1
|
Pei X, Xiao Q, Feng Y, Chen L, Yang F, Wang Q, Li N, Wang A. Enzymatic properties of a non-classical aldoxime dehydratase capable of producing alkyl and arylalkyl nitriles. Appl Microbiol Biotechnol 2023; 107:7089-7104. [PMID: 37733049 DOI: 10.1007/s00253-023-12767-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023]
Abstract
Nitriles are of significant interest in the flavor and fragrance industries with potential application in cosmetics due to their higher stability than analogous aldehydes. However, the traditional methods to prepare nitriles need toxic reagents and hash conditions. This work aimed to develop a chemoenzymatic strategy to synthesize nitriles from natural aldehydes with aldoxime as the intermediate. A non-classical aldoxime dehydratase (Oxd) was discovered from the fungus Aspergillus ibericus (OxdAsp) to catalyze the dehydration of aldoximes to corresponding nitriles under mild conditions. The amino acid sequence of OxdAsp exhibits an approximately 20% identity with bacterial Oxds. OxdAsp contains a heme prosthetic group bound with the axial H287 in the catalytic pocket. The structure models of OxdAsp with substrates suggest that its catalytic triad is Y138-R141-E192, which is different from the classically bacterial Oxds of His-Arg-Ser/Thr. The catalytic mechanism of OxdAsp was proposed based on the mutagenesis of key residues. The hydroxyl group of the substrate is fixed by E192 to increase its basicity. Y138 acts as a general acid-based catalyst, and its phenolic proton is polarized by the adjacent R141. The protonated Y138 would donate a proton to the hydroxyl group of the substrate and eliminate a water molecule from aldoxime to produce nitrile. The recombinant OxdAsp can efficiently dehydrate citronellal oxime and cinnamaldoxime to citronellyl nitrile and cinnamonitrile in aqueous media, which are applied as fragrance ingredients in the food and cosmetic fields. KEY POINTS: • A novel aldoxime dehydratase from the Aspergillus genus was first characterized as a heme-binding protein. • The catalytic mechanism was predicted based on the molecular interactions of the catalytic pocket with the substrate. • A chemoenzymatic strategy was developed to synthesize nitriles from natural aldehydes with aldoxime as the intermediate.
Collapse
Affiliation(s)
- Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yumin Feng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Li Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fengling Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuyan Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Nanxing Li
- Zhejiang Medicine Co. Ltd, Xinchang, 312500, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Hinzmann M, Yavuzer H, Hinzmann A, Gröger H. Database-driven In Silico-Identification and Characterization of Novel Aldoxime Dehydratases. J Biotechnol 2023; 367:81-88. [PMID: 36907356 DOI: 10.1016/j.jbiotec.2023.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Aldoxime dehydratases (Oxds) are a unique class of enzymes, which catalyzes the dehydration of aldoximes to nitriles in an aqueous environment. Recently, they gained attention as a catalyst for a green and cyanide-free alternative to established nitrile syntheses, which often require the use of toxic cyanides and harsh reaction conditions. Up to now only thirteen aldoxime dehydratases have been discovered and biochemically characterized. This raised the interest for identifying further Oxds with, e.g., complementary properties in terms of substrate scope. In this study, 16 novel genes, presumably encoding aldoxime dehydratases, were selected by using a commercially available 3DM database based on OxdB an Oxd from Bacillus sp. OxB-1. Out of 16 proteins, six enzymes with aldoxime dehydratases activity were identified, which differ in their substrate scope and activity. While some novel Oxds showed better performance for aliphatic substrate such as n-octanaloxime compared to the well characterized OxdRE from Rhodococcus sp. N-771, some showed activity for aromatic aldoximes, leading to an overall high usability of these enzymes in organic chemistry. The applicability for organic synthesis was underlined by converting 100 mM n-octanaloxime at a 10 mL scale within 5 h with the novel aldoxime dehydratase OxdHR as whole-cell catalyst (33 mgbww/mL).
Collapse
Affiliation(s)
- Michael Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Hilmi Yavuzer
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Alessa Hinzmann
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| |
Collapse
|
3
|
Křístková B, Rädisch R, Kulik N, Horvat M, Rucká L, Grulich M, Rudroff F, Kádek A, Pátek M, Winkler M, Martínková L. Scanning aldoxime dehydratase sequence space and characterization of a new aldoxime dehydratase from Fusarium vanettenii. Enzyme Microb Technol 2023; 164:110187. [PMID: 36610228 DOI: 10.1016/j.enzmictec.2022.110187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/30/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
The aim of this work was to map the sequence space of aldoxime dehydratases (Oxds) as enzymes with great potential for nitrile synthesis. Microbes contain an abundance of putative Oxds but fewer than ten Oxds were characterized in total and only two in fungi. In this work, we prepared and characterized a new Oxd (protein gb|EEU37245.1 named OxdFv) from Fusarium vanettenii 77-13-4. OxdFv is distant from the characterized Oxds with a maximum of 36% identity. Moreover, the canonical Oxd catalytic triad RSH is replaced by R141-E187-E303 in OxdFv. R141A and E187A mutants did not show significant activities, but mutant E303A showed a comparable activity as the wild-type enzyme. According to native mass spectrometry, OxdFv contained almost 1 mol of heme per 1 mol of protein, and was composed of approximately 88% monomer (41.8 kDa) and 12% dimer. A major advantage of this enzyme is its considerable activity under aerobic conditions (25.0 ± 4.3 U/mg for E,Z-phenylacetaldoxime at pH 9.0 and 55 °C). Addition of sodium dithionite (reducing agent) and Fe2+ was required for this activity. OxdFv favored (aryl)aliphatic aldoximes over aromatic aldoximes. Substrate docking in the homology model of OxdFv showed a similar substrate specificity. We conclude that OxdFv is the first characterized Oxd of the REE type.
