1
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Liu S, Yu Q, Li S, Li M, Yang L, Wang Q, Tu Z, Tao F, Yang P, Kong L, Xin X. Expression and immunogenicity of recombinant porcine epidemic diarrhea virus Nsp9. Virology 2023; 587:109861. [PMID: 37572518 DOI: 10.1016/j.virol.2023.109861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, which leads to significant economic losses. Coronavirus nonstructural protein 9 (Nsp9) is an essential RNA binding protein for coronavirus replication, which renders it a promising candidate for developing antiviral drugs and diagnosis targeting PEDV. In this study, PEDV Nsp9 protein fused with MBP protein and His-tag were expressed and purified in Escherichia coli. Furthermore, immunization of MBP-Nsp9 enhances both humoral and cellular immunity responses as compared with that of His-Nsp9 protein. Finally, the swine immunization showed that Nsp9 protein could stimulate the swine immunity system to carry out humoral immunity, and the generated antibody could inhibit the proliferation of PEDV in Vero cells. Altogether, our data provide direct evidence for the immunogenicity of PEDV Nsp9, which sheds light on the future developments of anti-PEDV drugs and vaccines for PED prevention.
Collapse
Affiliation(s)
- Shiguo Liu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qijia Yu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zewen Tu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feifei Tao
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingping Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Golpour-Hamedani S, Pourmasoumi M, Askari G, Bagherniya M, Majeed M, Guest PC, Sahebkar A. Antiviral Mechanisms of Curcumin and Its Derivatives in Prevention and Treatment of COVID-19: A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:397-411. [PMID: 37378779 DOI: 10.1007/978-3-031-28012-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has now plagued the world for almost 3 years. Although vaccines are now available, the severity of the pandemic and the current dearth of approved effective medications have prompted the need for novel treatment approaches. Curcumin, as a food nutraceutical with anti-inflammatory and antioxidant effects, is now under consideration for the prevention and treatment of COVID-19. Curcumin has been demonstrated to retard the entrance of SARS-CoV-2 into cells, interfere with its proliferation inside cells, and curb the hyperinflammatory state caused by the virus by modulating immune system regulators, minimizing the cytokine storm effect, and modulating the renin-angiotensin system. This chapter discusses the role of curcumin and its derivatives in the prevention and treatment of COVID-19 infection, considering the molecular mechanisms involved. It will also focus on the molecular and cellular profiling techniques as essential tools in this research, as these can be used in the identification and development of new biomarkers, drug targets, and therapeutic approaches for improved patient care.
Collapse
Affiliation(s)
- Sahar Golpour-Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Makan Pourmasoumi
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
4
|
Perna A, Hay E, Sellitto C, Del Genio E, De Falco M, Guerra G, De Luca A, De Blasiis P, Lucariello A. Antiinflammatory Activities of Curcumin and Spirulina: Focus on Their Role against COVID-19. J Diet Suppl 2023; 20:372-389. [PMID: 36729019 DOI: 10.1080/19390211.2023.2173354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nutraceuticals have for several years aroused the interest of researchers for their countless properties, including the management of viral infections. In the context of the COVID-19 pandemic, studies and research on the antiviral properties of nutraceuticals have greatly increased. More specifically, over the past two years, researchers have focused on analyzing the possible role of nutraceuticals in reducing the risk of SARS-CoV-2 infection or mitigating the symptoms of COVID-19. Among nutraceuticals, turmeric, extracted from the rhizome of the Curcuma Longa plant, and spirulina, commercial name of the cyanobacterium Arthrospira platensis, have assumed considerable importance in recent years. The purpose of this review is to collect, through a search of the most recent articles on Pubmed, the scientific evidence on the role of these two compounds in the fight against COVID-19. In the last two years many hypotheses, some confirmed by clinical and experimental studies, have been made on the possible use of turmeric against COVID-19, while on spirulina and its possible role against SARS-CoV-2 infection information is much less. The demonstrated antiviral properties of spirulina and the fact that these cyanobacteria may modulate or modify some mechanisms also involved in the onset of COVID-19, lead us to think that it may have the same importance as curcumin in fighting this disease and to speculate on the possible combined use of these two substances to obtain a synergistic effect.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmine Sellitto
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emiliano Del Genio
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ''Federico II'', Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
5
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
6
|
Fu YS, Ho WY, Kang N, Tsai MJ, Wu J, Huang L, Weng CF. Pharmaceutical Prospects of Curcuminoids for the Remedy of COVID-19: Truth or Myth. Front Pharmacol 2022; 13:863082. [PMID: 35496320 PMCID: PMC9047796 DOI: 10.3389/fphar.2022.863082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a positive-strand RNA virus, and has rapidly spread worldwide as a pandemic. The vaccines, repurposed drugs, and specific treatments have led to a surge of novel therapies and guidelines nowadays; however, the epidemic of COVID-19 is not yet fully combated and is still in a vital crisis. In repositioning drugs, natural products are gaining attention because of the large therapeutic window and potent antiviral, immunomodulatory, anti-inflammatory, and antioxidant properties. Of note, the predominant curcumoid extracted from turmeric (Curcuma longa L.) including phenolic curcumin influences multiple signaling pathways and has demonstrated to possess anti-inflammatory, antioxidant, antimicrobial, hypoglycemic, wound healing, chemopreventive, chemosensitizing, and radiosensitizing spectrums. In this review, all pieces of current information related to curcumin-used for the treatment and prevention of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through in vitro, in vivo, and in silico studies, clinical trials, and new formulation designs are retrieved to re-evaluate the applications based on the pharmaceutical efficacy of clinical therapy and to provide deep insights into knowledge and strategy about the curcumin's role as an immune booster, inflammatory modulator, and therapeutic agent against COVID-19. Moreover, this study will also afford a favorable application or approach with evidence based on the drug discovery and development, pharmacology, functional foods, and nutraceuticals for effectively fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yaw-Syan Fu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ning Kang
