1
|
Liao G, Li J, Yu J, Wang W, Liu H, Zhang Z, Yao Y, Cheng K, Hu J, Yang Y, Zhou Z, Fan L. Dietary Bacillus subtilis HGcc-1 improves the growth performance, α-amylase and lipase activities, immunity and antioxidant capacity, intestinal microbiota, and heat stress resistance in Pacific white shrimp (Litopenaeus vannamei). Int J Biol Macromol 2024; 291:138987. [PMID: 39706398 DOI: 10.1016/j.ijbiomac.2024.138987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to investigate the effects of B. subtilis HGcc-1 supplementation on the growth performance, immunity response, antioxidant capacity, intestinal microbiota and heat stress resistance of Litopenaeus vannamei. The results showed that B. subtilis HGcc-1 increased the activities of α-amylase and lipase and the activities of acid phosphatase and alkaline phosphatase, significantly decreased malondialdehyde content and significantly increased the activities of total antioxidant capacity, glutathione S-transferase, total superoxide dismutase, the expression levels of immune-related genes Toll and prophenoloxidase as compared to the control. Analysis of the intestinal microbial revealed that a significant increase in the relative abundance of Firmicutes, such as Lactococcus. Conversely, there was a decrease in the relative abundance of Proteobacteria, such as Vibrio and Shewanella. Furthermore, B. subtilis HGcc-1 supplementation may help alleviating heat stress injury in shrimp by modulating the Hippo signaling pathway. In summary, this study provided a valuable insight into the functional benefits of B. subtilis HGcc-1 supplementation in shrimp, offering a theoretical basis for its practical application in aquaculture.
Collapse
Affiliation(s)
- Guowei Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingping Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiaoping Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanqi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haolin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kaimin Cheng
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang 524017, China
| | - Jun Hu
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang 524017, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Khan S, Khalid A, Yang R, Khalid F, Zahid MH, Liu H, Zhang Y, Wang Z. Effect of Bacillus subtilis Supplemented Diet on Broiler's Intestinal Microbiota and TLRs Gene Expression. Probiotics Antimicrob Proteins 2024; 16:2251-2268. [PMID: 37709981 DOI: 10.1007/s12602-023-10144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
This study aimed to investigate the effects of dietary Bacillus subtilis supplementation on gut microbiota diversity, digestive enzyme activity, and Toll-like receptor (TLR) expression in broiler chickens. A total of 240 "817" crossbred broiler chickens were randomly assigned to four groups: control (basal diet, BD), group I (BD + 300 g/d B. subtilis at 1.08 × 107 CFU/kg), group II (BD + 600 g/d B. subtilis at 2.16 × 107 CFU/kg), and group III (BD + 900 g/d B. subtilis at 3.24 × 107 CFU/kg). Gut microbiota analysis revealed significant improvements in the abundance of specific microorganisms in the treatment groups, with distinct variations in the core microorganisms between the groups. Notably, protease activity in the ileum was significantly increased in groups II (22.59%; p < 0.01) and III (14.49%; p < 0.05) compared to that in the control group. Moreover, significant up-regulation of TLR1A and TLR7 expression was observed in jejunum and cecum of the treated groups. Additionally, the TLR1B expression in the ileum was significantly increased. Furthermore, TLR2A and MyD88 transcription levels were significantly elevated in the jejunum, liver, spleen, and kidneys of experimental groups. Modulations in the expression of various TLR's (TLR2B, TLR3, TLR4, TLR15, and TLR21) were also observed in different organs. The spleen and kidney of B. subtilis-supplemented chickens exhibited upregulated expression of the proinflammatory cytokine IL-1β. Dietary supplementation with B. subtilis in broiler chickens improved the gut microbiota diversity and significantly upregulated TLR's expression in various organs. B. subtilis could be a valuable feed additive, contributing to improved disease management and overall health in broiler chickens.
Collapse
Affiliation(s)
- Salman Khan
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Anam Khalid
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ru Yang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Fatima Khalid
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Muhammad Hamza Zahid
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Haozhe Liu
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunhua Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Zaigui Wang
- College of Life Science, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
3
|
Shokrak NM, Khairi N, Hazrin-Chong NH, Mohamed RA, Abdella B. Isolation, characterization, and assessment of Bacillus rugosus potential as a new probiotic for aquaculture applications. Sci Rep 2024; 14:25019. [PMID: 39443501 PMCID: PMC11499992 DOI: 10.1038/s41598-024-74534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Aquaculture is an important component of the world food supply and a significant source of protein. However, this industry faces numerous problems. Including poor fish feed digestion and uneconomic nutrient utilization. This can result in unsatisfactory growth rates and poor stock performance. Utilizing probiotics, which are beneficial microbes that can enhance digestive systems and general fish health, is one possible way to address these issues. This study was designed to identify and evaluate a novel strain of Bacillus as a promising probiotic. The strain of Bacillus rugosus that was examined and coded NM007 showed promising probiotic characteristics that could help fish digest and utilize their feed more efficiently, reduce feed waste, and improve their digestive systems. B. rugosus NM007 exhibited the ability to produce digestive enzymes like protease, amylase, and lipase, which are the main digestive enzymes. It showed strong auto-aggregation activity and co-aggregation activity with Aeromonas sp. and Streptococcus sp. It also demonstrated tolerance to the presence of bile salt, acidic pH, and salinity up to 60 ppt. The sensitivity analysis towards antibiotics, hemolytic activity and the safety assessment on Nile tilapia fish (Oreochromis niloticus) confirmed the safety of this isolate. Based on the findings of this investigation and the isolate's characterization, Bacillus rugosus NM007 could serve as a new promising probiotic bacterium for aquaculture.
Collapse
Affiliation(s)
- Nermeen M Shokrak
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Nabilah Khairi
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Nur Hazlin Hazrin-Chong
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Radi A Mohamed
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Bahaa Abdella
- Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
4
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
5
|
Elewasy OA, Elrafie AS, Rasheed NA, Adli SH, Younis EM, Abdelwarith AA, Davies SJ, Ibrahim RE. The alleviative effect of Bacillus subtilis-supplemented diet against Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). Vet Res Commun 2024; 48:2513-2525. [PMID: 38869748 DOI: 10.1007/s11259-024-10418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
Bacterial illness causes detrimental impacts on fish health and survival and finally economic losses for the aquaculture industry. Antibiotic medication causes microbial resistance, so alternative control strategies should be applied. In this work, we investigated the probiotic-medicated diet as an alternative control approach for antibiotics in treating Vibrio cholerae infection in Nile tilapia (Oreochromis niloticus). One hundred eighty fish (50 ± 2.5 g Mean ± SD) were allocated into six groups in glass aquariums (96 L) in triplicate for 10 days. Groups 1 (G1), G2, and G 3 were intraperitoneally (IP) injected with 0.5 mL sterilized tryptic soy broth and fed on a basal diet, basal diet contained B. subtilis (BS) (1 × 10 5 CFU/ kg-1 diet), and basal diet contained trimethoprim-sulfamethoxazole (TMP-SMX) (1.5 g/kg-1 diet), respectively. Additionally, G4, G5, and G6 were IP challenged with 0.5 mL of V. cholerae (1.5 × 107 CFU) and received the same feeding regime as G 1 to 3, respectively. The results exhibited that the V. cholera-infected fish exhibited skin hemorrhage, fin rot, and the lowest survival (63.33%). Additionally, lowered immune-antioxidant biomarkers (white blood cells count, serum bactericidal activity, phagocytic activity, phagocytic index, and lysozymes) with higher lipid peroxidation marker (malondialdehyde) were consequences of V. cholerae infection. Noteworthy, fish-fed therapeutic diets fortified with BS and TMP-SMX showed a substantial amelioration in the clinical signs and survival. The BS diet significantly improved (P < 0.05) the immune-antioxidant indices of the infected fish compared to the TMP-SMX diet. The current findings supported the use of a BS-enriched diet as an eco-friendly approach for the control of V. cholerae in O. niloticus.
Collapse
Affiliation(s)
- Omnia A Elewasy
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Amira S Elrafie
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Neveen A Rasheed
- Agriculture Research Center (ARC), Giza, Egypt
- Immunology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
| | - Sara H Adli
- Microbiology Department, Animal Health Research Institute, Zagazig Branch (AHRI), Zagazig, Egypt
- Agriculture Research Center (ARC), Giza, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt.
| |
Collapse
|
6
|
Macias L, Mercado V, Olmos J. Assessment of Bacillus species capacity to protect Nile tilapia from A. hydrophila infection and improve growth performance. Front Cell Infect Microbiol 2024; 14:1354736. [PMID: 39045133 PMCID: PMC11263102 DOI: 10.3389/fcimb.2024.1354736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/19/2024] [Indexed: 07/25/2024] Open
Abstract
The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that β-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.
Collapse
|
7
|
Ponomareva EN, Sorokina MN, Grigoriev VA, Mazanko M, Chistyakov VA, Rudoy DV. Probiotic Bacillus amyloliquefaciens B-1895 Improved Growth of Juvenile Trout. Food Sci Anim Resour 2024; 44:805-816. [PMID: 38974727 PMCID: PMC11222697 DOI: 10.5851/kosfa.2023.e75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 07/09/2024] Open
Abstract
The aim of this study was to evaluate a new Bacillus amyloliquefaciens B-1895 probiotic as a feed additive for farmed trout. Final weight, absolute and average daily gain of fish, and average daily growth rate were higher in the group that received the probiotic than in the control group (p<0.05). Moreover, the probiotic-fed trout had more intense growth rates than the control group (higher by 15.7%; p<0.05). A decrease in feed ratio was also observed in the group that received probiotic (25% decrease; p<0.05), indicating more efficient digestion and assimilation of feed. In general, the introduction of probiotic in the feed did not adversely affect the functional status of the fish. In young trout of the control group, when assessing the general chemical composition of the organism in the muscle tissue revealed significantly (p≤0.001) higher level of moisture content by 5.1% and lower by 11.0% dry matter content. In muscle, the protein content was higher by 1.33% (p≤0.001) and fat content by 2.1% (p≤0.001) in experimental fish. Generally, Lactobacilli, Enterococcus, Vibrio, Bacillus, and coliform bacteria were found in the intestinal samples of rainbow trout. Significant reliable difference (p≤0.05) between the samples of experimental and control groups was noted in the content of Bacillus bacteria. In the control group, 5.0±0.4×103 CFU/g was detected, while in the experimental group 8.4±0.8×104 CFU/g. Overall, the data indicate that probiotic bacteria B. amyloliquefaciens B-1895 has no adverse effect on selected microorganisms in the study fish.
