1
|
Li J, Akinyemi TS, Shao N, Chen C, Dong X, Liu Y, Whitman WB. Genetic and Metabolic Engineering of Methanococcus spp. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
2
|
Weidenbach K, Gutt M, Cassidy L, Chibani C, Schmitz RA. Small Proteins in Archaea, a Mainly Unexplored World. J Bacteriol 2022; 204:e0031321. [PMID: 34543104 PMCID: PMC8765429 DOI: 10.1128/jb.00313-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In recent years, increasing numbers of small proteins have moved into the focus of science. Small proteins have been identified and characterized in all three domains of life, but the majority remains functionally uncharacterized, lack secondary structure, and exhibit limited evolutionary conservation. While quite a few have already been described for bacteria and eukaryotic organisms, the amount of known and functionally analyzed archaeal small proteins is still very limited. In this review, we compile the current state of research, show strategies for systematic approaches for global identification of small archaeal proteins, and address selected functionally characterized examples. Besides, we document exemplarily for one archaeon the tool development and optimization to identify small proteins using genome-wide approaches.
Collapse
Affiliation(s)
- Katrin Weidenbach
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Miriam Gutt
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Liam Cassidy
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Cynthia Chibani
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Kiel, Germany
| |
Collapse
|
3
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
4
|
Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochim Biophys Acta Gen Subj 2018; 1862:2451-2462. [DOI: 10.1016/j.bbagen.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
5
|
Quitzke V, Fersch J, Seyhan D, Rother M. Selenium-dependent gene expression in Methanococcus maripaludis: Involvement of the transcriptional regulator HrsM. Biochim Biophys Acta Gen Subj 2018; 1862:2441-2450. [DOI: 10.1016/j.bbagen.2018.03.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
|
6
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
7
|
Jugder BE, Welch J, Aguey-Zinsou KF, Marquis CP. Fundamentals and electrochemical applications of [Ni–Fe]-uptake hydrogenases. RSC Adv 2013. [DOI: 10.1039/c3ra22668a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
8
|
Stock T, Selzer M, Connery S, Seyhan D, Resch A, Rother M. Disruption and complementation of the selenocysteine biosynthesis pathway reveals a hierarchy of selenoprotein gene expression in the archaeon Methanococcus maripaludis. Mol Microbiol 2011; 82:734-47. [PMID: 21992107 DOI: 10.1111/j.1365-2958.2011.07850.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Proteins containing selenocysteine are found in members of all three domains of life, Bacteria, Eukarya and Archaea. A dedicated tRNA (tRNA(sec)) serves as a scaffold for selenocysteine synthesis. However, sequence and secondary structures differ in tRNA(sec) from the different domains. An Escherichia coli strain lacking the gene for tRNA(sec) could only be complemented with the homologue from Methanococcus maripaludis when a single base in the anticodon loop was exchanged demonstrating that this base is a crucial determinant for archaeal tRNA(sec) to function in E. coli. Complementation in trans of M. maripaludis JJ mutants lacking tRNA(sec) , O-phosphoseryl-tRNA(sec) kinase or O-phosphoseryl-tRNA(sec) :selenocysteine synthase with the corresponding genes from M. maripaludis S2 restored the mutant's ability to synthesize selenoproteins. However, only partial restoration of the wild-type selenoproteome was observed as only selenocysteine-containing formate dehydrogenase was synthesized. Quantification of transcripts showed that disrupting the pathway of selenocysteine synthesis leads to downregulation of selenoprotein gene expression, concomitant with upregulation of a selenium-independent backup system, which is not re-adjusted upon complementation. This transcriptional arrest was independent of selenophosphate but depended on the 'history' of the mutants and was inheritable, which suggests that a stable genetic switch may cause the resulting hierarchy of selenoproteins synthesized.
Collapse
Affiliation(s)
- Tilmann Stock
- Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Baltazar CSA, Marques MC, Soares CM, DeLacey AM, Pereira IAC, Matias PM. Nickel–Iron–Selenium Hydrogenases – An Overview. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001127] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carla S. A. Baltazar
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Marta C. Marques
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Cláudio M. Soares
- Protein Modeling Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| | - Antonio M. DeLacey
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain, Fax: +34‐915854760
| | - Inês A. C. Pereira
- Bacterial Energy Metabolism Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐441‐1277
| | - Pedro M. Matias
- Laboratory of Industry and Medicine Applied Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780‐157 Oeiras, Portugal, Fax: +351‐21‐443‐3644
| |
Collapse
|
10
|
Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20847933 PMCID: PMC2933860 DOI: 10.1155/2010/453642] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 01/21/2023]
Abstract
Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to put this knowledge into the context of their unique energy metabolism.