Collapse
Affiliation(s)
- Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic; Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| | - Natalia Kulik
- Laboratory of Structural Biology and Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Zámek 136, CZ-373 33 Nové Hrady, Czech Republic
| | - Melissa Horvat
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Lenka Rucká
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Michal Grulich
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/OC-163, A-1060 Vienna, Austria
| | - Alan Kádek
- Laboratory of Structural Biology and Cell Signaling, BIOCEV - Institute of Microbiology, Czech Academy of Sciences, Průmyslová 595, CZ-252 50 Vestec, Czech Republic; Leibniz Institute of Virology (LIV), Martinistraße 52, D-20251 Hamburg, Germany; European XFEL GmbH, Holzkoppel 4, D-22869 Schenefeld, Germany
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria; Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, A-8010 Graz, Austria
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic.
| |
Collapse
|
4
|
Rädisch R, Pátek M, Křístková B, Winkler M, Křen V, Martínková L. Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant-Bacteria Interactions. Microorganisms 2022; 10:549. [PMID: 35336124 PMCID: PMC8955678 DOI: 10.3390/microorganisms10030549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022] Open
Abstract
In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.
Collapse
Affiliation(s)
- Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, CZ-128 44 Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Barbora Křístková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, CZ-166 28 Prague, Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Faculty of Technical Chemistry, Chemical and Process Engineering, Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
- Austrian Center of Industrial Biotechnology GmbH, Krenngasse 37, A-8010 Graz, Austria
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| |
Collapse
|
5
|
Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y. Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: Importance of surface residues in optimization for crystallization. J Inorg Biochem 2022; 230:111770. [DOI: 10.1016/j.jinorgbio.2022.111770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
|
6
|
Chen Z, Mao F, Zheng H, Xiao Q, Ding Z, Wang A, Pei X. Cyanide-free synthesis of aromatic nitriles from aldoximes: Discovery and application of a novel heme-containing aldoxime dehydratase. Enzyme Microb Technol 2021; 150:109883. [PMID: 34489036 DOI: 10.1016/j.enzmictec.2021.109883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/03/2023]
Abstract
Aromatic nitriles are important structural motifs that frequently existed in pharmaceutical drugs. Due to the convenient synthesis of aldoximes from aldehydes, the dehydration of aldoximes to corresponding nitriles by aldoxime dehydratases (Oxds) is considered as a safe and robust enzymatic production route. Although the Oxd genes are widely distributed in microbial kingdom, so far less than ten Oxds were expressed and further characterized. In this study, we found 26 predicted putative Oxd genes from the GenBank database using a genome mining strategy. The Oxd gene from Pseudomonas putida F1 was cloned and functionally expressed in Escherichia coli BL21 (DE3). The amino acid sequence of OxdF1 shows high identities of 33∼85 % to other characterized Oxds, and contained a ferrous heme as the catalytic site. The optimum reaction pH and temperature of recombinant OxdF1 were 7.0 and 35 °C, respectively. OxdF1 was stable in pH 7.0 potassium phosphate buffer at 30 °C, and its half-life was approximately 3.8 h. OxdF1 can efficiently dehydrate aromatic and heterocyclic aldoximes to nitriles, such as 2-bromobenzaldoxime, 2-chloro-6-fluorobenzaldoxime, thiophene-2-carboxaldoxime, and pyridine-3-aldoxime. Therefore, the recombinant OxdF1 shows a potential application in the cyanide-free synthesis of aromatic nitriles.
Collapse
Affiliation(s)
- Zhiji Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Feiying Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haoteng Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qinjie Xiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhihao Ding
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
7
|
Protein engineering of the aldoxime dehydratase from Bacillus sp. OxB-1 based on a rational sequence alignment approach. Sci Rep 2021; 11:14316. [PMID: 34253740 PMCID: PMC8275659 DOI: 10.1038/s41598-021-92749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, the program INTMSAlign_HiSol for identifying aggregation hotspots in proteins only requiring secondary structure data was introduced. We explored the utility of this program further and applied it for engineering of the aldoxime dehydratase from Bacillus sp. OxB-1. Towards this end, the effect of inverting the hydropathy at selected positions of the amino acid sequence on the enzymatic activity was studied leading to 60% of our constructed variants, which showed improved activity. In part, this activity increase can be rationalised by an improved heme incorporation of the variants. For example, a single mutation gave a 1.8 fold increased enzymatic activity and 30% improved absolute heme incorporation.
Collapse
|
8
|
Choi JE, Shinoda S, Inoue R, Zheng D, Gröger H, Asano Y. Cyanide-free synthesis of an aromatic nitrile from a biorenewable-based aldoxime: Development and application of a recombinant aldoxime dehydratase as a biocatalyst. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1591376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ji Eun Choi
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Japan
| | - Suguru Shinoda
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Japan
| | - Risa Inoue
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Japan
| | - Daijun Zheng
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Japan
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
9
|
Guo Y, Chang H, Wang Q, Shao C, Xu J. Hydrolytic denitrification and decynidation of acrylonitrile in wastewater with Arthrobacter nitroguajacolicus ZJUTB06-99. AMB Express 2018; 8:191. [PMID: 30511127 PMCID: PMC6277404 DOI: 10.1186/s13568-018-0719-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/21/2018] [Indexed: 01/31/2023] Open
Abstract
Acrylonitrile (C3H3N) widely used in chemical raw materials has biological toxicity with -CN bond, so it is the key to removal of cyanide from acrylonitrile wastewater. In our previous research and investigation, a strain was identified as Arthrobacter nitroguajacolicus named ZJUTB06-99 and was proved to be capable of degrading acrylonitrile. In this paper, the strain ZJUTB06-99 was domesticated with acrylonitrile-containing medium and its decyanidation and denitrification in simulated acrylonitrile wastewater were studied. The intermediate product of acrylonitrile in degradation process was identified through gas chromatography-mass spectrometer, as well as the biodegradation pathway of acrylonitrile in wastewater was deduced tentatively. The kinetics equation of biodegradation of acrylonitrile was lnC = - 0.1784t + 5.3349, with the degradation half-life of acrylonitrile in wastewater by 3.885 h. The results of this study showed that the optimum levels of temperature, pH and bacteria concentration to attain the maximum biodegradation were obtained as 30 °C, 6 and 100 g/L, respectively. The disadvantages of the biodegradation with this strain and its possible enhanced method to degrade acrylonitrile in wastewater were also discussed.