- Department of Otorhinolaryngology, the Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - May-Jywan Tsai
- Department of Neurosurgery, Neurological Institute, Neurological Institute, Taipei, Taiwan
| | - Jingyi Wu
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Liyue Huang
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China
| | - Ching-Feng Weng
- Department of Basic Medical Science, Anatomy and Functional Physiology Section, Xiamen Medical College, Xiamen, China,Department of Basic Medical Science, Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China,*Correspondence: Ching-Feng Weng, ,
| |
Collapse
|
7
|
Niwa T, Yokoyama SI, Mochizuki M, Osawa T. In Vitro Production of Optically Active Octahydrocurcumin by Human Intestinal Bacterium. Biol Pharm Bull 2022; 45:378-381. [PMID: 35228404 DOI: 10.1248/bpb.b21-00992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterococcus avium, producing 5R-hexahydrocurcumin metabolized tetrahydrocurcumin to octahydrocurcumin in vitro. Based on a detailed analysis of the two secondary alcohols, the metabolite obtained from tetrahydrocurcumin via 5R-hexahydrocurcumin was identified as 3R,5R-octahydrocurcumin. The activities of 5R-hexahydrocurcumin and 3R,5R-octahydrocurcumin were compared to those of the synthetic compounds, using monocyte chemoattractant protein-1 produced via murine adipocytes in vitro. The optically active curcuminoids reduced the cytokine production similar to tetrahydrocurcumin without any difference in their stereochemistry.
Collapse
Affiliation(s)
- Toshio Niwa
- Faculty of Health and Nutrition, Shubun University
| | | | - Mika Mochizuki
- Department of Health and Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University
| | - Toshihiko Osawa
- Department of Health and Nutrition, Faculty of Psychological & Physical Science, Aichi Gakuin University
| |
Collapse
|
8
|
Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Int J Mol Sci 2022; 23:1771. [PMID: 35163692 PMCID: PMC8836015 DOI: 10.3390/ijms23031771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the world has been witnessing a global pandemic with no effective therapeutics yet, while cancer continues to be a major disease claiming many lives. The natural compound curcumin is bestowed with multiple medicinal applications in addition to demonstrating antiviral and anticancer activities. In order to elucidate the impact of curcumin on COVID-19 and cancer, the current investigation has adapted several computational techniques to unfold its possible inhibitory activity. Accordingly, curcumin and similar compounds and analogues were retrieved and assessed for their binding affinities at the binding pocket of SARS-CoV-2 main protease and DDX3. The best binding pose was escalated to molecular dynamics simulation (MDS) studies to assess the time dependent stability. Our findings have rendered one compound that has demonstrated good molecular dock score complemented by key residue interactions and have shown stable MDS results inferred by root mean square deviation (RMSD), radius of gyration (Rg), binding mode, hydrogen bond interactions, and interaction energy. Essential dynamics results have shown that the systemadapts minimum energy conformation to attain a stable state. The discovered compound (curA) could act as plausible inhibitor against SARS-CoV-2 and DDX3. Furthermore, curA could serve as a chemical scaffold for designing and developing new compounds.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Gihwan Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| |
Collapse
|
9
|
Üstün E, Düşünceli SD, Coşkun F, Özdemir İ. Molybdenum Carbonyl Complexes with Benzimidazole Derivatives Against SARS-CoV-2 by Molecular Docking and DFT/TDDFT Methods. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Benzimidazole derivative molecules attract attention of scientists due to their bioactivities. The dramatic changes in recorded activities according to the type and position of the substituents motivate synthesis and analysis of new molecules. Commercial benzimidazole-based molecules have been used in therapeutic procedures. It is known that the activities of metal complexes with benzimidazole derivative ligands have different activities when compared to the benzimidazole main structure. Nowadays, one of the most important health problems is COVID-19, which caused the pandemic that we are still experiencing. Although vaccine studies are important to overcome acute problems, regarding the possible post-vaccination adverse effects, the need for new drugs against the virus is obvious. Considering the urgency and the limited facilities during the pandemic, preliminary in silico studies of candidate molecules are essential. In this study, {[bis-(N-benzylbenzimidazole)] tetracarbonylmolybdenum}, {[bis-(N-4-chlorobenzylbenzimidazole)] tetracarbonylmolybdenum} and {[bis-(N-4-methoxybenzylbenzimidazole)] tetracarbonylmolybdenum} were synthesized and characterized. The optimization and the structural analysis of these molecules were performed by DFT/TDDFT methods. The molecules were docked into SARS coronavirus main peptidase (PDB ID: 2gtb), COVID-19 main protease in complex with Z219104216 (PDB ID: 5r82), COVID-19 main protease in complex with an inhibitor N3 (PDB ID: 6lu7) and Papain-like protease of SARS-CoV-2 (PDB ID: 6w9c) crystal structures for evaluation of their anti-viral activity.