Collapse
|
11
|
Stock T, Selzer M, Rother M. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea. Mol Microbiol 2009; 75:149-60. [PMID: 19919669 DOI: 10.1111/j.1365-2958.2009.06970.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biosynthesis of selenocysteine, the 21st proteinogenic amino acid, occurs bound to a dedicated tRNA in all three domains of life, Bacteria, Eukarya and Archaea, but differences exist between the mechanism employed by bacteria and eukaryotes/archaea. The role of selenophosphate and the enzyme providing it, selenophosphate synthetase, in archaeal selenoprotein synthesis was addressed by mutational analysis. Surprisingly, MMP0904, encoding a homologue of eukaryal selenophosphate synthetase in Methanococcus maripaludis S2, could not be deleted unless selD, encoding selenophosphate synthetase of Escherichia coli, was present in trans, demonstrating that the factor is essential for the organism. In contrast, the homologous gene of M. maripaludis JJ could be readily deleted, obviating the strain's ability to synthesize selenoproteins. Complementing with selD restored selenoprotein synthesis, demonstrating that the deleted gene encodes selenophosphate synthetase and that selenophosphate is the in vivo selenium donor for selenoprotein synthesis of this organism. We also showed that this enzyme is a selenoprotein itself and that M. maripaludis contains another, HesB-like selenoprotein previously only predicted from genome analyses. The data highlight the use of genetic methods in archaea for a causal analysis of their physiology and, by comparing two closely related strains of the same species, illustrate the evolution of the selenium-utilizing trait.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
12
|
Stock T, Rother M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim Biophys Acta Gen Subj 2009; 1790:1520-32. [PMID: 19344749 DOI: 10.1016/j.bbagen.2009.03.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
Selenium is an essential trace element for many organisms by serving important catalytic roles in the form of the 21st co-translationally inserted amino acid selenocysteine. It is mostly found in redox-active proteins in members of all three domains of life and analysis of the ever-increasing number of genome sequences has facilitated identification of the encoded selenoproteins. Available data from biochemical, sequence, and structure analyses indicate that Gram-positive bacteria synthesize and incorporate selenocysteine via the same pathway as enterobacteria. However, recent in vivo studies indicate that selenocysteine-decoding is much less stringent in Gram-positive bacteria than in Escherichia coli. For years, knowledge about the pathway of selenocysteine synthesis in Archaea and Eukarya was only fragmentary, but genetic and biochemical studies guided by analysis of genome sequences of Sec-encoding archaea has not only led to the characterization of the pathways but has also shown that they are principally identical. This review summarizes current knowledge about the metabolic pathways of Archaea and Gram-positive bacteria where selenium is involved, about the known selenoproteins, and about the respective pathways employed in selenoprotein synthesis.
Collapse
Affiliation(s)
- Tilmann Stock
- Molekulare Mikrobiologie und Bioenergetik, Institut für Molekulare Biowissenschaften, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
13
|
|
14
|
Lubitz W, Reijerse E, van Gastel M. [NiFe] and [FeFe] Hydrogenases Studied by Advanced Magnetic Resonance Techniques. Chem Rev 2007; 107:4331-65. [PMID: 17845059 DOI: 10.1021/cr050186q] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
15
|
Valente FMA, Almeida CC, Pacheco I, Carita J, Saraiva LM, Pereira IAC. Selenium is involved in regulation of periplasmic hydrogenase gene expression in Desulfovibrio vulgaris Hildenborough. J Bacteriol 2006; 188:3228-35. [PMID: 16621815 PMCID: PMC1447438 DOI: 10.1128/jb.188.9.3228-3235.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D. vulgaris Hildenborough genome codes for six different hydrogenases, but only three of them, the periplasmic-facing [FeFe], [FeNi]1, and [FeNiSe] hydrogenases, are usually detected. In this work, we studied the synthesis of each of these enzymes in response to different electron donors and acceptors for growth as well as in response to the availability of Ni and Se. The formation of the three hydrogenases was not very strongly affected by the electron donors or acceptors used, but the highest levels were observed after growth with hydrogen as electron donor and lowest with thiosulfate as electron acceptor. The major effect observed was with inclusion of Se in the growth medium, which led to a strong repression of the [FeFe] and [NiFe]1 hydrogenases and a strong increase in the [NiFeSe] hydrogenase that is not detected in the absence of Se. Ni also led to increased formation of the [NiFe]1 hydrogenase, except for growth with H2, where its synthesis is very high even without Ni added to the medium. Growth with H2 results in a strong increase in the soluble forms of the [NiFe]1 and [NiFeSe] hydrogenases. This study is an important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases. It supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.
Collapse
Affiliation(s)
- Filipa M A Valente
- Instituto de Tecnologia Química e Biológica, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
One of the first hurdles to be negotiated in the postgenomic era involves the description of the entire protein content of the cell, the proteome. Such efforts are presently complicated by the various posttranslational modifications that proteins can experience, including glycosylation, lipid attachment, phosphorylation, methylation, disulfide bond formation, and proteolytic cleavage. Whereas these and other posttranslational protein modifications have been well characterized in Eucarya and Bacteria, posttranslational modification in Archaea has received far less attention. Although archaeal proteins can undergo posttranslational modifications reminiscent of what their eucaryal and bacterial counterparts experience, examination of archaeal posttranslational modification often reveals aspects not previously observed in the other two domains of life. In some cases, posttranslational modification allows a protein to survive the extreme conditions often encountered by Archaea. The various posttranslational modifications experienced by archaeal proteins, the molecular steps leading to these modifications, and the role played by posttranslational modification in Archaea form the focus of this review.