Collapse
|
10
|
Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp. Int J Biol Macromol 2018; 115:746-753. [PMID: 29698761 DOI: 10.1016/j.ijbiomac.2018.04.103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/23/2022]
Abstract
Almost 100 genes within the genus Bradyrhizobium are known to potentially encode aldoxime dehydratases (Oxds), but none of the corresponding proteins have been characterized yet. Aldoximes are natural substances involved in plant defense and auxin synthesis, and Oxds are components of enzymatic cascades enabling bacteria to transform, utilize and detoxify them. The aim of this work was to characterize a representative of the highly conserved Oxds in Bradyrhizobium spp. which include both plant symbionts and members of the soil communities. The selected oxd gene from Bradyrhizobium sp. LTSPM299 was expressed in Escherichia coli, and the corresponding gene product (OxdBr1; GenBank: WP_044589203) was obtained as an N-His6-tagged protein (monomer, 40.7 kDa) with 30-47% identity to Oxds characterized previously. OxdBr1 was most stable at pH ca. 7.0-8.0 and at up to 30 °C. As substrates, the enzyme acted on (aryl)aliphatic aldoximes such as E/Z-phenylacetaldoxime, E/Z-2-phenylpropionaldoxime, E/Z-3-phenylpropionaldoxime, E/Z-indole-3-acetaldoxime, E/Z-propionaldoxime, E/Z-butyraldoxime, E/Z-valeraldoxime and E/Z-isovaleraldoxime. Some of the reaction products of OxdBr1 are substrates of nitrilases occurring in the same genus. Regions upstream of the oxd gene contained genes encoding a putative aliphatic nitrilase and its transcriptional activator, indicating the participation of OxdBr1 in the metabolic route from aldoximes to carboxylic acids.
Collapse
|
11
|
Hara R, Hirai K, Suzuki S, Kino K. A chemoenzymatic process for amide bond formation by an adenylating enzyme-mediated mechanism. Sci Rep 2018; 8:2950. [PMID: 29440726 PMCID: PMC5811625 DOI: 10.1038/s41598-018-21408-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
Amide bond formation serves as a fundamental reaction in chemistry, and is practically useful for the synthesis of peptides, food additives, and polymers. However, current methods for amide bond formation essentially generate wastes and suffer from poor atom economy under harsh conditions. To solve these issues, we demonstrated an alternative synthesis method for diverse tryptophyl-N-alkylamides by the combination of the first adenylation domain of tyrocidine synthetase 1 with primary or secondary amines as nucleophiles. Moreover, the physiological role of this domain is l-phenylalanine adenylation; however, we revealed that it displayed broad substrate flexibility from mono-substituted tryptophan analogues to even d-tryptophan. To the best of our knowledge, this is the first evidence for an adenylating enzyme-mediated direct amide bond formation via a sequential enzymatic activation of amino acids followed by nucleophilic substitution by general amines. These findings facilitate the design of a promising tool for biocatalytic straightforward amide bond formation with less side products.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kengo Hirai
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Shin Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, Tokyo, 169-8555, Japan. .,Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan.
| |
Collapse
|
12
|
Draft Genome Sequence of an Aldoxime Degrader, Rhodococcus sp. Strain YH3-3. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00406-16. [PMID: 27198031 PMCID: PMC4888990 DOI: 10.1128/genomea.00406-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhodococcus sp. strain YH3-3 has been isolated as an (E)-pyridine-3-aldoxime degrader. Here, we report the draft genome sequence of this strain, with a size of 7,316,908 bp, average G+C content of 62.15%, and 7,281 predicted protein-coding sequences.
Collapse
|
13
|
Biosynthetic pathway for the cyanide-free production of phenylacetonitrile in Escherichia coli by utilizing plant cytochrome P450 79A2 and bacterial aldoxime dehydratase. Appl Environ Microbiol 2014; 80:6828-36. [PMID: 25172862 DOI: 10.1128/aem.01623-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The biosynthetic pathway for the production of phenylacetonitrile (PAN), which has a wide variety of uses in chemical and pharmaceutical industries, was constructed in Escherichia coli utilizing enzymes from the plant glucosinolate-biosynthetic and bacterial aldoxime-nitrile pathways. First, the single-step reaction to produce E,Z-phenylacetaldoxime (PAOx) from l-Phe was constructed in E. coli by introducing the genes encoding cytochrome P450 (CYP) 79A2 and CYP reductase from Arabidopsis thaliana, yielding the E,Z-PAOx-producing transformant. Second, this step was expanded to the production of PAN by further introducing the aldoxime dehydratase (Oxd) gene from Bacillus sp. strain OxB-1, yielding the PAN-producing transformant. The E,Z-PAOx-producing transformant also produced phenethyl alcohol and PAN as by-products, which were suggested to be the metabolites of E,Z-PAOx produced by E. coli enzymes, while the PAN-producing transformant accumulated only PAN in the culture broth, which suggested that the CYP79A2 reaction (the conversion of l-Phe to E,Z-PAOx) was a potential bottleneck in the PAN production pathway. Expression of active CYP79A2 and concentration of biomass were improved by the combination of the autoinduction method, coexpression of groE, encoding the heat shock protein GroEL/GroES, N-terminal truncation of CYP79A2, and optimization of the culture conditions, yielding a >60-fold concentration of E,Z-PAOx (up to 2.9 mM). The concentration of PAN was 4.9 mM under the optimized conditions. These achievements show the potential of this bioprocess to produce nitriles and nitrile derivatives in the absence of toxic chemicals.