Collapse
Affiliation(s)
- Elena N Ponomareva
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| | - Marina N Sorokina
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Vadim A Grigoriev
- Federal Research Center, Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| | - Mariya Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| | - Vladimir A Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
- Southern Federal University, Rostov-on-Don 344006, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia
| |
Collapse
|
8
|
Rimoldi S, Di Rosa AR, Oteri M, Chiofalo B, Hasan I, Saroglia M, Terova G. The impact of diets containing Hermetia illucens meal on the growth, intestinal health, and microbiota of gilthead seabream (Sparus aurata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1003-1024. [PMID: 38386264 PMCID: PMC11213805 DOI: 10.1007/s10695-024-01314-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
The present study investigated the effect of replacing fishmeal (FM) with insect meal of Hermetia illucens (HI) in the diet of Sparus aurata farmed inshore on growth, gut health, and microbiota composition. Two isolipidic (18% as fed) and isoproteic (42% as fed) diets were tested at the farm scale: a control diet without HI meal and an experimental diet with 11% HI meal replacing FM. At the end of the 25-week feeding trial, final body weight, specific growth rate, feed conversion rate, and hepatosomatic index were not affected by the diet. Gross morphology of the gastrointestinal tract and the liver was unchanged and showed no obvious signs of inflammation. High-throughput sequencing of 16S rRNA gene amplicons (MiSeq platform, Illumina) used to characterize the gut microbial community profile showed that Proteobacteria, Fusobacteria, and Firmicutes were the dominant phyla of the gut microbiota of gilthead seabream, regardless of diet. Dietary inclusion of HI meal altered the gut microbiota by significantly decreasing the abundance of Cetobacterium and increasing the relative abundance of the Oceanobacillus and Paenibacillus genera. Our results clearly indicate that the inclusion of HI meal as an alternative animal protein source positively affects the gut microbiota of seabream by increasing the abundance of beneficial genera, thereby improving gut health and maintaining growth performance of S. aurata from coastal farms.
Collapse
Affiliation(s)
- Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Ambra Rita Di Rosa
- Department of Veterinary Sciences, University of Messina, Messina, Italy.
| | - Marianna Oteri
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Imam Hasan
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Marco Saroglia
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100, Varese, Italy.
| |
Collapse
|
9
|
El-Raghi AA, El-Mezayen MM, Areda HA. Potential effects of probiotics (immunobacteryne; IMB) on growth performance, feed efficacy, blood biochemical, redox balance, nonspecific immunity and heat-shock protein expression of Nile tilapia (Oreochromis niloticus) fingerlings. J Anim Physiol Anim Nutr (Berl) 2024; 108:691-699. [PMID: 38226768 DOI: 10.1111/jpn.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024]
Abstract
The supplementation of aquafeed with probiotics is recommended for feasible aquaculture activities. Therefore, the aim of current study was to investigate the potential effects of probiotics on growth performance, feed utilization, biochemical attributes, redox status and immunity response as well as the transcription of heat-shock protein 70 (HSP70) and insulin-like growth factor-1 (IGF-1) genes of Nile tilapia (Oreochromis niloticus; n = 120). Fish with an initial weight of 8.17 ± 0.02 g/fish were randomly divided into four treatment groups and were fed diets containing 0, 0.5, 1 and 1.5 mg immunobacteryne (IMB)/kg diet respectively. Dietary IMB at 1.5 g/kg diet significantly improved the growth performance, feed consumption and growth hormone secretion of the experimental fish (p < 0.05). The 1 or 1.5 g IMB/kg diet boosted phagocytic activities and innate immune response. Serum total protein, total cholesterol, triglycerides and glucose were significantly increased in the groups that were fed 1 and 1.5 mg IMB/kg diet compared to the control (p < 0.05). Meanwhile, the levels of uric acid, creatinine, liver enzymes (aspartate transaminase and alanine transaminase) and cortisol hormone were significantly reduced in the aforementioned treated groups compared to the control (p < 0.05). All fish fed IMB-supplemented diet showed a significant increase in the expression of IGF-1 gene, while the transcription of HSP70 was significantly decreased (p < 0.05). In conclusion, the dietary inclusion of IMB (1 g/kg diet) enhanced growth promoters, feed efficacy, blood biochemical, redox balance and nonspecific immune responses in Nile tilapia fingerlings.
Collapse
Affiliation(s)
- Ali Ali El-Raghi
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | | | - Hamada A Areda
- Department of Animal, Poultry, and Fish Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| |
Collapse
|
10
|
Mathan Muthu CM, Vickram AS, Bhavani Sowndharya B, Saravanan A, Kamalesh R, Dinakarkumar Y. A comprehensive review on the utilization of probiotics in aquaculture towards sustainable shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109459. [PMID: 38369068 DOI: 10.1016/j.fsi.2024.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Probiotics in shrimp aquaculture have gained considerable attention as a potential solution to enhance production efficiency, disease management, and overall sustainability. Probiotics, beneficial microorganisms, have shown promising effects when administered to shrimp as dietary supplements or water additives. Their inclusion has been linked to improved gut health, nutrient absorption, and disease resistance in shrimp. Probiotics also play a crucial role in maintaining a balanced microbial community within the shrimp pond environment, enhancing water quality and reducing pathogen prevalence. This article briefly summarizes the many ways that probiotics are used in shrimp farming and the advantages that come with them. Despite the promising results, challenges such as strain selection, dosage optimization, and environmental conditions are carefully addressed for successful probiotic integration in shrimp aquaculture. The potential of probiotics as a sustainable and ecologically friendly method of promoting shrimp development and health while advancing environmentally friendly shrimp farming techniques is highlighted in this analysis. Further research is required to fully exploit probiotics' benefits and develop practical guidelines for their effective implementation in shrimp aquaculture.
Collapse
Affiliation(s)
- C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - B Bhavani Sowndharya
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Yuvaraj Dinakarkumar
- Department of Biotechnology, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai, India
| |
Collapse
|
11
|
Aini N, Putri DSYR, Achhlam DH, Fatimah F, Andriyono S, Hariani D, Do HDK, Wahyuningsih SPA. Supplementation of Bacillus subtilis and Lactobacillus casei to increase growth performance and immune system of catfish ( Clarias gariepinus) due to Aeromonas hydrophila infection. Vet World 2024; 17:602-611. [PMID: 38680146 PMCID: PMC11045519 DOI: 10.14202/vetworld.2024.602-611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim Catfish has a high economic value and is popular among consumers. To ensure well-stocked catfish stocks, good fisheries management must also be ensured. The high demand for catfish must be supplemented by preventive measures against pathogenic bacterial infections using probiotics with high potential for Lactobacillus casei and Bacillus subtilis. The aim of this study was to determine the effect of probiotic supplementation consisting of a combination of L. casei and B. subtilis probiotics on the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with Aeromonas hydrophila. Materials and Methods This study used a completely randomized study with eight treatments and three replications. The manipulated factor was the probiotic concentration [0% (A), 0.5% (B), 10% (C), and 15% (D)] in groups of catfish infected and uninfected with A. hydrophila. Combination of B. subtilis, and L. casei that were used in a 1:1 ratio of 108 colony forming unit/mL. The study lasted for 42 days. On the 35th day, A. hydrophila was infected by intramuscular injection into fish. The Statistical Package for the Social Sciences (SPSS) software version 23.0 (IBM SPSS Statistics) was used to analyze data on growth, immune system, and water quality. Results Providing probiotics in feed can increase the nutritional value of feed based on proximate test results. There were significant differences in average daily gain (ADG), feed conversion ratio (FCR), and survival rate (SR) parameters in the group of catfish infected with A. hydrophila (p > 0.05); however, there were no significant differences in final body weight, specific growth rate (SGR), and percentage weight gain. Interleukin-1β (IL-1β) levels were significantly different between treatments C and D. The tumor necrosis factor (TNF) α parameters were significantly different between treatments A and C, whereas the phagocytic activity of treatment A was significantly different from that of treatment D. There was a significant difference (p > 0.05) in the growth parameters of SGR, ADG, and FCR in the group of fish that were not infected with A. hydrophila, with the best treatment being a probiotic concentration of 15%, but there was no significant difference in the SR parameters. IL-1β and TNF-α levels significantly differed between E and E0 (15% probiotics) but were not significantly different in terms of phagocytosis parameters. Conclusion Based on the results of this study, it can be concluded that using a combination of probiotics L. casei and B. subtilis can improve the growth, immune system, water quality, proximate value of feed, and body composition of catfish infected with A. hydrophila.
Collapse
Affiliation(s)
- Nurul Aini
- Doctoral Mathematics and Natural Sciences Study Program, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- Department of Agricultural Technology, KH University. A. Wahab Hasbullah, Jombang, Indonesia
| | | | - Divany Hunaimatul Achhlam
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Fatimah Fatimah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
- University Center of Excellence Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya, Indonesia
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine Sciences, Universitas Airlangga, Surabaya, Indonesia
| | - Dyah Hariani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Surabaya State University, Surabaya, Indonesia
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | | |
Collapse
|
12
|
Neissi A, Majidi Zahed H, Roshan R. Probiotic performance of B. subtilis MS. 45 improves aquaculture of rainbow trout Oncorhynchus mykiss during acute hypoxia stress. Sci Rep 2024; 14:3720. [PMID: 38355704 PMCID: PMC10866961 DOI: 10.1038/s41598-024-54380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
The aim of this study was to produce mutant strains of Bacillus subtilis with high probiotic performance for use in the aquaculture of rainbow trout Oncorhynchus mykiss. The main strain of B. subtilis (MS) was irradiated with gamma rays (5.3 KGy). Subsequently, the B. subtilis mutant strain no. 45 (MS. 45) was selected for bacterial growth performance, resistance to acidic conditions, resistance to bile salts and antibacterial activity against Aeromonas hydrophila and Pseudomonas fluorescens. After 60 days, the rainbow trout (70.25 ± 3.89 g) fed with MS. 45 and MS were exposed to hypoxia stress (dissolved oxygen = 2 ppm). Subsequently, immune indices (lysozyme, bacterial activity and complement activity), hematological indices [hematocrit, hemoglobin, WBC, RBC, mean corpuscular volume (MCV)] and antioxidant factors (T-AOC, SOD and MDA)) were analyzed after and before hypoxia exposure. The expression of immunological genes (IFN-γ, TNF-α, IL-1β, IL-8) in the intestine and the expression of hypoxia-related genes (HIF-1α, HIF-2α, FIH1) in the liver were compared between the different groups under hypoxia and normoxia conditions. Growth, immunological and antioxidant indices improved in group MS. 45 compared to the other groups. Stress indices and associated immunologic and hypoxia expressions under hypoxia and normoxia conditions improved in MS. 45 compared to the other groups. This resulted in improved growth, immunity and stress responses in fish fed with the microbial supplement of MS. 45 (P < 0.05) under hypoxia and normoxia conditions, (P < 0.05), resulting in a significant improvement in trout aquaculture.
