9
|
Abstract
Here, we report the whole-genome sequences of four Bacillus strains that exhibit plant probiotic activities. Three of them are the type strains of Bacillus endophyticus, “Bacillus gaemokensis,” and Bacillus trypoxylicola, and the other, Bacillus sp. strain KCTC 13219, should be reclassified into a species belonging to the genus Lysinibacillus.
Collapse
|