Collapse
|
14
|
Kaul P, Asano Y. Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Biotechnol 2011; 5:18-33. [PMID: 21883976 PMCID: PMC3815269 DOI: 10.1111/j.1751-7915.2011.00280.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Developments in biocatalysis have been largely fuelled by consumer demands for new products, industrial attempts to improving existing process and minimizing waste, coupled with governmental measures to regulate consumer safety along with scientific advancements. One of the major hurdles to application of biocatalysis to chemical synthesis is unavailability of the desired enzyme to catalyse the reaction to allow for a viable process development. Even when the desired enzyme is available it often forces the process engineers to alter process parameters due to inadequacies of the enzyme, such as instability, inhibition, low yield or selectivity, etc. Developments in the field of enzyme or reaction engineering have allowed access to means to achieve the ends, such as directed evolution, de novo protein design, use of non‐conventional media, using new substrates for old enzymes, active‐site imprinting, altering temperature, etc. Utilization of enzyme discovery and improvement tools therefore provides a feasible means to overcome this problem. Judicious employment of these tools has resulted in significant advancements that have leveraged the research from laboratory to market thus impacting economic growth; however, there are further opportunities that have not yet been explored. The present review attempts to highlight some of these achievements and potential opportunities.
Collapse
Affiliation(s)
- Praveen Kaul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi - 110 016, India
| | | |
Collapse
|
15
|
Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol Adv 2010; 28:725-41. [DOI: 10.1016/j.biotechadv.2010.05.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|
16
|
Koçak A, Kurbanlı S, Malkondu S. O‐Alkylation of Pyridine Aldo‐ and Ketoximes with Dihalohydrins under Phase‐Transfer Conditions. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910701198997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ahmet Koçak
- a Faculty of Sciences and Arts, Department of Chemistry , Selçuk University , Konya, Turkey
| | - Sultan Kurbanlı
- a Faculty of Sciences and Arts, Department of Chemistry , Selçuk University , Konya, Turkey
| | - Sait Malkondu
- a Faculty of Sciences and Arts, Department of Chemistry , Selçuk University , Konya, Turkey
| |
Collapse
|
17
|
Sawai H, Sugimoto H, Kato Y, Asano Y, Shiro Y, Aono S. X-ray crystal structure of michaelis complex of aldoxime dehydratase. J Biol Chem 2009; 284:32089-96. [PMID: 19740758 DOI: 10.1074/jbc.m109.018762] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldoxime dehydratase (Oxd) catalyzes the dehydration of aldoximes (R-CH=N-OH) to their corresponding nitrile (R-C triple bond N). Oxd is a heme-containing enzyme that catalyzes the dehydration reaction as its physiological function. We have determined the first two structures of Oxd: the substrate-free OxdRE at 1.8 A resolution and the n-butyraldoxime- and propionaldoxime-bound OxdREs at 1.8 and 1.6 A resolutions, respectively. Unlike other heme enzymes, the organic substrate is directly bound to the heme iron in OxdRE. We determined the structure of the Michaelis complex of OxdRE by using the unique substrate binding and activity regulation properties of Oxd. The Michaelis complex was prepared by x-ray cryoradiolytic reduction of the ferric dead-end complex in which Oxd contains a Fe(3+) heme form. The crystal structures reveal the mechanism of substrate recognition and the catalysis of OxdRE.
Collapse
Affiliation(s)
- Hitomi Sawai
- From the Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Koçak A, Malkondu S, Kurbanli S. Synthesis of alkyl nitrones by reaction of aldehyde and ketone oximes with α,β-unstaturated esters in the presence of Lewis acid. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2009. [DOI: 10.1134/s1070428009040204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V. Biodegradation potential of the genus Rhodococcus. ENVIRONMENT INTERNATIONAL 2009; 35:162-77. [PMID: 18789530 DOI: 10.1016/j.envint.2008.07.018] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/02/2008] [Accepted: 07/22/2008] [Indexed: 05/24/2023]
Abstract
A large number of aromatic compounds and organic nitriles, the two groups of compounds covered in this review, are intermediates, products, by-products or waste products of the chemical and pharmaceutical industries, agriculture and the processing of fossil fuels. The majority of these synthetic substances (xenobiotics) are toxic and their release and accumulation in the environment pose a serious threat to living organisms. Bioremediation using various bacterial strains of the genus Rhodococcus has proved to be a promising option for the clean-up of polluted sites. The large genomes of rhodococci, their redundant and versatile catabolic pathways, their ability to uptake and metabolize hydrophobic compounds, to form biofilms, to persist in adverse conditions and the availability of recently developed tools for genetic engineering in rhodococci make them suitable industrial microorganisms for biotransformations and the biodegradation of many organic compounds. The peripheral and central catabolic pathways in rhodococci are characterized for each type of aromatics (hydrocarbons, phenols, halogenated, nitroaromatic, and heterocyclic compounds) in this review. Pathways involved in the hydrolysis of nitrile pollutants (aliphatic nitriles, benzonitrile analogues) and the corresponding enzymes (nitrilase, nitrile hydratase) are described in detail. Examples of regulatory mechanisms for the expression of the catabolic genes are given. The strains that efficiently degrade the compounds in question are highlighted and examples of their use in biodegradation processes are presented.