Collapse
Affiliation(s)
- Alireza Neissi
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, 31465-1498, Iran.
| | - Hamed Majidi Zahed
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, 31465-1498, Iran
| | - Reza Roshan
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, 31465-1498, Iran
| |
Collapse
|
13
|
Liao Z, Liu Y, Wei H, He X, Wang Z, Zhuang Z, Zhao W, Masagounder K, He J, Niu J. Effects of dietary supplementation of Bacillus subtilis DSM 32315 on growth, immune response and acute ammonia stress tolerance of Nile tilapia ( Oreochromis niloticus) fed with high or low protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:375-385. [PMID: 38058567 PMCID: PMC10695836 DOI: 10.1016/j.aninu.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 12/08/2023]
Abstract
Aquatic animals have benefited from Bacillus subtilis-based probiotics over the past few decades. This study evaluated the effects of B. subtilis DSM 32315 probiotics as a feed additive on growth, immune response and resistance to acute ammonia challenge in Nile tilapia. Specifically, four supplemental levels (0%, 0.1%, 0.2%, and 0.3%) of B. subtilis probiotics were tested under two dietary protein levels (32% and 28%). Five replicate tanks were randomly allotted to each dietary treatment, with each tank containing 30 Nile tilapia. After 8 weeks of feeding, Nile tilapia in each tank were exposed to 43.61 mg/L of total ammonia nitrogen for 48 h. The results revealed that reducing protein levels from 32% to 28% did not affect growth performance or antioxidant capacity. However, the low protein diet tended to induce an inflammatory effect shown by increased expressions of TGF-β and IFN-γ genes (P < 0.05) in the liver. The impact was alleviated by the probiotic supplementation. Compared with the non-supplemented group, 0.1% probiotic supplementation remarkably increased plasma lysozyme activity, total antioxidant capacity and complement C3 and interleukin-10 mRNA levels (P < 0.05) in the 28% protein diet, while higher supplementation of probiotics (0.3%) was shown to be beneficial for the high protein diet (32%). In both the dietary protein levels, 0.1% supplementation of probiotics promoted the antioxidant capacity of Nile tilapia before exposure to ammonia stress but higher probiotic supplementation (0.3%) proved to be necessary under ammonia stress as evidenced by higher fish survival rate. Results exhibited that supplementation with B. subtilis probiotics had a better effect on the intestinal morphology (villi height and width) regardless of protein levels. In conclusion, dietary supplementation of B. subtilis DSM 32315 probiotics at 0.1% in the low protein diet and up to 0.3% in the high protein diet showed beneficial effects on the growth, immunity, and antioxidant capacity of Nile tilapia. Under ammonia stress conditions, the higher supplementation of B. subtilis DSM 32315 probiotics at 0.3% improves stress tolerance of Nile tilapia despite the two dietary protein levels (32%; 28%).
Collapse
Affiliation(s)
- Zhihong Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yantao Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hanlin Wei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuanshu He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziqiao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenxiao Zhuang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Juyun He
- Evonik (China) Co. Ltd., Guangzhou Branch, Guangzhou, China
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Nayak A, Harshitha M, Disha S, Dubey S, Munang'andu HM, Evensen Ø, Karunasagar I, Chakraborty A, Maiti B. In vitro determination of probiotic efficacy of Bacillus subtilis TLDK301120C24 isolated from tilapia against warm water fish pathogens and in vivo validation using gnotobiotic zebrafish model. Microb Pathog 2023; 185:106429. [PMID: 37940062 DOI: 10.1016/j.micpath.2023.106429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.
Collapse
Affiliation(s)
- Ashwath Nayak
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Mave Harshitha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Somanath Disha
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Saurabh Dubey
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Ås, Norway
| | | | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Department of Paraclinical Sciences, PO Box 5003, N-1432, Ås, Norway
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Molecular Genetics & Cancer, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Department of Bio & Nano Technology, Paneer Campus, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
15
|
Bellotti D, Leveraro S, Hecel A, Remelli M. Investigation of metal interactions with YrpE protein of Bacillus subtilis by a polyhistidine peptide model. Anal Biochem 2023; 680:115315. [PMID: 37689096 DOI: 10.1016/j.ab.2023.115315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
The use of model peptides that can simulate the behaviour of a protein domain is a very successful analytical method to study the metal coordination sites in biological systems. Here we study zinc and copper binding ability of the sequence HTHEHSHDHSHAH, which serves as model for the metal interactions with YrpE, a putative metal-binding protein of the ZinT family identified in Bacillus subtilis. Compared to other ZinT proteins secreted by Gram-negative bacteria, the metal-coordination properties of YrpE N-terminal histidine-rich domain have not been yet characterized. Different independent analytical methods, aimed at providing information on the stability and structure of the formed species, have been employed, including potentiometric titrations, electrospray ionization mass spectrometry, UV-Vis spectrophotometry, circular dichroism and electron paramagnetic resonance spectroscopy. The obtained speciation models and equilibrium constants allowed to compare the metal-binding ability of the investigated polyhistidine sequence with that of other well-known histidine-rich peptides. Our thermodynamic results revealed that the YrpE domain HTHEHSHDHSHAH forms more stable metal complexes than other His-rich domains of similar ZinT proteins. Moreover, the studied peptide, containing the alternated (-XH-)n motif, proved to be even more effective than the His6-tag (widely used in immobilized metal ion affinity chromatography) in binding zinc ions.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy; Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland.
| | - Silvia Leveraro
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, 50-383, Wrocław, Poland.
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
16
|
Huang W, Qu L, Gao P, Du G. Bioassay and Whole-Genome Analysis of Bacillus velezensis FIO1408, a Biocontrol Agent Against Pathogenic Bacteria in Aquaculture. Curr Microbiol 2023; 80:354. [PMID: 37740122 DOI: 10.1007/s00284-023-03423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2023] [Indexed: 09/24/2023]
Abstract
Bacterial disease is one of the most critical problems in aquaculture. Probiotics represent a promising biological approach to control bacterial disease because it is effective against pathogens and environmentally friendly. This study assessed the antagonistic activities of a bacterial strain FIO1408 isolated from deep-sea water against many pathogenic bacteria in aquaculture, including Listonella anguillarum, Vibrio parahaemolyticus, Vibrio alginolyticus, Aeromonas hydrophila, Edwardsiella anguillarum, Edwardsiella tarda, and Edwardsiella piscicida. The complete genome of strain FIO1408 consisted of a circular chromosome of 4,137,639 bp and two plasmids of 16,439 bp and 24,472 bp. Phylogenetic analysis showed strain FIO1408 clustered with Bacillus velezensis strains. 12 genes/gene clusters responsible for the synthesis of secondary metabolites were identified in the FIO1408 genome, including three lipopeptides, three polyketides, three bacteriocins, one siderophore, one dipeptide, and one unknown type. Also identified were 273 unique orthologous genes primarily involved in phage resistance, protein hydrolysis, environmental survivability, and genetic stability compared to B. velezensis KACC 13105, B. velezensis FZB42T, and B. velezensis NRRL B-41580. The principal safety of FIO1408 was demonstrated by genetic analyses and feeding trials. These findings will contribute to studies on the biocontrol mechanisms of B. velezensis FIO1408 and facilitate its application as a potent biological control agent against bacterial pathogens in aquaculture.
Collapse
Affiliation(s)
- Wenhao Huang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China
| | - Lingyun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| | - Ping Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266237, China.
| | - Guangxun Du
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources (MNR), Qingdao, 266061, China
| |
Collapse
|
17
|
Mohseni P, Ghorbani A, Fariborzi N. Exploring the potential of cold plasma therapy in treating bacterial infections in veterinary medicine: opportunities and challenges. Front Vet Sci 2023; 10:1240596. [PMID: 37720476 PMCID: PMC10502341 DOI: 10.3389/fvets.2023.1240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Cold plasma therapy is a novel approach that has shown significant promise in treating bacterial infections in veterinary medicine. Cold plasma possesses the potential to eliminate various bacteria, including those that are resistant to antibiotics, which renders it a desirable substitute for traditional antibiotics. Furthermore, it can enhance the immune system and facilitate the process of wound healing. However, there are some challenges associated with the use of cold plasma in veterinary medicine, such as achieving consistent and uniform exposure to the affected area, determining optimal treatment conditions, and evaluating the long-term impact on animal health. This paper explores the potential of cold plasma therapy in veterinary medicine for managing bacterial diseases, including respiratory infections, skin infections, and wound infections such as Clostridium botulinum, Clostridium perfringens, Bacillus cereus, and Bacillus subtilis. It also shows the opportunities and challenges associated with its use. In conclusion, the paper highlights the promising potential of utilizing cold plasma in veterinary medicine. However, to gain a comprehensive understanding of its benefits and limitations, further research is required. Future studies should concentrate on refining treatment protocols and assessing the long-term effects of cold plasma therapy on bacterial infections and the overall health of animals.
Collapse
Affiliation(s)
- Parvin Mohseni
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Niloofar Fariborzi
- Department of Biology and Control of Diseases Vector, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Sanahuja I, Ruiz A, Firmino JP, Reyes-López FE, Ortiz-Delgado JB, Vallejos-Vidal E, Tort L, Tovar-Ramírez D, Cerezo IM, Moriñigo MA, Sarasquete C, Gisbert E. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J Anim Sci Biotechnol 2023; 14:90. [PMID: 37422657 DOI: 10.1186/s40104-023-00895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The development of a sustainable business model with social acceptance, makes necessary to develop new strategies to guarantee the growth, health, and well-being of farmed animals. Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differentiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we integrated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition, through histological and microbiota state, and its transcriptomic profiling. RESULTS After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 1.1% of D. hansenii (17.2 × 105 CFU), an increase of ca. 12% in somatic growth was observed together with an improvement in feed conversion in fish fed a yeast-supplemented diet. In terms of intestinal condition, this probiotic modulated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays-based transcriptomic analysis found 232 differential expressed genes in the anterior-mid intestine of S. aurata, that were mostly related to metabolic, antioxidant, immune, and symbiotic processes. CONCLUSIONS Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency parameters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated. This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii promoted metabolic pathways, mainly protein-related, sphingolipid, and thymidylate pathways, in addition to enhance antioxidant-related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Joana P Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Isabel M Cerezo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
- SCBI, Bioinformatic Unit, University of Malaga, 29590, Malaga, Spain
| | - Miguel A Moriñigo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain.
| |
Collapse
|
19
|
Chomová N, Pavloková S, Sondorová M, Mudroňová D, Fečkaninová A, Popelka P, Koščová J, Žitňan R, Franc A. Development and evaluation of a fish feed mixture containing the probiotic Lactiplantibacillus plantarum prepared using an innovative pellet coating method. Front Vet Sci 2023; 10:1196884. [PMID: 37377950 PMCID: PMC10291687 DOI: 10.3389/fvets.2023.1196884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Due to the intensification of fish farming and the associated spread of antimicrobial resistance among animals and humans, it is necessary to discover new alternatives in the therapy and prophylaxis of diseases. Probiotics appear to be promising candidates because of their ability to stimulate immune responses and suppress the growth of pathogens. Methods The aim of this study was to prepare fish feed mixtures with various compositions and, based on their physical characteristics (sphericity, flow rate, density, hardness, friability, and loss on drying), choose the most suitable one for coating with the selected probiotic strain Lactobacillus plantarum R2 Biocenol™ CCM 8674 (new nom. Lactiplantibacillus plantarum). The probiotic strain was examined through sequence analysis for the presence of plantaricin- related genes. An invented coating technology based on a dry coating with colloidal silica followed by starch hydrogel containing L. plantarum was applied to pellets and tested for the viability of probiotics during an 11-month period at different temperatures (4°C and 22°C). The release kinetics of probiotics in artificial gastric juice and in water (pH = 2 and pH = 7) were also determined. Chemical and nutritional analyses were conducted for comparison of the quality of the control and coated pellets. Results and discussion The results showed a gradual and sufficient release of probiotics for a 24-hour period, from 104 CFU at 10 mi up to 106 at the end of measurement in both environments. The number of living probiotic bacteria was stable during the whole storage period at 4°C (108), and no significant decrease in living probiotic bacteria was observed. Sanger sequencing revealed the presence of plantaricin A and plantaricin EF. Chemical analysis revealed an increase in multiple nutrients compared to the uncoated cores. These findings disclose that the invented coating method with a selected probiotic strain improved nutrient composition and did not worsen any of the physical characteristics of pellets. Applied probiotics are also gradually released into the environment and have a high survival rate when stored at 4°C for a long period of time. The outputs of this study confirm the potential of prepared and tested probiotic fish mixtures for future use in in vivo experiments and in fish farms for the prevention of infectious diseases.
