1
|
Duyar SM, Sari F, Karaoglan HA. Production of red beetroot juice by different methods: Kinetics of microbial growth, sugar consumption, and acid production. Heliyon 2024; 10:e30448. [PMID: 38737281 PMCID: PMC11088329 DOI: 10.1016/j.heliyon.2024.e30448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
As a fermentation method, the utilisation of starter culture is a common practice in industrial manufacturing, although spontaneous methods have been employed since ancient times. The objective of this study was to investigate the effect of different production methods on red beetroot juice (RBJ). For this purpose, as a starter culture, the probiotic Lactibasillus paracasei (Lc. paracasei) was inoculated into the RBJ samples after pasteurization. Also, the growth of cells, acid production, and substrate utilisation were monitored throughout the fermentation process of RBJ under two different methods of fermentation. The samples produced by the addition of Lc. paracasei demonstrated a slightly lower decrease in pH values in comparison to the samples obtained by the spontaneous method. The concentration of lactic acid (LA) and acetic acid (AA) at the end of fermentation reveals that Lc. paracasei exhibits a greater capacity for both LA and AA generation compared to the spontaneous method. The ratios of LA and AA molar concentrations of RBJ were determined to be 1.7 and 3.6 for the samples produced by adding Lc. paracasei and the spontaneous method, respectively. The samples produced by adding Lc. paracasei exhibited a greater consumption of sucrose. Both fermentation methods provide LAB counts exceeding 8 log CFU/mL at the end of fermentation. Time demonstrated a significant correlation with LA and AA in the method by adding Lc. paracasei (r = 0.942 and 0.745), respectively (p < 0.01). In both methods, it was demonstrated that while sucrose content decreased during the fermentation period, fructose and glucose content remained constant (p < 0.05).
Collapse
Affiliation(s)
| | - Ferda Sari
- Sivas Cumhuriyet University, Sivas Technical Sciences Vocational School, Plant and Animal Production, Department of Organic Agriculture, Sivas, Turkey
| | - Hatice Aybuke Karaoglan
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Sivas, Turkey
| |
Collapse
|
2
|
Saud S, Xiaojuan T, Fahad S. The consequences of fermentation metabolism on the qualitative qualities and biological activity of fermented fruit and vegetable juices. Food Chem X 2024; 21:101209. [PMID: 38384684 PMCID: PMC10878862 DOI: 10.1016/j.fochx.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Fermentation of fruit and vegetable juices with probiotics is a novel nutritional approach with potential health benefits. Lactic acid fermentation-based biotransformation results in changes in the profile and nature of bioactive compounds and improves the organoleptic properties, shelf life and bioavailability of vitamins and minerals in the fermented juices. This process has been shown to enrich the phenolic profile and bioactivity components of the juices, resulting in a new type of functional food with improved health benefits. Fruits and vegetables are the ideal substrate for microbial growth, and fruit and vegetable juice will produce rich nutrients and a variety of functional activities after fermentation, so that the high-quality utilization of fruits and vegetables is realized, and the future fermented fruit and vegetable juice products have a wide application market. This paper explores the typical fermentation methods for fruit and vegetable juices, investigates the bioactive components, functional activities, and the influence of fermentation on enhancing the quality of fruit and vegetable juices. The insights derived from this study carry significant implications for guiding the development of fermented fruit and vegetable juice industry.