Collapse
Affiliation(s)
- Jerry Eichler
- Dept. of Life Sciences, Ben Gurion University, P.O. Box 653, Beersheva 84105, Israel.
| | | |
Collapse
|
17
|
Böck A, Rother M. A pseudo-SECIS element in Methanococcus voltae documents evolution of a selenoprotein into a sulphur-containing homologue. Arch Microbiol 2004; 183:148-50. [PMID: 15611862 DOI: 10.1007/s00203-004-0744-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/14/2004] [Accepted: 07/23/2004] [Indexed: 10/26/2022]
Abstract
Methanococcus maripaludis possesses two sets of F(420)-non-reducing hydrogenases which are differentially expressed in response to the selenium content of the medium. One of the subunits of the selenium-containing hydrogenase, VhuD, contains two selenocysteine residues, whereas the homologue of M. voltae possesses cysteine residues in the equivalent positions. Analysis of the 3' non-translated region of the M. voltae vhuD mRNA revealed the existence of a structure resembling the consensus of archaeal SECIS elements but with deviations rendering it non-functional in determining selenocysteine insertion. The presence of a pseudo-SECIS element in the 3' non-translated region of the vhuD mRNA from M. voltae suggests that VhuD from this organism has developed from a selenocysteine-containing ancestor. The 3' non-translated region from the VhcD homologues neither contained a SECIS nor a pseudo SECIS element.
Collapse
Affiliation(s)
- August Böck
- Department I, Faculty of Biology, University of Munich, Maria Ward Strasse 1a, 80638 Munich, Germany.
| | | |
Collapse
|
18
|
Abstract
Members of the genus Methanosarcina are strictly anaerobic archaea that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2 + CO2 are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. Two novel electron transport systems are involved in the process of methanogenesis. Both systems are able to use a heterodisulfide as electron acceptor and either H2 or F420H2 as electron acceptors and generate a proton-motive force by redox potential-driven H(+)-translocation. The H2:heterodisulfide oxidoreductase is composed of an F420-nonreducing hydrogenase and the heterodisulfide reductase. The latter protein is also part of the F420H2:heterodisulfide oxidoreductase system. The second component of this system is referred to as F420H2 dehydrogenase. The archaeal protein is a homologue of complex I of the respiratory chain from bacteria and mitochondria. This review focuses on the biochemical and genetic characteristics of the three energy-transducing enzymes and on the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Biological Sciences, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, Wisconsin 53201, USA.
| |
Collapse
|
19
|
Niess UM, Klein A. Dimethylselenide demethylation is an adaptive response to selenium deprivation in the archaeon Methanococcus voltae. J Bacteriol 2004; 186:3640-8. [PMID: 15150252 PMCID: PMC415765 DOI: 10.1128/jb.186.11.3640-3648.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The archaeon Methanococcus voltae needs selenium for optimal growth. A gene group most likely involved in the demethylation of dimethylselenide was discovered, the expression of which is induced upon selenium deprivation. The operon comprises open reading frames for a corrinoid protein and two putative methyltransferases. It is shown that the addition of dimethylselenide to selenium-depleted growth medium relieves the lack of selenium, as indicated by the repression of a promoter of a transcription unit encoding selenium-free hydrogenases which is normally active only upon selenium deprivation. Knockout mutants of the corrinoid protein or one of the two methyltransferase genes did not show repression of the hydrogenase promoter in the presence of dimethylselenide. The mutation of the other methyltransferase gene had no effect. Growth rates of the two effective mutants were reduced compared to wild-type cells in selenium-limited medium in the presence of dimethylselenide.
Collapse
Affiliation(s)
- Ulf M Niess
- Genetics, Department of Biology, Philipps University of Marburg, D-35032 Marburg, Germany.