Collapse
Affiliation(s)
- Natália Chomová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Sylvie Pavloková
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Miriam Sondorová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Dagmar Mudroňová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Adriána Fečkaninová
- Department of Pharmaceutical Technology, Pharmacognosy and Botany, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Rudolf Žitňan
- Research Institute for Animal Production, National Agricultural and Food Center, Nitra, Slovakia
| | - Aleš Franc
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| |
Collapse
|
20
|
Chen H, Sun X, He H, Ren H, Duan H, Zhang C, Chang Q, Zhang R, Ge J. Lysinibacillus capsici 38,328 isolated from agricultural soils as a promising probiotic candidate for intestinal health. Arch Microbiol 2023; 205:251. [PMID: 37249701 DOI: 10.1007/s00203-023-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/06/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
There is an increasing interest in the use of spore-forming Bacillus spp. as probiotic ingredients on the market. However, probiotics Bacillus species are insufficient, and more safe Bacillus species were required. In the study, traditional fermented foods and soil samples were collected from more than ten provinces in China, and 506 Bacillus were selected from 109 samples. Using the optimized procedure, we screened nine strains, which successfully passed the acid, alkali, bile salt, and trypsin resistance test. Drug sensitivity test results showed that three Bacillus out of the nine isolates exhibited antibiotic sensitivity to more than 29 antibiotics. The three strains sensitive to antibiotics were identified by 16S ribosomal RNA, recA, and gyrB gene analysis, two isolates (38,327 and 38,328) belong to the species Lysinibacillus capsici and one isolate (37,326) belong to Bacillus halotolerans. Moreover, the three strains were confirmed safe through animal experiments. Finally, L. capsici 38,327 and 38,328 showed protections in the Salmonella typhimurium infection mouse model, which slowed down weight loss, reduced bacterial load, and improved antioxidant capacity. Altogether, our data demonstrated that selected L. capsici strains can be used as novel probiotics for intestinal health.
Collapse
Affiliation(s)
- Huinan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyi Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Huilin He
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongkun Ren
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Haoyuan Duan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chuankun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingru Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China.
| |
Collapse
|
21
|
Wang Y, Xu Y, Cao G, Zhou X, Wang Q, Fu A, Zhan X. Bacillus subtilis DSM29784 attenuates Clostridium perfringens-induced intestinal damage of broilers by modulating intestinal microbiota and the metabolome. Front Microbiol 2023; 14:1138903. [PMID: 37007491 PMCID: PMC10060821 DOI: 10.3389/fmicb.2023.1138903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Necrotic enteritis (NE), especially subclinical NE (SNE), without clinical symptoms, in chicks has become one of the most threatening problems to the poultry industry. Therefore, increasing attention has been focused on the research and application of effective probiotic strains as an alternative to antibiotics to prevent SNE in broilers. In the present study, we evaluated the effects of Bacillus subtilis DSM29784 (BS) on the prevention of subclinical necrotic enteritis (SNE) in broilers. A total of 480 1-day-old broiler chickens were randomly assigned to four dietary treatments, each with six replicates pens of twenty birds for 63 d. The negative (Ctr group) and positive (SNE group) groups were only fed a basal diet, while the two treatment groups received basal diets supplemented with BS (1 × 109 colony-forming units BS/kg) (BS group) and 10mg/kg enramycin (ER group), respectively. On days 15, birds except those in the Ctr group were challenged with 20-fold dose coccidiosis vaccine, and then with 1 ml of C. perfringens (2 × 108) at days 18 to 21 for SNE induction. BS, similar to ER, effectively attenuated CP-induced poor growth performance. Moreover, BS pretreatment increased villi height, claudin-1 expression, maltase activity, and immunoglobulin abundance, while decreasing lesional scores, as well as mucosal IFN-γ and TNF-α concentrations. In addition, BS pretreatment increased the relative abundance of beneficial bacteria and decreased that of pathogenic species; many lipid metabolites were enriched in the cecum of treated chickens. These results suggest that BS potentially provides active ingredients that may serve as an antibiotic substitute, effectively preventing SNE-induced growth decline by enhancing intestinal health in broilers.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | | | - Xihong Zhou
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qian Wang
- Yancheng Biological Engineering Higher Vocational Technology School, Yancheng, China
| | - Aikun Fu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| | - Xiuan Zhan
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, College of Animal Sciences, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Xiuan Zhan, ; Aikun Fu,
| |
Collapse
|
22
|
Amiin MK, Lahay AF, Putriani RB, Reza M, Putri SME, Sumon MAA, Jamal MT, Santanumurti MB. The role of probiotics in vannamei shrimp aquaculture performance – A review. Vet World 2023; 16:638-649. [PMID: 37041844 PMCID: PMC10082739 DOI: 10.14202/vetworld.2023.638-649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
Vannamei shrimp (Litopenaeus vannamei) is an important food commodity of economic benefit due to its high price, low susceptibility to disease, and popularity for consumption. These advantages have led many farmers to cultivate vannamei shrimp. Efforts are underway to improve the aquaculture performance of this species, including the use of probiotics, which are non-pathogenic bacteria that aid in digestion and help fight disease. Probiotics are usually obtained from the intestines of vannamei shrimp or the culture environment. They are low-cost, non-pathogenic, and largely non-toxic source of antibiotics and are able to synthesize various metabolites that have antibacterial functions and applications. Research on probiotic use has primarily been focused on increasing vannamei shrimp aquaculture production. Bacterial species, such as Lactobacillus or Nitrobacter, can be administered orally, by injection, or as a supplement in aquaculture water. Probiotics help to improve survival rate, water quality, immunity, and disease resistance through space competition with disease-causing bacteria, such as Vibrio spp. An increased number of probiotic bacteria suppresses the growth and presence of pathogenic bacteria, which lowers disease susceptibility. In addition, probiotic bacteria also aid digestion by breaking down complex compounds into simpler substances that the body can absorb more easily. This mechanism improves growth performance in terms of weight, length, and feed conversion ratio. This review aimed to provide information regarding contribution of probiotic to improve vannamei shrimp production in aquaculture.
Keywords: application, bacteria, farm, microbiome, shrimp.
Collapse
Affiliation(s)
- Muhammad Kholiqul Amiin
- Department of Marine Science, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Almira Fardani Lahay
- Department of Marine Science, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Rizha Bery Putriani
- Department of Aquatic Resources, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Muhammad Reza
- Department of Aquatic Resources, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Septi Malidda Eka Putri
- Department of Aquaculture, Faculty of Agriculture, Universitas Lampung, Bandar Lampung, Indonesia
| | - Md. Afsar Ahmed Sumon
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mamdoh T. Jamal
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Muhammad Browijoyo Santanumurti
- Department of Marine Biology, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
- Corresponding author: Muhammad Browijoyo Santanumurti, e-mail: Co-authors: MKA: , AFL: , RBP: , MR: , SMEP: , MAAS: , MTJ:
| |
Collapse
|
23
|
Chouayekh H, Farhat-Khemakhem A, Karray F, Boubaker I, Mhiri N, Abdallah MB, Alghamdi OA, Guerbej H. Effects of Dietary Supplementation with Bacillus amyloliquefaciens US573 on Intestinal Morphology and Gut Microbiota of European Sea Bass. Probiotics Antimicrob Proteins 2023; 15:30-43. [PMID: 35933471 DOI: 10.1007/s12602-022-09974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 01/18/2023]
Abstract
Probiotics or direct-fed microbials (DFM) have proven strong potential for improving aquaculture sustainability. This study aims to evaluate the effects of dietary supplementation with the DFM Bacillus amyloliquefaciens US573 on growth performance, intestinal morphology, and gut microbiota (GM) of European sea bass. For this purpose, healthy fish were divided into two feeding trials in triplicate of 25 fish in each tank. The fish were fed with a control basal diet or a DFM-supplemented diet for 42 days. Results showed that, while no significant effects on growth performance were observed, the length and abundance of villi were higher in the DFM-fed group. The benefic effects of DFM supplementation included also the absence of cysts formation and the increase in number of goblet cells playing essential role in immune response. Through DNA metabarcoding analysis of GM, 5 phyla and 14 major genera were identified. At day 42, the main microbiome changes in response to B. amyloliquefaciens US573 addition included the significant decrease in abundance of Actinobacteria phylum that perfectly correlates with a decrease in Nocardia genus representatives which represent serious threat in marine and freshwater fish. On the contrary, an obvious dominance of Betaproteobacteria associated with the abundance in Variovorax genus members, known for their ability to metabolize numerous substrates, was recorded. Interestingly, Firmicutes, particularly species affiliated to the genus Sporosarcina with recent promising probiotic potential, were identified as the most abundant. These results suggest that B. amyloliquefaciens US573 can be effectively recommended as health-promoting DFM in European sea bass farming.