Collapse
Affiliation(s)
- Shah Saud
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Tang Xiaojuan
- College of Life Science, Linyi University, Linyi, Shandong 276000, China
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
3
|
Wang B, Rutherfurd-Markwick K, Liu N, Zhang XX, Mutukumira AN. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Curr Res Food Sci 2024; 8:100711. [PMID: 38524400 PMCID: PMC10958227 DOI: 10.1016/j.crfs.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The current study investigated the in vitro probiotic potential of yeast isolated from kombucha, a tea beverage fermented with a symbiotic culture of acetic acid bacteria and yeast. A total of 62 yeast strains were previously isolated from four different commercial kombucha samples sold in New Zealand. Fifteen representative isolates belonging to eight different species were evaluated for their growth under different conditions (temperature, low pH, concentrations of bile salts, and NaCl). Cell surface characteristics, functional and enzymatic activities of the selected strains were also studied in triplicate experiments. Results showed that six strains (Dekkera bruxellensis LBY1, Sachizosaccharomyces pombe LBY5, Hanseniaspora valbyensis DOY1, Brettanomyces anomalus DOY8, Pichia kudraivzevii GBY1, and Saccharomyces cerevisiae GBY2) were able to grow under low-acid conditions (at pH 2 and pH 3) and in the presence of bile salts. This suggests their potential to survive passage through the human gut. All 15 strains exhibited negative enzymatic activity reactions (haemolytic, gelatinase, phospholipase, and protease activities), and thus, they can be considered safe to consume. Notably, two of the fifteen strains (Pichia kudraivzevii GBY1 and Saccharomyces cerevisiae GBY2) exhibited desirable cell surface hydrophobicity (64.60-83.87%), auto-aggregation (>98%), co-aggregation, resistance to eight tested antibiotics (ampicillin, chloramphenicol, colistin sulphate, kanamycin, nalidixic acid, nitrofurantoin, streptomycin, and tetracycline), and high levels of antioxidant activities (>90%). Together, our data reveal the probiotic activities of two yeast strains GBY1 and GBY2 and their potential application in functional food production.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | | | - Ninghui Liu
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland, 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| |
Collapse
|
4
|
Muñoz R, Rivas BDL, Rodríguez H, Esteban-Torres M, Reverón I, Santamaría L, Landete JM, Plaza-Vinuesa L, Sánchez-Arroyo A, Jiménez N, Curiel JA. Food phenolics and Lactiplantibacillus plantarum. Int J Food Microbiol 2024; 412:110555. [PMID: 38199014 DOI: 10.1016/j.ijfoodmicro.2023.110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phenolic compounds are important constituents of plant food products. These compounds play a key role in food characteristics such as flavor, astringency and color. Lactic acid bacteria are naturally found in raw vegetables, being Lactiplantibacillus plantarum the most commonly used commercial starter for the fermentation of plant foods. Hence, the metabolism of phenolic compounds of L. plantarum has been a subject of study in recent decades. Such studies confirm that L. plantarum, in addition to presenting catalytic capacity to transform aromatic alcohols and phenolic glycosides, exhibits two main differentiated metabolic routes that allow the biotransformation of dietary hydroxybenzoic and hydroxycinnamic acid-derived compounds. These metabolic pathways lead to the production of new compounds with new biological and organoleptic properties. The described metabolic pathways involve the action of specialized esterases, decarboxylases and reductases that have been identified through genetic analysis and biochemically characterized. The purpose of this review is to provide a comprehensive and up-to-date summary of the current knowledge of the metabolism of food phenolics in L. plantarum.
Collapse
Affiliation(s)
- Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain.
| | - Blanca de Las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Héctor Rodríguez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - María Esteban-Torres
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Laura Santamaría
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - José Maria Landete
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Ana Sánchez-Arroyo
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - Natalia Jiménez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain
| | - José Antonio Curiel
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), CSIC, Madrid, Spain.
| |
Collapse
|
5
|
Dikmen H, Goktas H, Demirbas F, Kayacan S, Ispirli H, Arici M, Turker M, Sagdic O, Dertli E. Multilocus sequence typing of L. bulgaricus and S. thermophilus strains from Turkish traditional yoghurts and characterisation of their techno-functional roles. Food Sci Biotechnol 2024; 33:625-635. [PMID: 38274192 PMCID: PMC10805743 DOI: 10.1007/s10068-023-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, Streptococcus thermophilus and Lactobacillus bulgaricus strains from traditional Turkish yoghurts were isolated, identified by 16S rRNA sequencing and genotypically 14 S. thermophilus and 6 L. bulgaricus strains were obtained as distinct strains by MLST analysis. Lactic acid production levels of the L. bulgaricus strains were higher than S. thermophilus strains. HPLC analysis showed that EPS monosaccharide composition of the strains mainly consisted of glucose and galactose. In general, all strains were found to be susceptible for antibiotics, except some strains were resistance to gentamicin and kanamycin. Apart from two strains of S. thermophilus, all strains displayed strong auto-aggregation level greater than 95% at 24 h incubation. S. thermophilus strains showed higher cell surface hydrophobicity than L. bulgaricus strains. This study demonstrated the isolation, identification, genotypic discrimination and techno-functional features of wild type yoghurt starter cultures which can potentially find place in industrial applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01366-2.