Collapse
Affiliation(s)
- Ludmila Martínková
- Centre of Biocatalysis and Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Selection and screening for enzymes of nitrile metabolism. J Biotechnol 2008; 133:318-26. [DOI: 10.1016/j.jbiotec.2007.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 09/26/2007] [Accepted: 10/23/2007] [Indexed: 11/19/2022]
|
21
|
Kato Y, Tsuda T, Asano Y. Purification and partial characterization of N-hydroxy-l-phenylalanine decarboxylase/oxidase from Bacillus sp. strain OxB-1, an enzyme involved in aldoxime biosynthesis in the “aldoxime–nitrile pathway”. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:856-65. [PMID: 17544345 DOI: 10.1016/j.bbapap.2007.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/27/2007] [Accepted: 04/25/2007] [Indexed: 11/22/2022]
Abstract
An enzyme that catalyzes the conversion of N-hydroxy-l-phenylalanine to phenylacetaldoxime was shown to be present in the Z-phenylacetaldoxime-degrading bacterium, Bacillus sp. strain OxB-1. The aldoxime-forming enzyme, which is induced by L-phenylalanine, was purified 8,050-fold to apparent homogeneity with a yield of 15.2%. The enzyme has a subunit M(r) of about 86,000. The enzyme converts N-hydroxy-L-phenylalanine (K(m) 0.99 mM) to only one geometrical isomer, namely Z-phenylacetaldoxime. Relatively large amounts of pyridoxal 5'-phosphate (PLP) are required to be present in the reaction mixture because PLP reacts non-enzymatically with the N-hydroxy amino acid substrate to form a nitrone. Several characteristics of the enzyme were compared with those of other PLP-dependent aromatic amino acid-converting enzymes described in the literature. The enzyme is tentatively named "N-hydroxy-L-phenylalanine decarboxylase/oxidase". Finally, the possible biosynthesis and metabolism of phenylacetaldoxime in Bacillus sp. strain OxB-1 is discussed.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | |
Collapse
|
22
|
Şen N, Kar Y, Kurbanov S. Alkylation of pyridinecarbaldehyde oximes with epoxy compounds. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2007. [DOI: 10.1134/s1070428007030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Prasad S, Misra A, Jangir VP, Awasthi A, Raj J, Bhalla TC. A propionitrile-induced nitrilase of Rhodococcus sp. NDB 1165 and its application in nicotinic acid synthesis. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9230-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Kato Y, Asano Y. Molecular and enzymatic analysis of the “aldoxime–nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl Microbiol Biotechnol 2006; 70:92-101. [PMID: 16003557 DOI: 10.1007/s00253-005-0044-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 04/29/2005] [Accepted: 05/30/2005] [Indexed: 12/01/2022]
Abstract
A gene cluster responsible for aldoxime metabolism in the glutaronitrile degrader Pseudomonas sp. K-9 was analyzed genetically and enzymatically. The cluster was composed of genes coding for aldoxime dehydratase (Oxd), nitrile hydratase (NHase), NHase activator, amidase, acyl-CoA ligase, and some regulatory and functionally unknown proteins, which were similar to proteins appearing in the "aldoxime-nitrile pathway" gene cluster from strains having Fe-containing NHase. A key enzyme in the cluster, OxdK, which has 32.7-90.3 % identity with known Oxds, was overexpressed in Escherichia coli cells under the control of a T7 promoter in its His(6)-tagged form, purified, and characterized. The enzyme showed similar characteristics with the known Oxds coexisting with an Fe-containing NHase in its subunit structure, substrate specificity, and effects on various compounds. The enzyme can be classified into a group of "aliphatic aldoxime dehydratase (EC 4.99.1.5)." The existence of a gene cluster of enzymes responsible for aldoxime metabolism via the aldoxime-nitrile pathway (aldoxime-->nitrile-->amide-->acid-->acyl-CoA) in Pseudomonas sp. K-9, and the fact that the proteins comprising the cluster are similar to those acting on aliphatic type substrates, evidently clarified the alkylaldoxime-degrading pathway in that strain.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | |
Collapse
|
25
|
Kato Y, Yoshida S, Xie SX, Asano Y. Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 2005; 97:250-9. [PMID: 16233624 DOI: 10.1016/s1389-1723(04)70200-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
We identified an aldoxime dehydratase (Oxd) gene in the 5'-flanking region of the nitrile hydratase-amidase gene cluster in the photoreactive iron-type nitrile hydratase-producer, Rhodococcus sp. N-771. The enzyme showed 96.3%, 77.6%, and 30.4% identities with the Oxds of Rhodococcus globerulus A-4, Pseudomonas chlororaphis B23, and Bacillus sp. OxB-1, respectively. The enzyme was expressed in Escherichia coli under the control of the lac- or T7 promoters in its intact and His6-tagged forms, purified, and characterized. The enzyme had heme b as a prosthetic group, catalyzed a stoichiometric dehydration of aldoxime into nitrile, and exhibited the highest activity at neutral pH and at around 30 degrees C similar to the known Oxd from Bacillus sp. OxB-1. The activity was enhanced by reducing agents, such as Na2S, Na2S2(O4), 2-mercaptoethanol, and L-cysteine and supplementary additions of electron acceptors such as flavins, sulfite ion, and vitamin K3. The effect of various chemicals on the enzyme activity was different in the presence and absence of the reducing reagent, Na2S. The enzyme preferentially acts on aliphatic-type substrates and the substrate specificity of the enzyme coincides with that reported for nitrile hydratase produced by the strain.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | | | | | |
Collapse
|
26
|
O'Mahony R, Doran J, Coffey L, Cahill OJ, Black GW, O'Reilly C. Characterisation of the nitrile hydratase gene clusters of Rhodococcus erythropolis strains AJ270 and AJ300 and Microbacterium sp. AJ115 indicates horizontal gene transfer and reveals an insertion of IS1166. Antonie van Leeuwenhoek 2005; 87:221-32. [PMID: 15803388 DOI: 10.1007/s10482-004-3721-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 09/23/2004] [Indexed: 10/25/2022]
Abstract
The nitrile metabolising strains AJ270, AJ300 and AJ115 were isolated from the same location. The strains have very similar nitrile metabolising profiles. Sequencing of the 16S rRNA gene indicates that strains AJ270 and AJ300 are novel strains of Rhodococcus erythropolis while strain AJ115 is a novel Microbacterium strain very closely related to Microbacterium oxydans and Microbacterium liquefaciens. Analysis of the structure of the nitrile hydratase/amidase gene clusters in the three strains indicates that this region is identical in these strains and that this structure is different to other nitrile hydratase/amidase gene clusters. The major difference seen is the insertion of a complete copy of the insertion sequence IS1166 in the nhr2 gene. This copy of IS1166 generates a 10 bp direct duplication at the point of insertion and has one ORF encoding a protein of 434 amino acids, with 98% homology to the transposase of IS666 from Mycobacterium avium. A gene oxd, encoding aldoxime dehydratase is found upstream of the nitrile hydratase gene cluster and an open reading frame encoding a protein with homology to GlnQ type ABC transporters is found downstream of the nitrile hydratase/amidase genes. The identity of the nitrile hydratase/amidase gene clusters in the three strains suggests horizontal gene transfer of this region. Analysis of the strains for both linear and circular plasmids indicates that both are present in the strains but hybridisation studies indicate that the nitrile hydratase/amidase gene cluster is chromosomally located. The nitrile hydratase/amidase enzymes of strain AJ270 are inducible with acetonitrile or acetamide. Interestingly although a number of Fe-type nitrile hydratases have been shown to be photosensitive, the enzyme from strain AJ270 is not.