Collapse
Affiliation(s)
- Hichem Chouayekh
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia. .,Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia.
| | - Ameny Farhat-Khemakhem
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Insaf Boubaker
- Laboratory of Microbial Biotechnology, Enzymatic and Biomolecules (LMBEB), Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Road Sidi Mansour 6 km, Sfax, 3018, Tunisia
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Asfan Road, 21959, P.O. Box 34, Jeddah, Kingdom of Saudi Arabia
| | - Hamadi Guerbej
- National Institute of Sea Sciences and Technologies, Monastir, Tunisia
| |
Collapse
|
24
|
Ge YD, Guo YT, Jiang LL, Wang HH, Hou SL, Su FZ. Enzymatic Characterization and Coenzyme Specificity Conversion of a Novel Dimeric Malate Dehydrogenase from Bacillus subtilis. Protein J 2023; 42:14-23. [PMID: 36534341 PMCID: PMC9761052 DOI: 10.1007/s10930-022-10087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Malate is an important material to various industrials and clinical applications. Bacillus subtilis is a widely used biocatalyst tool for chemical production. However, the specific enzymatic properties of malate dehydrogenase from Bacillus subtilis (BsMDH) remain largely unknown. In the present study, BsMDH was cloned, recombinantly expressed and purified to test its enzymatic properties. The molecular weight of single unit of BsMDH was 34,869.7 Da. Matrix-Assisted Laser-Desorption Ionization-Time-of-Flight Mass Spectrometry and gel filtration analysis indicated that the recombinant BsMDH could form dimers. The kcat/Km values of oxaloacetate and NADH were higher than those of malate and NAD+, respectively, indicating a better catalysis in the direction of malate synthesis than the reverse. Furthermore, six BsMDH mutants were constructed with the substitution of amino acids at the coenzyme binding site. Among them, BsMDH-T7 showed a greatly higher affinity and catalysis efficiency to NADPH than NADH with the degree of alteration of 2039, suggesting the shift of the coenzyme dependence from NADH to NADPH. In addition, BsMDH-T7 showed a relatively lower Km value, but a higher kcat and kcat/Km than NADPH-dependent MDHs from Thermus flavus and Corynebacterium glutamicum. Overall, these results indicated that BsMDH and BsMDH-T7 mutant might be promising enzymes for malate production.
Collapse
Affiliation(s)
- Ya-Dong Ge
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China.
| | - Yi-Tian Guo
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Lu-Lu Jiang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Hui-Hui Wang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Shao-Lin Hou
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| | - Feng-Zhi Su
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, People's Republic of China
| |
Collapse
|
25
|
Ji Z, Zhu C, Zhu X, Ban S, Yu L, Tian J, Dong L, Wen H, Lu X, Jiang M. Dietary host-associated Bacillus subtilis supplementation improves intestinal microbiota, health and disease resistance in Chinese perch (Siniperca chuatsi). ANIMAL NUTRITION 2023. [DOI: 10.1016/j.aninu.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Bacillus subtilis Effects on Growth Performance and Health Status of Totoaba macdonaldi Fed with High Levels of Soy Protein Concentrate. Animals (Basel) 2022; 12:ani12233422. [PMID: 36496943 PMCID: PMC9736510 DOI: 10.3390/ani12233422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
T. macdonaldi is a carnivorous species endemic to the Gulf of California. Indiscriminate exploitation has put totoaba at risk, inducing the development of aquaculture procedures to grow it without affecting the wild population. However, aquafeeds increasing cost and low yields obtained with commercial feeds have motivated researchers to look for more nutritious and cheaper alternatives. Soybean (SB) is the most popular alternative to fishmeal (FM); however, antinutritional factors limit its use in carnivorous species. In this study, we analyzed B. subtilis 9b probiotic capacity to improve growth performance and health status of T. macdonaldi fed with formulations containing 30% and 60% substitution of fish meal with soy protein concentrate (SPC). In addition, we investigated its effect on internal organs condition, their capacity to modulate the intestinal microbiota, and to boost the immunological response of T. macdonaldi against V. harveyi infections. In this sense, we found that T. macdonaldi fed with SPC30Pro diet supplemented with B. subtilis 9b strain and 30% SPC produced better results than SPC30C control diet without B. subtilis and DCML commercial diet. Additionally, animals fed with SPC60Pro diet supplemented with B. subtilis 9b strain and 60% SPC doubled their weight and produced 20% more survival than SPC60C control diet without B. subtilis. Thus, B. subtilis 9b improved T. macdonaldi growth performance, health status, modulated intestinal microbiota, and increased animal's resistance to V. harveyi infections, placing this bacterium as an excellent candidate to produce functional feeds with high levels of SPC.
Collapse
|
27
|
Dahal S, Jensen AB, Lecocq A. Effect of Probiotics on Tenebrio molitor Larval Development and Resistance against the Fungal Pathogen Metarhizium brunneum. INSECTS 2022; 13:1114. [PMID: 36555024 PMCID: PMC9788617 DOI: 10.3390/insects13121114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In recent years, the yellow mealworm (Tenebrio molitor L.) has demonstrated its potential as a mass-produced edible insect for food and feed. However, challenges brought on by pathogens in intensive production systems are unavoidable and require the development of new solutions. One potential solution is the supplementation of probiotics in the insect's diet to obtain the double benefits of improved growth and enhanced immune response. The aim of this study was to evaluate the effects of diet-based probiotic supplementation on T. molitor larval survival, growth, and resistance against a fungal pathogen. Three probiotic strains, namely Pediococcus pentosacceus KVL-B19-01 isolated from T. molitor and two commercialized strains for traditional livestock, Enterococcus faecium 669 and Bacillus subtilis 597, were tested. Additionally, when larvae were 9 weeks old, a pathogen challenge experiment was conducted with the fungus Metarhizium brunneum. Results showed that both P. pentosaceus and E. faecium improved larval growth and larval survival following fungal exposure compared to the non-supplemented control diet. Since B. subtilis did not improve larval performance in terms of either development or protection against M. brunneum, this study suggests the need for further research and evaluation of probiotic strains and their modes of action when considered as a supplement in T. molitor's diet.
Collapse
|
28
|
Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. FISH & SHELLFISH IMMUNOLOGY 2022; 131:244-256. [PMID: 36182025 DOI: 10.1016/j.fsi.2022.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of two probiotics namely Clostridium butyricum and Bacillus subtilis, and one prebiotic known as algae-sourced β-1,3 glucan, on the overall performances of grass turtles (Chinemys reevesii) juveniles. Growth performance, immune responses, enzymatic antioxidant activities, intestinal histomorphology, and disease resistance against the challenge with Aeromonas veronii were assessed. Two hundred and sixteen (216) juvenile turtles with an average initial weight of 106.35 ± 0.03 g were divided into four groups, each containing three replicates with 18 turtles per each replicate, which were fed a basic diet (control group, GD) and a basal diet supplemented with C. butyricum 1.0 × 108 CFU per kg (GA group), or with B. subtilis 1.0 × 108 CFU per kg (GB group) and with algal-sourced β-1,3-glucan 50 mg per kg (GC group), respectively. After the turtles had been fed for 60 d, 90 d, and 120 d of the experimental period, the growth performance and survival rate (SR), intestinal digestive enzyme, hepatic and intestinal antioxidant capacity, serum biochemical indexes, and immune performance were measured. The results showed that the weight gain rate and SR were significantly enhanced (P < 0.05) after fed probiotics and algae-sourced β-1,3-glucan in all test times;The pepsin, amylase, acid phosphatase, total antioxidant capacity, triglyceride, alkaline phosphatase, urea nitrogen, cholesterol, total protein, IgA, IgG, IgM at 120 d were significantly enhanced (P<0.05) after fed C. butyricum. The intestinal villi heights, widths, and the thickness of the muscle layer were significantly higher in groups GA, GB, and GC than those reared within the GD control group (P < 0.05). After injecting the challenge by A. veronii the survival rate of grass turtles in the GA group (75%) was significantly higher than the other three groups (P<0.05), while there was no significant difference between the GB and GC groups compared with the control GD group, respectively (P>0.05). Overall, these results indicated that dietary supplementation with probiotics or algae-sourced β-1,3 glucan, exhibited positive effects on C. reevesii. In particular, C. butyricum, showed the greatest improvements relating to growth, immune response, antioxidant activity, intestinal health, and disease resistance.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
29
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Arumugam N, Almansour AI, Keerthana M, Perumal K. Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2022; 308:136459. [PMID: 36150495 DOI: 10.1016/j.chemosphere.2022.136459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues (PRs) in farmed shrimps are concerning food safety risks. Globally, India is a major exporter of pacific white leg shrimp (P. vannamei). This study was undertaken to analyze PRs in the water, sediments, shrimps, and feed at different growth stages to evaluate the ecotoxicological and human health risks. PRs in the seawater and sediments ranged from not detected (ND) to 0.027 μg/L and 0.006-12.39 μg/kg, and the concentrations were within the maximum residual limits (MRLs) and sediment quality guidelines prescribed by the World Health Organization and Canadian Environment Guidelines, respectively. PRs in shrimps at three growth stages viz. Postlarvae, juvenile, and adults, ranged from ND to 0.522 μg/kg, below the MRLs set by Codex Alimentarius Commission and European Commission. Most of the PRs in water, sediments, and shrimps did not vary significantly (p > 0.05) from days of culture (DOC-01) to DOC-90. The hazard quotient (HQ) and hazard ratio (HR) were found to be < 1, indicating that consumption of shrimps has no noncarcinogenic and carcinogenic risks. PRs in shrimp feed ranged from ND to 0.777 μg/kg and were found to be below the MRLs set by EC, which confirms that the feed fed is safe for aquaculture practices and does not biomagnify in animals. The risk quotient (RQ) and toxic unit (TU) ranged from insignificant level (ISL) to 0.509 and ISL to 0.022, indicating that PRs do not pose acute and chronic ecotoxicity to aquatic organisms. The study suggested no health risk due to PRs in shrimps cultured in India and exported to the USA, China, and Japan. However, regular monitoring of PRs is recommended to maintain a sustainable ecosystem.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muruganantham Keerthana
- Department of Fisheries and Fishermen Welfare, Department of Fisheries (AD Office), Thoothukudi, 628 008, Tamil Nadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
30
|
Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob Proteins 2022; 14:1151-1169. [PMID: 35881232 DOI: 10.1007/s12602-022-09966-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.
Collapse
|
31
|
Sun X, Li X, Tang S, Lin K, Zhao T, Chen X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157620. [PMID: 35901899 DOI: 10.1016/j.scitotenv.2022.157620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaculture is one of the fastest growing fields of global food production industry in recent years. To maintain the ecological health of aquaculture water body and the sustainable development of aquaculture industry, the treatment of aquaculture tail water (ATW) is becoming an indispensable task. This paper discussed the demand of environmentally friendly and cost-effective technologies for ATW treatment and the potential of algal-bacterial symbiosis system (ABSS) in ATW treatment. The characteristics of ABSS based technology for ATW treatment were analyzed, such as energy consumption, greenhouse gas emission, environmental adaptability and the possibility of removal or recovery of carbon, nitrogen and phosphorus as resource simultaneously. Based on the principle of ABSS, this paper introduced the key environmental factors that should be paid attention to in the establishment of ABSS, and then summarized the species of algae, bacteria and the proportion of algae and bacteria commonly used in the establishment of ABSS. Finally, the reactor technologies and the relevant research gaps in the establishment of ABSS were reviewed and discussed.