Collapse
Affiliation(s)
- Hilal Dikmen
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Hamza Goktas
- Food Technology Programme, Vocational School, Istinye University, Topkapi Campus, Zeytinburnu, Istanbul, Turkey
| | - Fatmanur Demirbas
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Selma Kayacan
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Humeyra Ispirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Muhammet Arici
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | | | - Osman Sagdic
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Coimbra-Gomes J, Reis PJM, Tavares TG, Faria MA, Malcata FX, Macedo AC. Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules 2023; 28:molecules28083285. [PMID: 37110519 PMCID: PMC10142741 DOI: 10.3390/molecules28083285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as β-glucuronidase and N-acetyl-β-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.
Collapse
Affiliation(s)
- Joana Coimbra-Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Patrícia J M Reis
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia G Tavares
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratory of Food Science and Hydrology/Rede de Química e Tecnologia, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - F Xavier Malcata
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Angela C Macedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- UNICES-UMAIA-Research Unit in Management Sciences and Sustainability, University of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal
| |
Collapse
|
7
|
Antibacterial and Immunostimulatory Activity of Potential Probiotic Lactic Acid Bacteria Isolated from Ethiopian Fermented Dairy Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Lactic acid bacteria (LAB) form a group of bacteria to which most probiotics belong and are commonly found in fermented dairy products. Fermented foods and beverages are foods made through desired microbial growth and enzymatic conversions of food components. In this study, 43 LAB were isolated from Ethiopian traditional cottage cheese, cheese, and yogurt and evaluated for their functional and safety properties as candidate probiotics. Twenty-seven isolates, representative of each fermented food type, were selected and identified to the species level. Limosilactobacillus fermentum was found to be the predominant species in all samples studied (70.4%), while 11.1% of isolates were identified as Lactiplantibacillus plantarum. All 27 isolates tested showed resistance to 0.5% bile salt, while 26 strains were resistant to pH 3. The LAB isolates were also evaluated for antagonistic properties against key pathogens, with strain-specific features observed for their antimicrobial activity. Five strains from cottage cheese (Lactiplantibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and Pediococcus pentosaceus 95E) showed inhibitory activity against indicator pathogens that are key causes of gastrointestinal infections in Ethiopia, i.e., Escherichia coli, Salmonella enterica subsp. enterica var. Typhimurium, Staphylococcus aureus, Shigella flexneri, and Listeria monocytogenes. Strain-specific immunomodulatory activity monitored as nuclear factor kappa B (NF-κB) and interferon regulatory factor (IRF) activation was documented for Lactiplantibacillus plantarum 54B, 55A and P. pentosaceus 95E. Antibiotic susceptibility testing confirmed that all LAB isolates were safe concerning their antibiotic resistance profiles. Five isolates (especially Lactiplantibacillus plantarum 54B, 54C, and 55A, Lactiplantibacillus pentosus 55B, and P. pentosaceus 95E) showed promising results in all assays and are novel probiotic candidates of interest for clinical trial follow-up.