Collapse
Affiliation(s)
- Rebecca O'Mahony
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | | | | | | | | | | |
Collapse
|
27
|
Doran JP, Duggan P, Masterson M, Turner PD, O'Reilly C. Expression and purification of a recombinant enantioselective amidase. Protein Expr Purif 2005; 40:190-6. [PMID: 15721788 DOI: 10.1016/j.pep.2004.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 12/19/2004] [Indexed: 10/25/2022]
Abstract
Microbacterium sp. AJ115 metabolises a wide range of nitriles using the two-step nitrile hydratase/amidase pathway. In this study, the amidase gene of Microbacterium sp. AJ115 has been inserted into the pCal-n-EK expression vector and expressed in Escherichia coli BL21(DE3)pLysS. The expressed protein is active in E. coli and expression of the amidase gene allows E. coli to grow on acetamide as sole carbon and/or nitrogen source. Expression of active amidase in E. coli was temperature dependent with high activity found when cultures were grown between 20 and 30 degrees C but no activity at 37 degrees C. On induction, the amidase represents 28% of the total soluble protein in E. coli. The expressed amidase has been purified in a single step from the crude lysate using the calmodulin-binding peptide (CBP) affinity tag. The V(max) and K(m) of the purified enzyme with acetamide (50 mM) were 4.4 micromol/min/mg protein and 4.5mM, respectively. The temperature optimum was found to be 50 degrees C. Purified enzyme demonstrated enantioselectivity with the ability to preferentially act on the S enantiomer of racemic (R,S)-2-phenylpropionamide. S-2-phenylpropionic acid is produced with an enantiomeric excess of >82% at 50% conversion of the parent amide.
Collapse
Affiliation(s)
- John P Doran
- Department of Chemical and Life Sciences, Waterford Institute of Technology, Cork Road, Waterford, Ireland
| | | | | | | | | |
Collapse
|
28
|
Cowan DA, Cameron RA, Tsekoa TL. Comparative biology of mesophilic and thermophilic nitrile hydratases. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:123-58. [PMID: 12964242 DOI: 10.1016/s0065-2164(03)01005-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Don A Cowan
- Advanced Research Centre for Applied Microbiology, Department of Biotechnology, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | | | | |
Collapse
|
29
|
Brandão PFB, Clapp JP, Bull AT. Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 2003; 69:5754-66. [PMID: 14532022 PMCID: PMC201182 DOI: 10.1128/aem.69.10.5754-5766.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2003] [Accepted: 07/09/2003] [Indexed: 11/20/2022] Open
Abstract
A molecular screening approach was developed in order to amplify the genomic region that codes for the alpha- and beta-subunits of the nitrile hydratase (NHase) enzyme in rhodococci. Specific PCR primers were designed for the NHase genes from a collection of nitrile-degrading actinomycetes, but amplification was successful only with strains identified as Rhodococcus erythropolis. A hydratase PCR product was also obtained from R. erythropolis DSM 43066(T), which did not grow on nitriles. Southern hybridization of other members of the nitrile-degrading bacterial collection resulted in no positive signals other than those for the R. erythropolis strains used as positive controls. PCR-restriction fragment length polymorphism-single-strand conformational polymorphism (PRS) analysis of the hydratases in the R. erythropolis strains revealed unique patterns that mostly correlated with distinct geographical sites of origin. Representative NHases were sequenced, and they exhibited more than 92.4% similarity to previously described NHases. The phylogenetic analysis and deduced amino acid sequences suggested that the novel R. erythropolis enzymes belonged to the iron-type NHase family. Some different residues in the translated sequences were located near the residues involved in the stabilization of the NHase active site, suggesting that the substitutions could be responsible for the different enzyme activities and substrate specificities observed previously in this group of actinomycetes. A similar molecular screening analysis of the amidase gene was performed, and a correlation between the PRS patterns and the geographical origins identical to the correlation found for the NHase gene was obtained, suggesting that there was coevolution of the two enzymes in R. erythropolis. Our findings indicate that the NHase and amidase genes present in geographically distinct R. erythropolis strains are not globally mixed.
Collapse
Affiliation(s)
- Pedro F B Brandão
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | |
Collapse
|
30
|
Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y. A Gene Cluster Responsible for Alkylaldoxime Metabolism Coexisting with Nitrile Hydratase and Amidase in Rhodococcus globerulus A-4,. Biochemistry 2003; 42:12056-66. [PMID: 14556637 DOI: 10.1021/bi035092u] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An enzyme "alkylaldoxime dehydratase (OxdRG)" was purified and characterized from Rhodococcus globerulus A-4, in which nitrile hydratase (NHase) and amidase coexisted with the enzyme. The enzyme contains heme b as a prosthetic group, requires reducing reagents for the reaction, and is most active at a neutral pH and at around 30 degrees C, similar to the phenylacetaldoxime dehydratase from Bacillus sp. OxB-1 (OxdB). However, some differences were seen in subunit structure, substrate specificity, and effects of activators and inhibitors. The corresponding gene, oxd, encoding a 1059-base pair ORF consisting of 353 codons, was cloned, sequenced, and overexpressed in Escherichia coli. The predicted polypeptide showed 30.3% identity to OxdB. The gene is mapped just upstream of the gene cluster encoding the enzymes involved in the metabolism of aliphatic nitriles, i.e., NHase and amidase, and their regulatory and activator proteins. We report here the existence of an aldoxime dehydratase genetically linked with NHase and amidase, and responsible for the metabolism of alkylaldoxime in R. globerulus.