| | | |
Collapse
|
20
|
Deppenmeier U. The unique biochemistry of methanogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:223-83. [PMID: 12102556 DOI: 10.1016/s0079-6603(02)71045-3] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methanogenic archaea have an unusual type of metabolism because they use H2 + CO2, formate, methylated C1 compounds, or acetate as energy and carbon sources for growth. The methanogens produce methane as the major end product of their metabolism in a unique energy-generating process. The organisms received much attention because they catalyze the terminal step in the anaerobic breakdown of organic matter under sulfate-limiting conditions and are essential for both the recycling of carbon compounds and the maintenance of the global carbon flux on Earth. Furthermore, methane is an important greenhouse gas that directly contributes to climate changes and global warming. Hence, the understanding of the biochemical processes leading to methane formation are of major interest. This review focuses on the metabolic pathways of methanogenesis that are rather unique and involve a number of unusual enzymes and coenzymes. It will be shown how the previously mentioned substrates are converted to CH4 via the CO2-reducing, methylotrophic, or aceticlastic pathway. All catabolic processes finally lead to the formation of a mixed disulfide from coenzyme M and coenzyme B that functions as an electron acceptor of certain anaerobic respiratory chains. Molecular hydrogen, reduced coenzyme F420, or reduced ferredoxin are used as electron donors. The redox reactions as catalyzed by the membrane-bound electron transport chains are coupled to proton translocation across the cytoplasmic membrane. The resulting electrochemical proton gradient is the driving force for ATP synthesis as catalyzed by an A1A0-type ATP synthase. Other energy-transducing enzymes involved in methanogenesis are the membrane-integral methyltransferase and the formylmethanofuran dehydrogenase complex. The former enzyme is a unique, reversible sodium ion pump that couples methyl-group transfer with the transport of Na+ across the membrane. The formylmethanofuran dehydrogenase is a reversible ion pump that catalyzes formylation and deformylation of methanofuran. Furthermore, the review addresses questions related to the biochemical and genetic characteristics of the energy-transducing enzymes and to the mechanisms of ion translocation.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Microbiology and Genetics, Universität Göttingen, Germany
| |
Collapse
|
21
|
Rother M, Mathes I, Lottspeich F, Böck A. Inactivation of the selB gene in Methanococcus maripaludis: effect on synthesis of selenoproteins and their sulfur-containing homologs. J Bacteriol 2003; 185:107-14. [PMID: 12486046 PMCID: PMC141955 DOI: 10.1128/jb.185.1.107-114.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the selenoproteins, thus proving that the gene product is the archaeal translation factor (aSelB) specialized for selenocysteine insertion. The wild-type form of M. maripaludis repressed the synthesis of the S forms of selenoproteins, i.e., the selenium-independent alternative system, in selenium-enriched medium, but the mutant did not. We concluded that free selenium is not involved in regulation but rather a successional compound such as selenocysteyl-tRNA or some selenoprotein. Apart from the S forms, several enzymes from the general methanogenic route were affected by selenium supplementation of the wild type or by the selB mutation. Although the growth of M. maripaludis on H(2)/CO(2) is only marginally affected by the selB lesion, the gene is indispensable for growth on formate because M. maripaludis possesses only a selenocysteine-containing formate dehydrogenase.
Collapse
Affiliation(s)
- Michael Rother
- Microbiology, Department of Biology I, University of Munich, Maria-Ward-Strasse 1a, D-80638 Munich, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
The biochemistry of selenium-containing natural products, including selenoproteins, is reviewed up to May 2002. Particular emphasis is placed on the assimilation of selenium from inorganic and organic selenium sources for selenoprotein synthesis, the catalytic role of selenium in enzymes, and medical implications of an unbalanced selenium supply. The review contains 393 references on key discoveries and recent progress.
Collapse
Affiliation(s)
- Marc Birringer
- Dept. of Vitamins and Atherosclerosis, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | | | |
Collapse
|
23
|
Affiliation(s)
- J Soppa
- Institute for Microbiology, Biocentre Niederursel, J. W. Goethe University Frankfurt, D-60439 Frankfurt, Germany
| |
Collapse
|
24
|
Rother M, Resch A, Gardner WL, Whitman WB, Böck A. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Mol Microbiol 2001; 40:900-8. [PMID: 11401697 DOI: 10.1046/j.1365-2958.2001.02433.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous in silico analysis of selenoprotein genes in Archaea revealed that the selenocysteine insertion (SECIS) motif necessary to recode UGA with selenocysteine was not adjacent to the UGA codon as is found in Bacteria. Rather, paralogous stem-loop structures are located in the 3' untranslated region (3' UTR), reminiscent of the situation in Eukarya. To assess the function of such putative SECIS elements, the Methanococcus jannaschii MJ0029 (fruA, which encodes the A subunit of the coenzyme F420-reducing hydrogenase) mRNA was mapped in vivo and probed enzymatically in vitro. It was shown that the SECIS element is indeed transcribed as part of the respective mRNA and that its secondary structure corresponds to that predicted by RNA folding programs. Its ability to direct selenocysteine insertion in vivo was demonstrated by the heterologous expression of MJ0029 in Methanococcus maripaludis, resulting in the synthesis of an additional selenoprotein, as analysed by 75Se labelling. The selective advantage of moving the SECIS element in the untranslated region may confer the ability to insert more than one selenocysteine into a single polypeptide. Evidence for this assumption was provided by the finding that the M. maripaludis genome contains an open reading frame with two in frame TGA codons, followed by a stem-loop structure in the 3' UTR of the mRNA that corresponds to the archaeal SECIS element.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
Members of the Archaea domain are extremely diverse in their adaptation to extreme environments, yet also widespread in "normal" habitats. Altogether, among the best characterized archaeal representatives all mechanisms of gene transfer such as transduction, conjugation, and transformation have been discovered, as briefly reviewed here. For some halophiles and mesophilic methanogens, usable genetic tools were developed for in vivo studies. However, on an individual basis no single organism has evolved into the "E. coli of Archaea" as far as genetics is concerned. Currently, and unfortunately, most of the genome sequences available are those of microorganisms which are either not amenable to gene transfer or not among the most promising candidates for genetic studies.