Collapse
|
8
|
Antioxidant and Antibacterial Effects of Potential Probiotics Isolated from Korean Fermented Foods. Int J Mol Sci 2022; 23:ijms231710062. [PMID: 36077456 PMCID: PMC9455991 DOI: 10.3390/ijms231710062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
A total of sixteen bacterial strains were isolated and identified from the fourteen types of Korean fermented foods that were evaluated for their in vitro probiotic potentials. The results showed the highest survivability for Bacillus sp. compared to Lactobacillus sp. in simulated gastric pH, and it was found to be maximum for B. inaquosorum KNUAS016 (8.25 ± 0.08 log10 CFU/mL) and minimum for L. sakei KNUAS019 (0.8 ± 0.02 log10 CFU/mL) at 3 h of incubation. Furthermore, B. inaquosorum KNUAS016 and L. brevis KNUAS017 also had the highest survival rates of 6.86 ± 0.02 and 5.37 ± 0.01 log10 CFU/mL, respectively, in a simulated intestinal fluid condition at 4 h of incubation. The percentage of autoaggregation at 6 h for L. sakei KNUAS019 (66.55 ± 0.33%), B. tequilensis KNUAS015 (64.56 ± 0.14%), and B. inaquosorum KNUAS016 (61.63 ± 0.19%) was >60%, whereas it was lower for L. brevis KNUAS017 (29.98 ± 0.09%). Additionally, B. subtilis KNUAS003 showed higher coaggregation at 63.84 ± 0.19% while B. proteolyticus KNUAS001 found at 30.02 ± 0.33%. Among them, Lactobacillus sp. showed the best non-hemolytic activity. The highest DPPH and ABTS radical scavenging activity was observed in L. sakei KNUAS019 (58.25% and 71.88%). The cell-free supernatant of Lactobacillus sp. considerably inhibited pathogenic growth, while the cell-free supernatant of Bacillus sp. was moderately inhibited when incubated for 24 h. However, the overall results found that B. subtilis KNUAS003, B. proteolyticus KNUAS012, L. brevis KNUAS017, L. graminis KNUAS018, and L. sakei KNUAS019 were recognized as potential probiotics through different functional and toxicity assessments.
Collapse
|
9
|
Characterization of Lactic Acid-Producing Bacteria Isolated from Rumen: Growth, Acid and Bile Salt Tolerance, and Antimicrobial Function. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lactic acid bacteria are some of the dominant bacteria in the rumen, and they have a high ability for lactic acid production. The present study aimed to screen and evaluate the performance of culturable rumen bacteria from Chinese Holstein dairy cows as a potential probiotic or inoculant for silage production, in order to isolate ruminal lactic acid bacteria and evaluate their potential as probiotics. Three strains of Enterococcus avium (E. avium, EA1-3); three strains of Streptococcus lutetiensis (S. lutetiensis, SL1-3); and six strains of Streptococcus equinus (S. equinus, SE1-6) were successfully identified from the rumen fluid using modified De Man Rogosa sharp medium supplemented with 0.325% lactic acid. E. avium, S. lutetiensis and S. equinus are clustered in the phylogenetic tree. All the 12 Gram-positive strains reached the plateau growth phase in 6–10 h, with an OD600 at about 1.8. Both gas and acid accumulation reached plateaus at about 10–12 h in all strains, and S. equinus showed the strongest capacity. The highest lactic acid accumulation was detected in S. equinus broth (up to 219.77 μmol/L). The growth of all isolates was inhibited at pH 4.0, and EA2, SL1, SL2, SL3 and SE2 were tolerant to 0.1%, 0.2% and 0.3% bile salt. In addition, the supernatants of the strains had inhibitory effects on Escherichia coli and Staphylococcus aureus. Specifically, the S. equinus strains exhibited the strongest inhibition of the pathogens. In conclusion, these 12 strains had good potential as silage inoculants or probiotics for edible animals, especially S. equinus.