Collapse
Affiliation(s)
- Xiaoyan Sun
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China.
| | - Xiaopeng Li
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Shi Tang
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Kairong Lin
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Tongtiegang Zhao
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082 Zhuhai, China
| | - Xiaohong Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; Center for Water Resources and Environment Research, Sun Yat-sen University, 510275 Guangzhou, China
| |
Collapse
|
32
|
Wei LS, Goh KW, Abdul Hamid NK, Abdul Kari Z, Wee W, Van Doan H. A mini-review on co-supplementation of probiotics and medicinal herbs: Application in aquaculture. Front Vet Sci 2022; 9:869564. [PMID: 36406063 PMCID: PMC9666728 DOI: 10.3389/fvets.2022.869564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2024] Open
Abstract
The aquaculture industry is geared toward intensification and successfully meets half of the world's demand for fish protein. The intensive farming system exposes the animal to the risk of disease outbreaks, which has economic consequences. Antibiotics are commonly used for the health management of aquaculture species. However, this has several drawbacks, including the increase in antibiotic resistance in pathogenic bacteria and the entry of antibiotic residues into the human food chain, which is a public health and environmental concern. The potential of probiotics, prebiotics, synbiotics, and medicinal herbs as alternatives to antibiotics for the health management of aquaculture species has been investigated in numerous studies. This review discusses the potential use of combinations of probiotics and medicinal herbs as prophylactic agents in aquaculture, along with the definitions, sources, and modes of action. The positive aspects of combining probiotics and medicinal herbs on growth performance, the immune system, and disease resistance of aquaculture species are also highlighted. Overall, this review addresses the potential of combinations of probiotics and medicinal herbs as feed additives for aquaculture species and the key role of these feed additives in improving the welfare of aquaculture species.
Collapse
Affiliation(s)
- Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | | | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
33
|
Said MM, El-barbary YA, Ahmed OM. Assessment of Performance, Microbial Community, Bacterial Food Quality, and Gene Expression of Whiteleg Shrimp ( Litopenaeus vannamei) Reared under Different Density Biofloc Systems. AQUACULTURE NUTRITION 2022; 2022:3499061. [PMID: 36860427 PMCID: PMC9973138 DOI: 10.1155/2022/3499061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 06/18/2023]
Abstract
Biofloc shrimp culture, as a way of improving shrimp production, gains worldwide consideration. However, the effects of the biofloc system on shrimp culture at high densities could be a challenge. Here, this study is aimed at identifying a better stocking density of whiteleg shrimp (Litopenaeus vannamei) between two intensive biofloc systems of 100 and 300 org./m2. Achieving that was done by comparing growth performance, water quality, feed utilization, microbial loads from water and shrimps, and gene expression of growth, stress, and immune-related genes. Shrimp postlarvae with a mean weight of 35.4 ± 3.7 mg were reared in six indoor cement tanks (36 m3 total capacity each) at two stocking densities (3 replicates each) for a rearing period of 135 days. Better final weight, weight gain, average daily weight gain, specific growth rate, biomass increase percentage, and survival rate were associated with lower density (100/m2), whereas high-density showed significantly higher total biomass. Better feed utilization was found in the lower density treatment. Lower density treatment enhanced water quality parameters, including higher dissolved oxygen and lower nitrogenous wastes. Heterotrophic bacterial count in water samples was recorded as 5.28 ± 0.15 and 5.11 ± 0.28 log CFU/ml from the high- and low-density systems, respectively, with no significant difference. Beneficial bacteria such as Bacillus spp. were identified in water samples from both systems, still, the Vibrio-like count was developed in the higher density system. Regarding shrimp food bacterial quality, the total bacterial count in the shrimp was recorded as 5.09 ± 0.1 log CFU/g in the 300 org./m2 treatment compared to 4.75 ± 0.24 log CFU/g in the lower density. Escherichia coli was isolated from the shrimps in a lower density group while Aeromonas hydrophila and Citrobacter freundii were associated with shrimps from a higher density system. Immune-related genes including prophenoloxidase, superoxide dismutase (SOD), and lysozyme (LYZ) expressions were all significantly higher expressed in the shrimp from the lower density treatment. Toll receptor (LvToll), penaiedin4 (PEN4), and stress-related gene (HSP 70) showed a decreased gene expression in the shrimp raised in the lower density. Significant upregulation of growth-related gene (Ras-related protein-RAP) expression was associated with the lower stocking density system. In conclusion, the current study found that applying high stocking density (300 org./m2) contributes negatively to performance, water quality, microbial community, bacterial food quality, and gene expression of immune, stress, and growth-related genes when compared with the lower stocking density system (100 org./m2) under biofloc system.
Collapse
Affiliation(s)
- Mohamed M. Said
- Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Y. A. El-barbary
- Department of Fish Health and Diseases, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - O. M. Ahmed
- Department of Fish Processing and Technology, Faculty of Fish Resources, Suez University, Suez, Egypt
| |
Collapse
|
34
|
Yao YY, Xia R, Yang YL, Hao Q, Ran C, Zhang Z, Zhou ZG. Study about the combination strategy of Bacillus subtilis wt55 with AiiO-AIO6 to improve the resistance of zebrafish to Aeromonas veronii infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:447-454. [PMID: 35985627 DOI: 10.1016/j.fsi.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/12/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Disease problems will seriously restrict the sustainable development of aquaculture, and the environmental-friendly prevention strategies are urgently needed. Probiotics and quorum-quenching enzyme are innovative strategies to control bacterial diseases. Firstly, the bacteriostatic activity of Bacillus subtilis wt55 strain and quenching enzyme AiiO-AIO6 on the growth of Aeromonas veronii were tested in vitro, and the results showed wt55 inhibit the growth of A. veronii, but AiiO-AIO6 did not. Then, the synergistic effects of simple combination of B. subtilis wt55 and AiiO-AIO6 were evaluated next. The results showed this combination could improve the survival rate and significantly reduce the number of invasive A. veronii in gut after challenge compared to the other groups, corresponding to the lower intestinal alkaline phosphatase activity. One of its effect mechanisms is the combination could inhibit the growth of A. veronii in vitro; the other is direct immersion of germ-free zebrafish proved AiiO-AIO6 did not directly regulate the innate immune response of the host, but wt55 did it, and the simple combination group could significantly reduce the expression of nuclear factor kappa-B (NF-κB) and proinflammatory cytokine interleukin-1β (IL-1β), increase the expression of lysozyme gene; and the third is intestinal microbiota also plays a regulatory role: the gut microbiota from combination group could significantly inhibit the expression of IL-1β and NF-κB, and increased the expression of transforming growth factor-β (TGF-β) and lysozyme. Given the effectiveness of this simple combination, a B. subtilis quorum-quenching recombinant expression strain in which AiiO-AIO6 was surface displayed on the spores and secreted by vegetative cells was built. The results showed that the survival rate after challenge was lower than that of the group treated with AiiO-AIO6 or wt55 alone, and the expression of proinflammatory cytokine IL-1β and NF-κB were significantly higher. Our study demonstrated the effectiveness of B. subtilis and AiiO-AIO6 simple combination and established an efficient B. subtilis expression system.
Collapse
Affiliation(s)
- Yuan-Yuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Xia
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Lin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Qiang Hao
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhi-Gang Zhou
- Sino-Norway Fish Gastrointestinal Microbiota Joint Lab, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Knobloch S, Skírnisdóttir S, Dubois M, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. Impact of Putative Probiotics on Growth, Behavior, and the Gut Microbiome of Farmed Arctic Char (Salvelinus alpinus). Front Microbiol 2022; 13:912473. [PMID: 35928148 PMCID: PMC9343752 DOI: 10.3389/fmicb.2022.912473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Beneficial bacteria promise to promote the health and productivity of farmed fish species. However, the impact on host physiology is largely strain-dependent, and studies on Arctic char (Salvelinus alpinus), a commercially farmed salmonid species, are lacking. In this study, 10 candidate probiotic strains were subjected to in vitro assays, small-scale growth trials, and behavioral analysis with juvenile Arctic char to examine the impact of probiotic supplementation on fish growth, behavior and the gut microbiome. Most strains showed high tolerance to gastric juice and fish bile acid, as well as high auto-aggregation activity, which are important probiotic characteristics. However, they neither markedly altered the core gut microbiome, which was dominated by three bacterial species, nor detectably colonized the gut environment after the 4-week probiotic treatment. Despite a lack of long-term colonization, the presence of the bacterial strains showed either beneficial or detrimental effects on the host through growth rate enhancement or reduction, as well as changes in fish motility under confinement. This study offers insights into the effect of bacterial strains on a salmonid host and highlights three strains, Carnobacterium divergens V41, Pediococcus acidilactici ASG16, and Lactiplantibacillus plantarum ISCAR-07436, for future research into growth promotion of salmonid fish through probiotic supplementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Leeper
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Biosciences, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Viggó Þ. Marteinsson
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
- *Correspondence: Viggó Þ. Marteinsson,
| |
Collapse
|
36
|
Nikiforov-Nikishin D, Kochetkov N, Klimov V, Bugaev O. Effects of chelated complexes and probiotics on histological and morphometric parameters of the gastrointestinal tract of juvenile carp ( Cyprinus carpio). NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2082495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dimitri Nikiforov-Nikishin
- Department of Ecology and Nature Management, K.G. Razumovsky Moscow State University of Technologies and Management, MGUTM (FCU), Moscow, Russia
| | - Nikita Kochetkov
- Department of Biology and Ichthyology, K.G. Razumovsky Moscow State University of Technologies and Management, MGUTM (FCU), Moscow, Russia
| | - Victor Klimov
- K.G. Razumovsky Moscow State University of Technologies and Management, MGUTM (FCU), Moscow, Russia
| | - Oleg Bugaev
- K.G. Razumovsky Moscow State University of Technologies and Management, MGUTM (FCU), Moscow, Russia
| |
Collapse
|
37
|
Kuebutornye FKA, Lu Y, Wang Z, Mraz J. Functional annotation and complete genome analysis confirm the probiotic characteristics of Bacillus species isolated from the gut of Nile tilapia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Antagonistic activity and mode of action of trypacidin from marine-derived Aspergillus fumigatus against Vibrio parahaemolyticus. 3 Biotech 2022; 12:131. [PMID: 35607390 DOI: 10.1007/s13205-022-03194-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the antagonistic activity and mode of action of trypacidin from marine-derived Aspergillus fumigatus against Vibrio parahaemolyticus. Results indicated that the minimal inhibitory concentration and minimal bactericidal concentration of trypacidin against V. parahaemolyticus were 31.25 and 62.5 μg/mL, respectively, which was better than that of streptomycin sulfate. Trypacidin remarkably inhibited the growth of V. parahaemolyticus and had a strong destructive effect on cell wall permeability and integrity, cell membrane permeability, and morphological alterations. Its potential as an antibacterial agent for aquatic products must be further explored.