Collapse
Affiliation(s)
- Y Luo
- Institute of Microbiology, Swiss Federal Institute of Technology Zürich
| | | |
Collapse
|
26
|
Abstract
The availability of the genome sequences from several archaea has facilitated the identification of the encoded selenoproteins and also of most of the components of the machinery for selenocysteine biosynthesis and insertion. Until now, selenoproteins have been identified solely in species of the genera Methanococcus (M.) and Methanopyrus. Apart from selenophosphate synthetase, they include only enzymes with a function in energy metabolism. Like in bacteria and eukarya, selenocysteine insertion is directed by a UGA codon in the mRNA and involves the action of a specific tRNA and of selenophosphate as the selenium donor. Major differences to the bacterial system, however, are that no homolog for the bacterial selenocysteine synthase was found and, especially, that the SECIS element of the mRNA is positioned in the 3' nontranslated region. The characterisation of a homolog for the bacterial SelB protein showed that it does not bind to the SECIS element necessitating the activity of at least a second protein. The use of the genetic system of M. maripaludis allowed the heterologous expression of a selenoprotein gene from M. jannaschii and will facilitate the elucidation of the mechanism of the selenocysteine insertion process in the future.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Institut für Genetik und Mikrobiologie, Maria Ward Stra section signe 1a, D-80638 Munich, Germany
| | | | | | | |
Collapse
|
27
|
Bingemann R, Klein A. Conversion of the central [4Fe-4S] cluster into a [3Fe-4S] cluster leads to reduced hydrogen-uptake activity of the F420-reducing hydrogenase of Methanococcus voltae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6612-8. [PMID: 11054113 DOI: 10.1046/j.1432-1327.2000.01755.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As in many other hydrogenases, the small subunit of the F420-reducing hydrogenase of Methanococcus voltae contains three iron-sulfur clusters. The arrangement of the three [4Fe-4S] clusters corresponds to the arrangement of [Fe-S] clusters in the [NiFeSe] hydrogenase of Desulfomicrobium baculatum. Many other hydrogenases contain two [4Fe-4S] clusters and one [3Fe-4S] cluster with a relatively high redox potential, which is located in the central position between a proximal and a distal [4Fe-4S] cluster. We have investigated the role of the central [4Fe-4S] cluster in M. voltae with regard to its effect on the enzyme activity and its spectroscopic properties. Using site-directed mutagenesis, we constructed a strain in which one cysteine ligand of the central [4Fe-4S] cluster was replaced by proline. The mutant protein was purified, and the [4Fe-4S] to [3Fe-4S] cluster conversion was confirmed by EPR spectroscopy. The conversion resulted in an increase in the redox potential of the [3Fe-4S] cluster by about 400 mV. The [NiFe] active site was not affected significantly by the mutation as assessed by the unchanged Ni EPR spectrum. The specific activity of the mutated enzyme did not show any significant differences with the artificial electron acceptor benzyl viologen, but its specific activity with the natural electron acceptor F420 decreased tenfold.
Collapse
Affiliation(s)
- R Bingemann
- Genetics, Department of Biology, Philipps-University, Marburg, Germany
| | | |
Collapse
|
28
|
Deppenmeier U, Lienard T, Gottschalk G. Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 1999; 457:291-7. [PMID: 10471795 DOI: 10.1016/s0014-5793(99)01026-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methanogenic archaea of the order Methanosarcinales which utilize C(1) compounds such as methanol, methylamines or H(2)+CO(2), employ two novel membrane-bound electron transport systems generating an electrochemical proton gradient: the H(2):heterodisulfide oxidoreductase and the F(420)H(2):heterodisulfide oxidoreductase. The systems are composed of the heterodisulfide reductase and either a membrane-bound hydrogenase or a F(420)H(2) dehydrogenase which is functionally homologous to the proton-translocating NADH dehydrogenase. Cytochromes and the novel electron carrier methanophenazine are also involved. In addition, the methyl-H(4)MPT:HS-CoM methyltransferase is bioenergetically relevant. The enzyme couples methyl group transfer with the translocation of sodium ions and seems to be present in all methanogens. The proton-translocating systems with the participation of cytochromes and methanophenazine have been found so far only in the Methanosarcinales.