Collapse
|
10
|
Bansal P, Kumar R, Dhanda S. Characterization of starter cultures and nutritional properties of
Pediococcus acidilactici
NCDC
252: A potential probiotic of dairy origin. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Poonam Bansal
- Department of Biotechnology Maharishi Markandeshwar (Deemed to be University) Ambala India
| | - Raman Kumar
- Department of Biochemistry Kurukshetra University Kurukshetra India
| | - Suman Dhanda
- Department of Biochemistry Kurukshetra University Kurukshetra India
| |
Collapse
|
11
|
Kumari VBC, Huligere SS, Ramu R, Naik Bajpe S, Sreenivasa MY, Silina E, Stupin V, Achar RR. Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated From Fermented Beetroot. Front Microbiol 2022; 13:911243. [PMID: 35774469 PMCID: PMC9237538 DOI: 10.3389/fmicb.2022.911243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022] Open
Abstract
Fermented foods are sources of functionally salient microbes. These microbes when ingested can regulate biomolecule metabolism which has a plethora of health benefits. Lactic acid bacteria species (LABs) isolated from fermented beetroot were biochemically characterized and validated using 16s rRNA sequence. Also, an in vitro assay was conducted to confirm the probiotic activity of the isolates. The cell-free supernatant (CS), cell-free extract (CE), and intact cell (IC) were evaluated for α-glucosidase and α-amylase inhibition. The six isolates RAMULAB01–06 were categorized to be Lactobacillus spp. by observing phenotypic and biochemical characters. Molecular validation using 16S rDNA sequencing, followed by homology search in NCBI database, suggested that the isolates are >95% similar to L. paracasei and L. casei. Also, isolates exhibited probiotic potential with a high survival rate (>96%) in the gastrointestinal condition, and adherence capability (>53%), colonization (>86%), antibacterial, and antibiotic activity. The safety assessments expressed that the isolates are safe. The α-glucosidase and α-amylase inhibition by CS, CE, and IC ranged from 3.97 ± 1.42% to 53.91 ± 3.11% and 5.1 ± 0.08% to 57.15 ± 0.56%, respectively. Hence, these species have exceptional antidiabetic potential which could be explicated to its use as a functional food and health-related food products.
Collapse
Affiliation(s)
- V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Ramith Ramu ; orcid.org/0000-0003-2776-5815
| | - Shrisha Naik Bajpe
- Department of Biotechnology, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire, India
| | - M. Y. Sreenivasa
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, India
| |
Collapse
|
12
|
Effect of linear and branched fructans on growth and probiotic characteristics of seven Lactobacillus spp. isolated from an autochthonous beverage from Chiapas, Mexico. Arch Microbiol 2022; 204:364. [DOI: 10.1007/s00203-022-02984-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/16/2023]
|
13
|
Meruvu H, Harsa ST. Lactic acid bacteria: isolation-characterization approaches and industrial applications. Crit Rev Food Sci Nutr 2022; 63:8337-8356. [PMID: 35348017 DOI: 10.1080/10408398.2022.2054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current state-of-art research pertaining to lactic acid bacteria (LAB) calls for the screening and isolation of robust LAB strains to achieve holistic exploitation of LAB and their metabolites of marketable importance. Hence it is imperative to comprehend LAB sources, growth requisites, isolation and characterization strategies necessary for featured cataloging and appropriate culturing. This review comprehensively describes various growth media and biomasses used for supporting LAB sustenance, assay procedures needed for the isolation and characterization of LAB strains, and their application in diverse sectors. The various industrial patents and their summarized claims about novel LAB strains isolated and identified, methods and media (used for detection/screening, isolation, adaptation, culturing, preservation, growth improvement), the techniques and/or methodologies supporting LAB fermentation, and applications of produced industrial metabolites in various market scenarios are detailed.