Collapse
|
39
|
Natural Feed Supplements Improve Growth, Non-Specific Immune Responses and Resistance against Vibrio alginolyticus in Lates calcarifer. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study aimed to investigate the effects of dietary natural feed supplement on the growth performance, non-specific responses, and disease resistance in Lates calcarifer. Three commercial products (A, B, and C) containing a basal probiotic mixture were tested. Product A contained a basal mixture of Paenibacillus sp., Bacillus subtilis, Bacillus amyloliquefaciens, and Lactobacillus rhamnosus (107 cfu/g for each probiotic); product B contained additional Lactobacillus plantarum (1010 cfu/g); and product C contained additional soybean peptides (500 g/kg) and garlic powder (1 g/kg). Each product was supplemented into subject diets at dosages of 1 or 2 g/kg (designated as the A1, A2, B1, B2, C1, and C2 groups, respectively). Following an eight-week trial, growth parameters (specific growth rate and feed conversion ratio), non-specific immune responses (O2− production, phagocytic rate, and phagocytic index), and the results of a challenge test against Vibrio alginolyticus were evaluated. The results show that all probiotic supplement groups exhibited an improvement in growth performance compared to the control group (non-probiotic diet). In terms of non-specific immunity parameters, a significant improvement in O2− production was found in the C2 group, whereas significant improvements in phagocytic activity were found in all the B and C groups. The C2 group displayed optimal O2− production, phagocytic rate, and phagocytic index results. For the challenge test, the C groups showed higher Vibrio resistance than the other experimental groups and the control group. These results suggest that product C, given at dosages of 2 g/kg, may serve as a growth-promoting and immunostimulatory additive for the cultivation of Asian seabass.
Collapse
|
40
|
Ramírez M, Debut A. Control of vibriosis in shrimp through the management of the microbiota and the immune system. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shrimp aquaculture is constantly threatened by recurrent outbreaks of diseases caused by pathogenic bacteria of the genus Vibrio. Acute hepatopancreatic necrosis disease (AHPND) is one of the most aggressive vibriosis reported to date in the shrimp industry. AHPND provokes massive mortalities, causing economic losses with strong social impacts. Control of vibriosis requires the application of multifactorial strategies. This includes vibrio exclusion, shrimp microbiota, particularly in the digestive tract, and shrimp health management through immune stimulation. This paper reviews these two strategies for the prophylactic control of vibriosis. First, we describe the devastating effects of AHPND and the cellular and humoral effectors of the shrimp immune system to cope with this pathology. Secondly, the mechanisms of action of probiotics and their positive impacts are highlighted, including their immunostimulant effects and their role in the balance of the shrimp microbiota. Finally, we reviewed immunostimulants and prebiotics polysaccharides that together with probiotics act benefiting growth, feed efficiency and the microbiota of the digestive tract of farmed shrimp.
Collapse
Affiliation(s)
- Mery Ramírez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alexis Debut
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Avenida General Rumiñahui S/N y Ambato, P.O. Box 171-5-231B, Sangolquí, Ecuador
| |
Collapse
|
41
|
Docando F, Nuñez-Ortiz N, Serra CR, Arense P, Enes P, Oliva-Teles A, Díaz-Rosales P, Tafalla C. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 124:142-155. [PMID: 35367376 DOI: 10.1016/j.fsi.2022.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Bacillus spp. are well known for their probiotic properties. Hence, the long-term feeding of Bacillus spp. strains to different fish species has been proved to confer beneficial effects regarding growth or pathogen resistance, among others. However, whether these strains could function as mucosal adjuvants, up-regulating immune responses after a single administration, has not yet been investigated in fish. Thus, in the current work, we have performed a series of experiments in rainbow trout (Oncorhynchus mykiss) aimed at establishing the potential of two Bacillus subtilis spore-forming strains, designated as ABP1 and ABP2, as oral adjuvants/immunostimulants. As an initial step, we evaluated their transcriptional effects on the rainbow trout intestinal epithelial cell line RTgutGC, and in gut tissue explants incubated ex vivo with the two strains. Their capacity to adhere to RTgutGC cells was also evaluated by flow cytometry. Although both strains had the capacity to modulate the transcription of several genes related to innate and adaptive immune responses, it was the ABP1 strain that led to stronger transcriptional effects, also exerting a higher binding capacity to intestinal epithelial cells. Consequently, we selected this strain to establish its effects on splenic B cells upon in vitro exposure as well as to determine the transcriptional effects exerted in the spleen, kidney, and gut after a single oral administration of the bacteria. Our results showed that B. subtilis ABP1 had the capacity to modulate the proliferation, IgM secreting capacity and MHC II surface expression of splenic B cells. Finally, we confirmed that this strain also induced the transcription of genes involved in inflammation, antimicrobial genes, and genes involved in T cell responses upon a single oral administration. Our results provide valuable information regarding how B. subtilis modulates the immune response of rainbow trout, pointing to the usefulness of the ABP1 strain to design novel oral vaccination strategies for aquaculture.
Collapse
Affiliation(s)
- F Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain; Autonomous University of Madrid, Madrid, Spain
| | - N Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - C R Serra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - P Arense
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - P Enes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - A Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| | - C Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
42
|
Ochoa-Romo JP, Cornejo-Granados F, Lopez-Zavala AA, Viana MT, Sánchez F, Gallardo-Becerra L, Luque-Villegas M, Valdez-López Y, Sotelo-Mundo RR, Cota-Huízar A, López-Munguia A, Ochoa-Leyva A. Agavin induces beneficial microbes in the shrimp microbiota under farming conditions. Sci Rep 2022; 12:6392. [PMID: 35430601 PMCID: PMC9013378 DOI: 10.1038/s41598-022-10442-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Prebiotics and probiotics have shown a number of beneficial impacts preventing diseases in cultured shrimps. Complex soluble carbohydrates are considered ideal for fostering microbiota biodiversity by fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPS). Here we evaluated the growth performance and microbiota composition of the white shrimp Litopenaeus vannamei after dietary intervention using agavin as a FODMAP prebiotic under farming conditions. Adult L. vannamei were raised at a shrimp farm and the effect of agavin supplemented at 2% (AG2) or 10% (AG10) levels were compared to an agavin-free basal diet (BD). After 28 days-trial, the feed conversion ratio, total feed ingested, and protein efficiency ratio was significantly improved on animals fed with AG2. At the same time, no effect on growth performance was observed in AG10. Surprisingly, after sequencing the V3-V4 regions of the 16S rRNA gene a higher microbial richness and diversity in the hepatopancreas and intestine was found only in those animals receiving the AG10 diet, while those receiving the AG2 diet had a decreased richness and diversity, both diets compared to the BD. The beta diversity analysis showed a clear significant microbiota clustering by agavin diets only in the hepatopancreas, suggesting that agavin supplementation had a more substantial deterministic effect on the microbiota of hepatopancreas than on the intestine. We analyzed the literature to search beneficial microbes for shrimp's health and found sequences for 42 species in our 16S data, being significantly increased Lactobacillus pentosus, Pseudomonas putida and Pseudomonas synxantha in the hepatopancreas of the AG10 and Rodopseudomonas palustris and Streptococcus thermophiles th1435 in the hepatopancreas of the AG2, both compared to BD. Interestingly, when we analyzed the abundance of 42 beneficial microbes as a single microbial community "meta-community," found an increase in their abundance as agavin concentration increases in the hepatopancreas. In addition, we also sequenced the DNA of agavin and found 9 of the 42 beneficial microbes. From those, Lactobacillus lactis and Lactobacillus delbrueckii were found in shrimps fed with agavin (both AG2 and AG10), and Lysinibacillus fusiformis in AG10 and they were absent the BD diet, suggesting these three species could be introduced with the agavin to the diet. Our work provides evidence that agavin supplementation is associated with an increase of beneficial microbes for the shrimp microbiota at farming conditions. Our study provides the first evidence that a shrimp prebiotic may selectively modify the microbiota in an organ-dependent effect.
Collapse
Affiliation(s)
- Juan Pablo Ochoa-Romo
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Alonso A Lopez-Zavala
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora (UNISON), Blvd., Rosales y Luis Encinas, 83000, Hermosillo, SON, Mexico
| | - María Teresa Viana
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Km 107 carretera Tijuana/Ensenada, 22860, Ensenada, BC, Mexico
| | - Filiberto Sánchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Luigui Gallardo-Becerra
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Mirna Luque-Villegas
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Yesenia Valdez-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas Num. 46, Col. La Victoria, 83304, Hermosillo, SON, Mexico
| | - Andrés Cota-Huízar
- Camarones El Renacimiento SPR de RI, Justino Rubio No. 26, Col Ejidal, 81330, Higuera de Zaragoza, SIN, Mexico
| | - Agustín López-Munguia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Col. Chamilpa, 62420, Cuernavaca, MOR, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología (IBT), Universidad Nacional Autónoma de México (UNAM), Av. Universidad #2001, Col. Chamilpa, 62210, Cuernavaca, MOR, Mexico.
| |
Collapse
|
43
|
Yu C, Zhang C, Salisu A, Wang Y. Comparison of the Intestinal Bacteria Between Black Seabass Centropristis striata Reared in Recirculating Aquaculture System and Net Pen. Curr Microbiol 2022; 79:109. [PMID: 35175391 DOI: 10.1007/s00284-022-02789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022]
Abstract
Determination of diversity and function of the bacteria in fish gut is essential to understanding the interaction between intestinal bacteria and their host organism. This study compared intestinal bacterial community of black seabass (Centropristis striata) hatched by the same breeding farm but reared in different aquaculture systems, an indoor recirculating aquaculture system (RAS) and an inshore net pen (INP). The fish were fed with formulated feed manufactured by same feed company. Bacteria in fish gut, formulated feed and seawater were identified by 16S rRNA high throughout sequencing (HTS). Total 1484 OTUs, which belonged to 34 phyla and 79 genera, were identified from fish gut, formulated feed and seawater. In fish gut, 24 phyla and 43 genera were identified. Proteobacteria, Fusobacteria, and Firmicutes dominated at the phylum level in fish gut in INP, while Proteobacteria and Firmicutes dominated in fish gut in RAS. Photobacterium, Vibrio, and Cetobacterium dominated at the genus level in fish gut in both INP and RAS. One OTU of Photobacterium occurred in all the fish gut samples, suggesting this bacterium might be the main component of the core microbiota. No significant difference was found in bacterial diversity in fish gut between INP and RAS, suggesting genetic background should be a primary factor determining intestinal bacterial community of black seabass. Bacterial diversity in seawater was high relative to that in fish gut and formulated feed, regardless in INP or RAS. The common OTU between fish gut and seawater was more than that between fish gut and formulated feed in INP, while the common OTU between fish gut and seawater was slightly less than that between fish gut and formulated feed in RAS. These results reveal that the bacteria in formulated feed and seawater could influence the bacteria in fish gut, and their priority in shaping intestinal bacterial community depended on the bacterial composition in feed and seawater. This study reveals that intestinal bacterial community of black seabass was influenced by both genetic background and environmental factors.