Collapse
Affiliation(s)
- Elvan Üstün
- Department of Chemistry, Faculty of Art and Science, Ordu University, 52200 Ordu, Turkey
| | - Serpil Demir Düşünceli
- Department of Chemistry Faculty of Art and Science, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey
| | - Feyzullah Coşkun
- Department of Chemistry Faculty of Art and Science, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey
| | - İsmail Özdemir
- Department of Chemistry Faculty of Art and Science, İnönü University, 44280 Malatya, Turkey
- Catalysis Research and Application Center, İnönü University, 44280 Malatya, Turkey
| |
Collapse
|
10
|
Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, Flórez-Álvarez L, Yepes LM, Rugeles MT, Zapata-Builes W, Hernandez JC, Taborda NA. Curcumin Inhibits In Vitro SARS-CoV-2 Infection In Vero E6 Cells through Multiple Antiviral Mechanisms. Molecules 2021; 26:6900. [PMID: 34833991 PMCID: PMC8618354 DOI: 10.3390/molecules26226900] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 01/14/2023] Open
Abstract
Due to the scarcity of therapeutic approaches for COVID-19, we investigated the antiviral and anti-inflammatory properties of curcumin against SARS-CoV-2 using in vitro models. The cytotoxicity of curcumin was evaluated using MTT assay in Vero E6 cells. The antiviral activity of this compound against SARS-CoV-2 was evaluated using four treatment strategies (i. pre-post infection treatment, ii. co-treatment, iii. pre-infection, and iv. post-infection). The D614G strain and Delta variant of SARS-CoV-2 were used, and the viral titer was quantified by plaque assay. The anti-inflammatory effect was evaluated in peripheral blood mononuclear cells (PBMCs) using qPCR and ELISA. By pre-post infection treatment, Curcumin (10 µg/mL) exhibited antiviral effect of 99% and 99.8% against DG614 strain and Delta variant, respectively. Curcumin also inhibited D614G strain by pre-infection and post-infection treatment. In addition, curcumin showed a virucidal effect against D614G strain and Delta variant. Finally, the pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) released by PBMCs triggered by SARS-CoV-2 were decreased after treatment with curcumin. Our results suggest that curcumin affects the SARS-CoV-2 replicative cycle and exhibits virucidal effect with a variant/strain independent antiviral effect and immune-modulatory properties. This is the first study that showed a combined (antiviral/anti-inflammatory) effect of curcumin during SARS-CoV-2 infection. However, additional studies are required to define its use as a treatment for the COVID-19.
Collapse
Affiliation(s)
- Damariz Marín-Palma
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia; (D.M.-P.); (J.H.T.-G.); (W.Z.-B.); (J.C.H.)
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Jorge H. Tabares-Guevara
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia; (D.M.-P.); (J.H.T.-G.); (W.Z.-B.); (J.C.H.)
| | - María I. Zapata-Cardona
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Lina M. Yepes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Maria T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Wildeman Zapata-Builes
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia; (D.M.-P.); (J.H.T.-G.); (W.Z.-B.); (J.C.H.)
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Juan C. Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia; (D.M.-P.); (J.H.T.-G.); (W.Z.-B.); (J.C.H.)
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, UdeA, 050010 Medellín, Colombia; (M.I.Z.-C.); (L.F.-Á.); (L.M.Y.); (M.T.R.)
| | - Natalia A. Taborda
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, 050012 Medellín, Colombia; (D.M.-P.); (J.H.T.-G.); (W.Z.-B.); (J.C.H.)
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, 050016 Medellín, Colombia
| |
Collapse
|
11
|
Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021; 22:7130. [PMID: 34281181 PMCID: PMC8267827 DOI: 10.3390/ijms22137130] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.
Collapse
Affiliation(s)
| | | | | | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araraquara 14800-000, Brazil; (J.K.T.-G.); (Y.V.-C.); (A.B.S.)
| |
Collapse
|