Collapse
Affiliation(s)
- Sheng-Xue Xie
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan
| | | | | | | | | |
Collapse
|
31
|
Oinuma KI, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, Kobayashi M. Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Sequencing, gene expression, purification, and characterization. J Biol Chem 2003; 278:29600-8. [PMID: 12773527 DOI: 10.1074/jbc.m211832200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analysis of the nitrile hydratase gene cluster involved in nitrile metabolism of Pseudomonas chlororaphis B23 revealed that it contains one open reading frame encoding aldoxime dehydratase upstream of the amidase gene. The amino acid sequence deduced from this open reading frame shows similarity (32% identity) with that of Bacillus phenylacetaldoxime dehydratase (Kato, Y., Nakamura, K., Sakiyama, H., Mayhew, S. G., and Asano, Y. (2000) Biochemistry 39, 800-809). The gene product expressed in Escherichia coli catalyzed the dehydration of aldoxime into nitrile. The Pseudomonas aldoxime dehydratase (OxdA) was purified from the E. coli transformant and characterized. OxdA shows an absorption spectrum with a Soret peak that is characteristic of heme, demonstrating that it is a hemoprotein. For its activity, this enzyme required a reducing reagent, Na2S2O4, but did not require FMN, which is crucial for the Bacillus enzyme. The enzymatic reaction was found to be catalyzed when the heme iron of the enzyme was in the ferrous state. Calcium as well as iron was included in the enzyme. OxdA reduced by Na2S2O4 had a molecular mass of 76.2 kDa and consisted of two identical subunits. The kinetic parameters of OxdA indicated that aliphatic aldoximes are more effective substrates than aromatic aldoximes. A variety of spectral shifts in the absorption spectra of OxdA were observed upon the addition of each of various compounds (i.e. redox reagents and heme ligands). Moreover, the addition of the substrate to OxdA gave a peak that would be derived from the intermediate in the nitrile synthetic reaction. P. chlororaphis B23 grew and showed the OxdA activity when cultured in a medium containing aldoxime as the sole carbon and nitrogen source. Together with these findings, Western blotting analysis of the extracts using anti-OxdA antiserum revealed that OxdA is responsible for the metabolism of aldoxime in vivo in this strain.
Collapse
Affiliation(s)
- Ken-Ichi Oinuma
- Institute of Applied Biochemistry, The University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Kato Y, Asano Y. High-level expression of a novel FMN-dependent heme-containing lyase, phenylacetaldoxime dehydratase of Bacillus sp. strain OxB-1, in heterologous hosts. Protein Expr Purif 2003; 28:131-9. [PMID: 12651117 DOI: 10.1016/s1046-5928(02)00638-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We examined the overexpression of a novel FMN-dependent heme-containing lyase, phenylacetaldoxime dehydratase (Oxd) of Bacillus sp. strain OxB-1, in Escherichia coli and Bacillus subtilis. Several plasmids were constructed to express the enzyme under the control of the lac promoter or its own promoter, together with or without nitrilase and a possible regulatory protein that is present in the wild-type genome. The enzyme was expressed using E. coli transfected with the plasmid pOxD-9OF. Expression was under the control of the lac promoter in the pUC18 vector and was much more effective when the start codon was changed from TTG to ATG. When the transfected cells were grown at 37 degrees C, the enzyme was produced mainly in inactive inclusion bodies, whereas the enzyme was largely soluble and active when the cells were grown at 30 degrees C. The production of active enzyme was markedly enhanced by increasing the volume of culture medium. This had the effect of slowing the rate of apoenzyme synthesis. A slow rate of synthesis allows for a more efficient incorporation of heme cofactor into the apoenzyme than a fast rate of synthesis. Under optimized conditions, the enzyme was produced in an active and soluble form at 15,000U/L of culture, which is about 1500-fold higher than the amount produced by the wild-type strain. Moreover, the enzyme comprised over 40% of total extractable cellular protein.
Collapse
Affiliation(s)
- Yasuo Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, Kosugi, Toyama 939-0398, Japan
| | | |
Collapse
|
33
|
Brandão PFB, Clapp JP, Bull AT. Discrimination and taxonomy of geographically diverse strains of nitrile-metabolizing actinomycetes using chemometric and molecular sequencing techniques. Environ Microbiol 2002; 4:262-76. [PMID: 12030852 DOI: 10.1046/j.1462-2920.2002.00292.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycolic acid-containing actinomycetes capable of metabolizing nitriles were recovered from deep-sea sediments and terrestrial soils by enrichment culture on acetonitrile, benzonitrile, succinonitrile or bromoxynil. A total of 43 nitrile-degrading strains were isolated and, together with previously recovered nitrile-degrading rhodococci, were identified by a polyphasic taxonomic approach, which included mycolic acid profiles, pyrolysis mass spectrometry (PyMS), genomic fingerprinting based on sequence variability of the 16S ribosomal RNA gene using polymerase chain reaction-restriction fragment length polymorphism-single-strand conformational polymorphism, and 16S rRNA gene sequence comparison. Isolates phylogenetically related to Rhodococcus erythropolis dominated the culturable microorganisms from most marine and terrestrial samples. These isolates clustered together in a major pyrogroup that showed high congruence with PRS profiles of the 16S rRNA gene. Such high congruence also was obtained for other recovered isolates that were assigned to species of Rhodococcus and Gordonia. Sequencing data validated the results obtained by PRS analysis and enabled phylogenetic relationships to be established. Some of the recovered bacteria probably represent novel microbial species. The fact that nitrile-metabolizing microorganisms were recovered from a wide range of habitat types suggests that nitrile transforming enzymatic activity is geographically widely distributed in nature.