Collapse
Affiliation(s)
- Cong Yu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, People's Republic of China
| | - Chen Zhang
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, People's Republic of China
| | - Abba Salisu
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, People's Republic of China.,Department of Biological Sciences, Bayero University, Kano, PMB 3011, Nigeria
| | - Yan Wang
- Ocean College, Zhejiang University, Zhoushan, 316021, Zhejiang, People's Republic of China.
| |
Collapse
|
44
|
Choi W, Moniruzzaman M, Bae J, Hamidoghli A, Lee S, Choi YH, Min T, Bai SC. Evaluation of Dietary Probiotic Bacteria and Processed Yeast (GroPro-Aqua) as the Alternative of Antibiotics in Juvenile Olive Flounder Paralichthys olivaceus. Antibiotics (Basel) 2022; 11:antibiotics11020129. [PMID: 35203732 PMCID: PMC8868502 DOI: 10.3390/antibiotics11020129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
We investigated the three probiotic bacteria and a processed yeast (GroPro-Aqua) as the replacers of antibiotics in juvenile olive flounder. A total of seven diets were used, that is, one basal or control (CON) diet; and six other diets, of which, three diets were prepared by supplementing probiotic bacteria such as Bacillus subtilis WB60 (BSWB60) at 1 × 108 CFU/g diet, Bacillus subtilis SJ10 (BSSJ10) at 1 × 108 CFU/g diet, and Enterococcus faecium SH30 (EFSH30) at 1 × 107 CFU/g diet; one diet with processed yeast (GRO) at 0.35% diet; and two other diets were supplemented with oxytetracycline (OTC) and amoxicillin (AMO) at 4 g/kg of each. Triplicate groups of fish (average 12.1 g) were fed one of the diets for eight weeks. At the end of the feeding trial, the fish that were fed the probiotic bacteria-supplemented diets had a significantly higher final weight, weight gain, and specific growth rate compared to the CON, OTC, and AMO diets. Fish that were fed the GRO diet had significantly higher feed efficiency and protein efficiency ratios than those of the fish that were fed the CON diet. Serum glutamic pyruvic transaminase, glutamic oxaloacetic transaminase, glucose, and total protein were not affected by the diets. Lysozyme activity in fish that were fed the BSSJ10, BSWB60, and EFSH30 diets were significantly higher compared to the CON and OTC diets, whereas myeloperoxidase activity of fish fed the BSWB60 and EFSH30 diets were significantly higher than those of fish fed the CON and AMO diets. Flounder growth hormone gene expressions of fish that were fed BSWB60 and GRO diets were significantly higher compared to the CON, OTC, and AMO diets. The interleukin-1β gene expression of fish that were fed the BSSJ10, BSWB60, EFSH30, OTC, and GRO diets was significantly higher than those of fish fed the CON diet. The interleukin-10 gene expression of fish that were fed the BSSJ10, EFSH30, and GRO diets was significantly higher than those of fish fed the CON and AMO diets. Posterior intestinal histology of fish showed significantly higher villi length in fish that were fed the BSSJ10, BSWB60, EFSH30, and GRO diets compared to the CON diet. After 15 days of challenge test with pathogenic bacteria Edwardsiella tarda, the cumulative survival rate of fish that were fed the BSSJ10, BSWB60, EFSH30, and GRO diets were significantly higher than those of fish that were fed the CON diet. Overall, the results indicate that dietary supplementation of B. subtilis (108 CFU/g diet), E. faecium (107 CFU/g diet), and processed yeast (GroPro-Aqua at 0.35% diet) could replace the antibiotics in terms of improving growth, immunity, gut health, and disease resistance in juvenile olive flounder.
Collapse
Affiliation(s)
- Wonsuk Choi
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48547, Korea; (W.C.); (J.B.); (A.H.)
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea;
| | - Jinho Bae
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48547, Korea; (W.C.); (J.B.); (A.H.)
| | - Ali Hamidoghli
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48547, Korea; (W.C.); (J.B.); (A.H.)
| | - Seunghan Lee
- Aquafeed Research Center, National Institute of Fisheries Science, Pohang 37517, Korea;
| | - Youn-Hee Choi
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan 48513, Korea;
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Korea;
- Correspondence: (T.M.); (S.C.B.); Tel.: +82-64-754-8347 (T.M.); +82-51-629-6873/7044 (S.C.B.)
| | - Sungchul C. Bai
- Feeds & Foods Nutrition Research Center, Pukyong National University, Busan 48547, Korea; (W.C.); (J.B.); (A.H.)
- FAO World Fisheries University Pilot Program, Busan 48547, Korea
- Correspondence: (T.M.); (S.C.B.); Tel.: +82-64-754-8347 (T.M.); +82-51-629-6873/7044 (S.C.B.)
| |
Collapse
|
45
|
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front Immunol 2022; 12:773193. [PMID: 34975860 PMCID: PMC8716388 DOI: 10.3389/fimmu.2021.773193] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, MS, United States
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Malaysia
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
46
|
Zhang Y, Ji T, Jiang Y, Zheng C, Yang H, Liu Q. Long-term effects of three compound probiotics on water quality, growth performances, microbiota distributions and resistance to Aeromonas veronii in crucian carp Carassius auratus gibelio. FISH & SHELLFISH IMMUNOLOGY 2022; 120:233-241. [PMID: 34848306 DOI: 10.1016/j.fsi.2021.11.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Probiotics could promote the healthy growth of aquatic animals and have been widely used in aquaculture. However, the influence of high concentration compound probiotics on the aquatic animals has not been reported. In the present study, a compound probiotics was used in high-density culture of crucian carps under the condition of micro-water exchange. During nearly 7-weeks feeding experiment, the aquaculture water quality, growth performances, disease resistance and microbiota distributions of crucian carps were tested. Under the high concentrations of compound probiotics, the content of total ammonia nitrogen and nitrite were finally in a state of dynamic equilibrium. The body length and weight of crucian carps in the experimental group (E) was significantly higher than that in the recirculating group (R). The antioxidant enzymes in the intestines and gills of the E group including SOD, CAT, GSH and MDA, were significantly higher than those in R group. The mortality of crucian carps in E group was significantly lower after the immersion infection of Aeromonas veronii. The addition of compound probiotics significantly increased the number of microorganisms detected in the intestines and gills of crucian carps in E group. The bacteria including Firmicutes, Planctomycetes, Verrucomicrobiota at the phylum level in E group were higher than those in R group. At the genus level, these bacteria (Pirellula, Roseimicrobium, Malikia) were not only higher in E group water, but also significantly higher in the intestines and gills than R group. The results of present study systematically analyzed the impact of high-concentration probiotics on crucian carps breeding, and speculated genus Pirellula, Roseimicrobium, Malikia may be used as aquatic probiotics. The present study will provide a new idea for the green and sustainable development of aquaculture.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yinan Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chen Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
47
|
Isolation and characterization of Bacillus spp. from aquaculture cage water and its inhibitory effect against selected Vibrio spp. Arch Microbiol 2021; 204:26. [DOI: 10.1007/s00203-021-02657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
|
48
|
Production and economics of probiotics treated Macrobrachium rosenbergii at different stocking densities. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Wu PS, Liu CH, Hu SY. Probiotic Bacillus safensis NPUST1 Administration Improves Growth Performance, Gut Microbiota, and Innate Immunity against Streptococcus iniae in Nile tilapia ( Oreochromis niloticus). Microorganisms 2021; 9:2494. [PMID: 34946096 PMCID: PMC8703608 DOI: 10.3390/microorganisms9122494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Probiotics are considered ecofriendly alternatives to antibiotics as immunostimulants against pathogen infections in aquaculture. In the present study, protease-, amylase-, cellulase-, and xylanase-producing Bacillus safensis NPUST1 were isolated from the gut of Nile tilapia, and the beneficial effects of B. safensis NPUST1 on growth, innate immunity, disease resistance and gut microbiota in Nile tilapia were evaluated by feeding tilapia a basal diet or basal diet containing 105 and 106-107 CFU/g for 8 weeks. The results showed that the weight gain, feed efficiency and specific growth rate were significantly increased in tilapia fed a diet containing 106 CFU/g and 107 CFU/g B. safensis NPUST1. Intestinal digestive enzymes, including protease, amylase and lipase, and hepatic mRNA expression of glucose metabolism and growth-related genes, such as GK, G6Pase, GHR and IGF-1, were also significantly increased in the 106 CFU/g and 107 CFU/g B. safensis NPUST1 treated groups. Immune parameters such as phagocytic activity, respiratory burst and superoxide dismutase activity in head kidney leukocytes, serum lysozyme, and the mRNA expression of IL-1β, IL-8, TNF-α and lysozyme genes were significantly induced in the head kidney and spleen of 106 CFU/g and 107 CFU/g B. safensis NPUST1 treated fish. The cumulative survival rate was significantly increased in fish fed a diet containing 106 CFU/g and 107 CFU/g B. safensis NPUST1 after challenge with Streptococcus iniae. Dietary supplementation with B. safensis NPUST1 improves the gut microbiota of Nile tilapia, which increases the abundance of potential probiotics and reduces the abundance of pathogenic pathogens. The present study is the first to report the use of B. safensis as a potential probiotic in aquaculture, and a diet containing 106 CFU/g B. safensis NPUST1 is adequate for providing beneficial effects on growth performance and health status in tilapia.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Chun-Hong Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Research Center for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
50
|
Isolation of a new Streptomyces virginiae W18 against fish pathogens and its effect on disease resistance mechanism of Carassius auratus. Microb Pathog 2021; 161:105273. [PMID: 34740811 DOI: 10.1016/j.micpath.2021.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/17/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022]
Abstract
The Streptomyces virginiae strain W18 was screened from soil, which exhibited broad-spectrum antibacterial activity against fish pathogens. Safety assays showed that strain W18 had no toxicity to fish. Additionally, strain W18 promoted the growth performance of Carassius auratus after feeding in feed mixed with bacteria for one month. Moreover, the activities of AKP, ACP, and SOD in the serum of C. auratus were significantly increased, while the activity of LZM did not greatly change. To detect the expression levels of the genes related to immune factors in the livers, kidneys, and spleens of C. auratus, qRT-PCR was performed. The expression levels of KEAP1, IL-8, TNF-α, IL-β, and C3 were upregulated in all three organs compared to the control, but LZM expression was downregulated in the kidney. The challenge experiment illustrated that the probability of infection with Aeromonas veronii was reduced by 60% and 40% when C. auratus was fed with two different doses of strain W18 in advance. The whole genome of strain W18 was sequenced, and the gene clusters of secondary metabolites in strain W18 were analyzed by AntiSMASH. The results showed that strain W18 contained a total of 26 gene clusters, and functional annotation analysis was conducted by using the non-coding databases COG and KEGG. All of the above results indicated that the use of strain W18 as a feed additive could enhance the resistance of C. auratus toward pathogenic bacteria and disease. In conclusion, an antagonistic strain (W18) against fish pathogenic bacteria was obtained in this study, which is of great significance for finding new treatment methods for bacterial diseases in the aquaculture industry.
Collapse
|