Collapse
Affiliation(s)
- U Deppenmeier
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, 37077, Göttingen, Germany.
| | | | | |
Collapse
|
29
|
Wanner C, Soppa J. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. Genetics 1999; 152:1417-28. [PMID: 10430572 PMCID: PMC1460679 DOI: 10.1093/genetics/152.4.1417] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
More than 40 nitrate respiration-deficient mutants of Haloferax volcanii belonging to three different phenotypic classes were isolated. All 15 mutants of the null phenotype were complemented with a genomic library of the wild type. Wild-type copies of mutated genes were recovered from complemented mutants using two different approaches. The DNA sequences of 13 isolated fragments were determined. Five fragments were found to overlap; therefore nine different genomic regions containing genes essential for nitrate respiration could be identified. Three genomic regions containing genes coding for subunits of ABC transporters were further characterized. In two cases, genes coding for an ATP-binding subunit and a permease subunit were clustered and overlapped by four nucleotides. The third gene for a permease subunit had no additional ABC transporter gene in proximity. One ABC transporter was found to be glucose specific. The mutant reveals that the ABC transporter solely mediates anaerobic glucose transport. Based on sequence similarity, the second ABC transporter is proposed to be molybdate specific, explaining its essential role in nitrate respiration. The third ABC transporter is proposed to be anion specific. Genome sequencing has shown that ABC transporters are widespread in Archaea. Nevertheless, this study represents only the second example of a functional characterization.
Collapse
Affiliation(s)
- C Wanner
- Biozentrum Niederursel, Institut für Mikrobiologie, J. W. Goethe-Universität D-60439 Frankfurt, Germany
| | | |
Collapse
|
30
|
Kim W, Whitman WB. Isolation of acetate auxotrophs of the methane-producing archaeon Methanococcus maripaludis by random insertional mutagenesis. Genetics 1999; 152:1429-37. [PMID: 10430573 PMCID: PMC1460683 DOI: 10.1093/genetics/152.4.1429] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To learn more about autotrophic growth of methanococci, we isolated nine conditional mutants of Methanococcus maripaludis after transformation of the wild type with a random library in pMEB.2, a suicide plasmid bearing the puromycin-resistance cassette pac. These mutants grew poorly in mineral medium and required acetate or complex organic supplements such as yeast extract for normal growth. One mutant, JJ104, was a leaky acetate auxotroph. A plasmid, pWDK104, was recovered from this mutant by electroporation of a plasmid preparation into Escherichia coli. Transformation of wild-type M. maripaludis with pWDK104 produced JJ104-1, a mutant with the same phenotype as JJ104, thus establishing that insertion of pWDK104 into the genome was responsible for the phenotype. pWDK104 contained portions of the methanococcal genes encoding an ABC transporter closely related to MJ1367-MJ1368 of M. jannaschii. Because high levels of molybdate, tungstate, and selenite restored growth to wild-type levels, this transporter may be specific for these oxyanions. A second acetate auxotroph, JJ117, had an absolute growth requirement for either acetate or cobalamin, and wild-type growth was observed only in the presence of both. Cobinamide, 5', 6'-dimethylbenzimidazole, and 2-aminopropanol did not replace cobalamin. This phenotype was correlated with tandem insertions in the genome but not single insertions and appeared to have resulted from an indirect effect on cobamide metabolism. Plasmids rescued from other mutants contained portions of ORFs denoted in M. jannaschii as endoglucanase (MJ0555), transketolase (MJ0681), thiamine biosynthetic protein thiI (MJ0931), and several hypothetical proteins (MJ1031, MJ0835, and MJ0835.1).
Collapse
Affiliation(s)
- W Kim
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605, USA
| | | |
Collapse
|
31
|
Noll I, Müller S, Klein A. Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements. Genetics 1999; 152:1335-41. [PMID: 10430564 PMCID: PMC1460707 DOI: 10.1093/genetics/152.4.1335] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methanococcus voltae harbors genetic information for two pairs of homologous [NiFe]-hydrogenases. Two of the enzymes contain selenocysteine, while the other two gene groups encode apparent isoenzymes that carry cysteinyl residues in the homologous positions. The genes coding for the selenium-free enzymes, frc and vhc, are expressed only under selenium limitation. They are transcribed out of a common intergenic region. A series of deletions made in the intergenic region localized a common negative regulatory element for the vhc and frc promoters as well as two activator elements that are specific for each of the two transcription units. Repeated sequences, partially overlapping the frc promoter, were also detected. Mutations in these repeated heptanucleotide sequences led to a weak induction of a reporter gene under the control of the frc promoters in the presence of selenium. This result suggests that the heptamer repeats contribute to the negative regulation of the frc transcription unit.
Collapse
Affiliation(s)
- I Noll
- Genetics, Department of Biology, Philipps-University, D-35032 Marburg, Germany
| | | | | |
Collapse
|
32
|
Abstract
Although the genomic sequences of a number of Archaea have been completed in the last three years, genetic systems in the sequenced organisms are absent. In contrast, genetic studies of the mesophiles in the archaeal genus Methanococcus have become commonplace following the recent developments of antibiotic resistance markers, DNA transformation methods, reporter genes, shuttle vectors and expression vectors. These developments have led to investigations of the transcription of the genes for hydrogen metabolism, nitrogen fixation and flagellin assembly. These genetic systems can potentially be used to analyse the genomic sequence of the hyperthermophile Methanococcus jannaschii, addressing questions of its physiology and the function of its many uncharacterized open reading frames. Thus, the sequence of M. jannaschii can serve as a starting point for gene isolation, while in vivo genetics in the mesophilic methanococci can provide the experimental systems to test the predictions from genomics.