Collapse
Affiliation(s)
- Haritha Meruvu
- CEO, Revathi Hospital, Revathi Firm, Rajahmundry, Andhra Pradesh, India
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Sebnem Tellioglu Harsa
- Faculty of Engineering, Department of Food Engineering, İzmir Institute of Technology, Gulbahçe Campus, Urla, İzmir, Turkey
| |
Collapse
|
14
|
Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, Esatbeyoglu T, Bakhshayesh RV. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021; 10:3131. [PMID: 34945682 PMCID: PMC8701396 DOI: 10.3390/foods10123131] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
In the wake of continual foodborne disease outbreaks in recent years, it is critical to focus on strategies that protect public health and reduce the incidence of foodborne pathogens and spoilage microorganisms. Currently, there are limitations associated with conventional microbial control methods, such as the use of chemical preservatives and heat treatments. For example, such conventional treatments adversely impact the sensorial properties of food, resulting in undesirable organoleptic characteristics. Moreover, the growing consumer advocacy for safe and healthy food products, and the resultant paradigm shift toward clean labels, have caused an increased interest in natural and effective antimicrobial alternatives. For instance, natural antimicrobial elements synthesized by lactic acid bacteria (LAB) are generally inhibitory to pathogens and significantly impede the action of food spoilage organisms. Bacteriocins and other LAB metabolites have been commercially exploited for their antimicrobial properties and used in many applications in the dairy industry to prevent the growth of undesirable microorganisms. In this review, we summarized the natural antimicrobial compounds produced by LAB, with a specific focus on the mechanisms of action and applications for microbial food spoilage prevention and disease control. In addition, we provide support in the review for our recommendation for the application of LAB as a potential alternative antimicrobial strategy for addressing the challenges posed by antibiotic resistance among pathogens.
Collapse
Affiliation(s)
- Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA; (R.D.A.); (T.Z.)
| | - Raphael D. Ayivi
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA; (R.D.A.); (T.Z.)
| | - Tahl Zimmerman
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, NC 27411, USA; (R.D.A.); (T.Z.)
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich (TUM), 94315 Straubing, Germany;
- DIL e.V.—German Institute of Food Technologies, 49610 D-Quakenbrück, Germany
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq;
| | - Hafize Fidan
- Department of Nutrition and Tourism, University of Food Technologies, 26 Maritza Blvd., 40002 Plovdiv, Bulgaria;
| | - Tuba Esatbeyoglu
- Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany;
| | - Reza Vaseghi Bakhshayesh
- Department of Food Biotechnology, Branch for Northwest & West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz 5355179854, Iran;
- Department of Food Science and Technology, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|
15
|
Raimondi S, Spampinato G, Candeliere F, Amaretti A, Brun P, Castagliuolo I, Rossi M. Phenotypic Traits and Immunomodulatory Properties of Leuconostoc carnosum Isolated From Meat Products. Front Microbiol 2021; 12:730827. [PMID: 34512608 PMCID: PMC8425591 DOI: 10.3389/fmicb.2021.730827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Twelve strains of Leuconostoc carnosum from meat products were investigated in terms of biochemical, physiological, and functional properties. The spectrum of sugars fermented by L. carnosum strains was limited to few mono- and disaccharides, consistently with the natural habitats of the species, including meat and fermented vegetables. The strains were able to grow from 4 to 37°C with an optimum of approximately 32.5°C. The ability to grow at temperatures compatible with refrigeration and in presence of up to 60 g/L NaCl explains the high loads of L. carnosum frequently described in many meat-based products. Six strains produced exopolysaccharides, causing a ropy phenotype of colonies, according to the potential involvement on L. carnosum in the appearance of slime in packed meat products. On the other side, the study provides evidence of a potential protective role of L. carnosum WC0321 and L. carnosum WC0323 against Listeria monocytogenes, consistently with the presence in these strains of the genes encoding leucocin B. Some meat-based products intended to be consumed without cooking may harbor up to 108 CFU/g of L. carnosum; therefore, we investigated the potential impact of this load on health. No strains survived the treatment with simulated gastric juice. Three selected strains were challenged for the capability to colonize a mouse model and their immunomodulatory properties were investigated. The strains did not colonize the intestine of mice during 10 days of daily dietary administration. Intriguingly, despite the loss of viability during the gastrointestinal transit, the strains exhibited different immunomodulatory effect on the maturation of dendritic cells in vivo, the extent of which correlated to the production of exopolysaccharides. The ability to stimulate the mucosal associated immune system in such probiotic-like manner, the general absence of antibiotic resistance genes, and the lack of the biosynthetic pathways for biogenic amines should reassure on the safety of this species, with potential for exploitation of selected starters.