Collapse
Affiliation(s)
- D L Tumbula
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven CT 06520-8114, USA
| | | |
Collapse
|
33
|
Abstract
Methanoarchaea, the largest and most phylogenetically diverse group in the Archaea domain, have evolved energy-yielding pathways marked by one-carbon biochemistry featuring novel cofactors and enzymes. All of the pathways have in common the two-electron reduction of methyl-coenzyme M to methane catalyzed by methyl-coenzyme M reductase but deviate in the source of the methyl group transferred to coenzyme M. Most of the methane produced in nature derives from acetate in a pathway where the activated substrate is cleaved by CO dehydrogenase/acetyl-CoA synthase and the methyl group is transferred to coenzyme M via methyltetrahydromethanopterin or methyltetrahydrosarcinapterin. Electrons for reductive demethylation of the methyl-coenzyme M originate from oxidation of the carbonyl group of acetate to carbon dioxide by the synthase. In the other major pathway, formate or H2 is oxidized to provide electrons for reduction of carbon dioxide to the methyl level and reduction of methyl-coenzyme to methane. Methane is also produced from the methyl groups of methanol and methylamines. In these pathways specialized methyltransferases transfer the methyl groups to coenzyme M. Electrons for reduction of the methyl-coenzyme M are supplied by oxidation of the methyl groups to carbon dioxide by a reversal of the carbon dioxide reduction pathway. Recent progress on the enzymology of one-carbon reactions in these pathways has raised the level of understanding with regard to the physiology and molecular biology of methanogenesis. These advances have also provided a foundation for future studies on the structure/function of these novel enzymes and exploitation of the recently completed sequences for the genomes from the methanoarchaea Methanobacterium thermoautotrophicum and Methanococcus jannaschii.
Collapse
Affiliation(s)
- J G Ferry
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16801, USA.
| |
Collapse
|
34
|
Brodersen J, Bäumer S, Abken HJ, Gottschalk G, Deppenmeier U. Inhibition of membrane-bound electron transport of the methanogenic archaeon Methanosarcina mazei Gö1 by diphenyleneiodonium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:218-24. [PMID: 9914496 DOI: 10.1046/j.1432-1327.1999.00017.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proton translocating electron transport systems (F420H2:heterodisulfide oxidoreductase and H2:heterodisulfide oxidoreductase) of Methanosarcina mazei Gö1 were inhibited by diphenyleneiodonium chloride (DPI) indicated by IC50 values of 20 nmol DPI.mg-1 protein and 45 nmol DPI.mg-1 protein, respectively. These effects are due to a complex interaction of DPI with key enzymes of the electron transport chains. It was found that 2-hydroxyphenazine-dependent reactions as catalyzed by F420-nonreducing hydrogenase, F420H2 dehydrogenase and heterodisulfide reductase were inhibited. Interestingly, the H2-dependent methylviologen reduction and the heterodisulfide reduction by reduced methylviologen as catalyzed by the hydrogenase and the heterodisulfide reductase present in washed membranes were unaffected by DPI, respectively. Analysis of the redox behavior of membrane-bound cytochromes indicated that DPI inhibited CoB-S-S-CoM-dependent oxidation of reduced cytochromes and H2-dependent cytochrome reduction. Membrane-bound and purified F420H2 dehydrogenase were inhibited by DPI irrespectively whether methylviologen + metronidazole or 2-hydroxyphenazine were used as electron acceptors. Detailed examination of 2-hydroxy-phenazine-dependent F420H2-oxidation revealed that DPI is a competitive inhibitor of the enzyme, indicated by the Km value for 2-hydroxyphenazine, which increased from 35 microm to 100 microm in the presence of DPI. As DPI and phenazines are structurally similar with respect to their planar configuration we assume that the inhibitor is able to bind to positions where interaction between phenazines and components of the electron transport systems take place. Thus, electron transfer from reduced 2-hydroxyphenazine to cytochrome b2 as part of the heterodisulfide reductase and from H2 to cytochrome b1 as subunit of the membrane-bound hydrogenase is affected in the presence of DPI. In case of the F420H2 dehydrogenase electron transport from FAD or from FeS centers to 2-hydroxyphenazine is inhibited.
Collapse
Affiliation(s)
- J Brodersen
- Institut für Mikrobiologie und Genetik, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 1998. [DOI: 10.1111/j.1574-6976.1998.tb00376.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Appel J, Schulz R. Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1998. [DOI: 10.1016/s1011-1344(98)00179-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Thauer RK. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2377-2406. [PMID: 9782487 DOI: 10.1099/00221287-144-9-2377] [Citation(s) in RCA: 628] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Straße, D-35043 Marburg, and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Straße, D-35032 Marburg, GermanyIn 1933, Stephenson & Stickland (1933a) published that they had isolated from river mud, by the single cell technique, a methanogenic organism capable of growth in an inorganic medium with formate as the sole carbon source.