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gloria Spampinato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Candeliere
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Amaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | - Maddalena Rossi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biogest-Siteia, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Possibility of Reinforcement the Functional Potential of Vegetable Juices with the use of Novel Strain Lactiplantibacillus Plantarum EK11 Isolated from an Unconventional Fermented Food Matrix. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The study investigated the suitability of a novel strain Lactiplantibacillus plantarum EK11 for obtaining fermented tomato and beetroot juices with improved functional potential. EK11 had the capability of dynamic acidification of pasteurized vegetable beverages. The lowest values of pH were noted in juices after 48 h of fermentation with the probiotic L. plantarum 299v (pH=3.72±0.01 in beet juice and pH=3.43±.0.01 in tomato juice). The fermentation increased the lycopene content in tomato juices from 27.90±0.31µg mL−1 (after 24-h fermentation by strain EK11) to 116.86 ±0.19 µg mL−1 (final products obtained using strain 299v after 7-day cold storage). The process contributed to changes in the betanin and vulgaxanthin-I concentration in beetroot beverages. All fermented products exhibited antioxidative activity, i.e. 50% inhibition of 1,1-diphenyl-2-picrylhydrazyl free radicals. Moreover, three genes involved in the biosynthesis of bacteriocins were detected in the novel strain EK11, which exhibits functional and technological potential for the production of fermented foods.
Collapse
|
17
|
Owade JO, Abong' GO, Okoth MW, Mwang'ombe AW, Jobor JO. Comparative profiling of lactic acid bacteria isolates in optimized and spontaneous fermentation of cowpea leaves. Food Sci Nutr 2021; 9:1651-1664. [PMID: 33747476 PMCID: PMC7958546 DOI: 10.1002/fsn3.2140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 11/10/2022] Open
Abstract
In as much as spontaneous fermentation of cowpea leaves enhances product diversification, the process is rather slow with poor product quality. Limited work has been undertaken to provide input toward standardization of the process and enhancing of product quality. The current study sought to evaluate the in-process fermentative bacteria profile changes due to the effect of optimization of fermentation process of cowpea leaves. Lactic acid bacteria (LAB) isolates from spontaneous and optimized fermentation were characterized using biochemical tests, whereby optimization was done using the Response Surface Methodology model of the central composite design in the Design Expert Software. The RSM models accounted for 89% and 60% variability in the response variables of pH and titratable acidity, respectively (p < .001). Increasing the sugar concentration and period of fermentation significantly (p < .05) increased the titratable acidity, while reducing the pH. The optimal fermentation parameters were established as sugar and salt concentrations of 5% and 2%, respectively, 16 days of fermentation, pH of 3.8 and titratable acidity of 1.22% with a desirability of 0.859. Of the 13 identified LAB isolates, Lactobacillus brevis and Lactococcus lactis dominated the onset stage of spontaneous fermentation whereas only Lactobacillus brevis dominated the onset stage of optimized fermentation. Additionally, the final stage with the dominant isolates of L. plantarum was longer in the spontaneous fermentation process than in the optimized process. Evidently, optimizing the fermentation process resulted in increasing dominance by heterofermenters in the production of soured cowpea leaves, with the yielded product having enhanced acidity.
Collapse
Affiliation(s)
- Joshua Ombaka Owade
- Department of Food Science, Nutrition and TechnologyUniversity of NairobiNairobiKenya
| | - George Ooko Abong'
- Department of Food Science, Nutrition and TechnologyUniversity of NairobiNairobiKenya
| | - Michael Wandayi Okoth
- Department of Food Science, Nutrition and TechnologyUniversity of NairobiNairobiKenya
| | | | - Jared Omondi Jobor
- Department of Food Science, Nutrition and TechnologyUniversity of NairobiNairobiKenya
| |
Collapse
|