Collapse
Affiliation(s)
- Rudolf K Thauer
- (Delivered at the 140th Ordinary Meeting of the Society for General Microbiology, 31 March 1998)
| |
Collapse
|
38
|
Sniezko I, Dobson-Stone C, Klein A. The treA gene of Bacillus subtilis is a suitable reporter gene for the archaeon Methanococcus voltae. FEMS Microbiol Lett 1998; 164:237-42. [PMID: 9682471 DOI: 10.1111/j.1574-6968.1998.tb13092.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The similarity of the transcriptional apparatus of Archaea with that of Eucarya makes studies of their transcriptional regulation especially interesting. Such investigations are greatly facilitated by reporter genes. The concomitant analysis of several promoters for investigations of regulatory patterns requires different reporter genes. The archaeon Methanococcus voltae is a moderately halophilic mesophile. The treA gene from Bacillus subtilis appeared to be a good candidate for a reporter, since its product trehalase is salt-resistant. We show that it is indeed expressed under the control of a M. voltae promoter and that the enzyme is easily testable in cell lysates.
Collapse
Affiliation(s)
- I Sniezko
- Department of Biology, Philipps University, Marburg, Germany
| | | | | |
Collapse
|
39
|
Pavlov M, Siegbahn PEM, Blomberg MRA, Crabtree RH. Mechanism of H−H Activation by Nickel−Iron Hydrogenase. J Am Chem Soc 1998. [DOI: 10.1021/ja971681+] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 1997; 179:7135-55. [PMID: 9371463 PMCID: PMC179657 DOI: 10.1128/jb.179.22.7135-7155.1997] [Citation(s) in RCA: 840] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complete 1,751,377-bp sequence of the genome of the thermophilic archaeon Methanobacterium thermoautotrophicum deltaH has been determined by a whole-genome shotgun sequencing approach. A total of 1,855 open reading frames (ORFs) have been identified that appear to encode polypeptides, 844 (46%) of which have been assigned putative functions based on their similarities to database sequences with assigned functions. A total of 514 (28%) of the ORF-encoded polypeptides are related to sequences with unknown functions, and 496 (27%) have little or no homology to sequences in public databases. Comparisons with Eucarya-, Bacteria-, and Archaea-specific databases reveal that 1,013 of the putative gene products (54%) are most similar to polypeptide sequences described previously for other organisms in the domain Archaea. Comparisons with the Methanococcus jannaschii genome data underline the extensive divergence that has occurred between these two methanogens; only 352 (19%) of M. thermoautotrophicum ORFs encode sequences that are >50% identical to M. jannaschii polypeptides, and there is little conservation in the relative locations of orthologous genes. When the M. thermoautotrophicum ORFs are compared to sequences from only the eucaryal and bacterial domains, 786 (42%) are more similar to bacterial sequences and 241 (13%) are more similar to eucaryal sequences. The bacterial domain-like gene products include the majority of those predicted to be involved in cofactor and small molecule biosyntheses, intermediary metabolism, transport, nitrogen fixation, regulatory functions, and interactions with the environment. Most proteins predicted to be involved in DNA metabolism, transcription, and translation are more similar to eucaryal sequences. Gene structure and organization have features that are typical of the Bacteria, including genes that encode polypeptides closely related to eucaryal proteins. There are 24 polypeptides that could form two-component sensor kinase-response regulator systems and homologs of the bacterial Hsp70-response proteins DnaK and DnaJ, which are notably absent in M. jannaschii. DNA replication initiation and chromosome packaging in M. thermoautotrophicum are predicted to have eucaryal features, based on the presence of two Cdc6 homologs and three histones; however, the presence of an ftsZ gene indicates a bacterial type of cell division initiation. The DNA polymerases include an X-family repair type and an unusual archaeal B type formed by two separate polypeptides. The DNA-dependent RNA polymerase (RNAP) subunits A', A", B', B" and H are encoded in a typical archaeal RNAP operon, although a second A' subunit-encoding gene is present at a remote location. There are two rRNA operons, and 39 tRNA genes are dispersed around the genome, although most of these occur in clusters. Three of the tRNA genes have introns, including the tRNAPro (GGG) gene, which contains a second intron at an unprecedented location. There is no selenocysteinyl-tRNA gene nor evidence for classically organized IS elements, prophages, or plasmids. The genome contains one intein and two extended repeats (3.6 and 8.6 kb) that are members of a family with 18 representatives in the M. jannaschii genome.
Collapse
Affiliation(s)
- D R Smith
- Genome Therapeutics Corporation, Collaborative Research Division, Waltham, Massachusetts 02154, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, The Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|