Collapse
Affiliation(s)
- Pedro F B Brandão
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
34
|
Asano Y. Overview of screening for new microbial catalysts and their uses in organic synthesis--selection and optimization of biocatalysts. J Biotechnol 2002; 94:65-72. [PMID: 11792452 DOI: 10.1016/s0168-1656(01)00419-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As a typical example of screening for a microbial biocatalyst from nature, isolation of aldoxime-degrading microorganisms, characterization of a new enzyme phenylacetaldoxime dehydratase, and application of this enzyme to nitrile synthesis are described. The pathway in which aldoximes are successively degraded via nitrile in microorganisms could be named as 'aldoxime-nitrile pathway'. As an example of a post-screening procedure, a directed molecular evolution technique was successfully used to change the properties of nucleoside pyrophosphate phosphotransferase to make it suitable for synthesis of inosine-5'-monophosphate (5'-IMP). With the mutant enzyme, the efficiency of the production of 5'-IMP, a food additive, was much improved.
Collapse
Affiliation(s)
- Yasuhisa Asano
- Biotechnology Research Center, Toyama Prefectural University, 5180 Kurokawa, Kosugi, Toyama 939-0398, Japan.
| |
Collapse
|
35
|
Abstract
The distribution of phenylacetaldoxime-degrading and pyridine-3-aldoxime-degrading ability was examined with intact cells of 975 microorganisms, including 45 genera of bacteria, 11 genera of actinomyces, 22 genera of yeasts, and 37 genera of fungi, by monitoring the decrease of the aldoximes by high-pressure liquid chromatography. The abilities were found to be widely distributed in bacteria, actinomyces, fungi, and some yeasts: 98 and 107 strains degraded phenylacetaldoxime and pyridine-3-aldoxime, respectively. All of the active strains exhibited not only the aldoxime-dehydration activity to form nitrile but also nitrile-hydrolyzing activity. On the other hand, all of 19 nitrile-degrading microorganisms (13 species, 7 genera) were found to exhibit aldoxime dehydration activity. It is shown that aldoxime dehydratase and nitrile-hydrolyzing activities are widely distributed among 188 aldoxime and 19 nitrile degraders and that the enzymes were induced by aldoximes or nitriles.
Collapse
Affiliation(s)
- Y Kato
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, Kosugi, Toyama 939-0398, Japan
| | | | | |
Collapse
|
36
|
Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y. Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: purification, characterization, and molecular cloning of the gene. Biochemistry 2000; 39:800-9. [PMID: 10651646 DOI: 10.1021/bi991598u] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel dehydratase that catalyzes the stoichiometric dehydration of Z-phenylacetaldoxime to phenylacetonitrile has been purified 483-fold to homogeneity from a cell-free extract of Bacillus sp. strain OxB-1 isolated from soil. It has a M(r) of about 40 000 and is composed of a single polypeptide chain with a loosely bound protoheme IX. The enzyme is inactive unless FMN is added to the assay, but low activity is also observed when sulfite replaces FMN. The activity in the presence of FMN is enhanced 5-fold under anaerobic conditions compared to the activity measured in air. The enzyme has maximum activity at pH 7.0 and 30 degrees C, and it is stable at up to 45 degrees C at around neutral pH. The aerobically measured activity in the presence of FMN is also enhanced by Fe(2+), Sn(2+), SO(3)(2)(-), and NaN(3). Metal-chelating reagents, carbonyl reagents, electron donors, and ferri- and ferrocyanides strongly inhibit the enzyme with K(i) values in the micromolar range. The enzyme is active with arylalkylaldoximes and to a lesser extent with alkylaldoximes. The enzyme prefers the Z-form of phenylacetaldoxime over its E-isomer. On the basis of its substrate specificity, the enzyme has been tentatively named phenylacetaldoxime dehydratase. The gene coding for the enzyme was cloned into plasmid pUC18, and a 1053 base-pair open reading frame that codes for 351 amino acid residues was identified as the oxd gene. A nitrilase, which participates in aldoxime metabolism in the organism, was found to be coded by the region just upstream from the oxd gene. In addition an open reading frame (orf2), whose gene product is similar to bacterial regulatory (DNA-binding) proteins, was found just upstream from the coding region of the nitrilase. These findings provide genetic evidence for a novel gene cluster that is responsible for aldoxime metabolism in this microorganism.
Collapse
Affiliation(s)
- Y Kato
- Biotechnology Research Center, Toyama Prefectural University, Kosugi, Toyama 939-0398, Japan
| | | | | | | | | |
Collapse
|
37
|
Kato Y, Tsuda T, Asano Y. Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3-3 purification and characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:662-70. [PMID: 10469129 DOI: 10.1046/j.1432-1327.1999.00535.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitrile hydratase responsible for aldoxime metabolism from the E-pyridine-3-aldoxime degrading bacterium, Rhodococcus sp. strain YH3-3 was purified and characterized. Addition of cobalt ion was necessary for the formation of enzyme. The enzyme activity was highly induced not only by nitriles and amides but also by several aldoxime compounds. The enzyme was purified approximately 108-fold with a 16% yield from the cell-free extract of the strain. The native enzyme had a Mr of approximately 130 000 and consisted of two subunits (alpha-subunit, 27 100; beta-subunit, 34 500). The enzyme contained approximately 2 mol cobalt per mol enzyme; it showed a maximum activity at 60 degrees C and at 40 degrees C under the rate assay and end-point assay conditions, respectively, and was stable over a wide range of pH (pH 2.5-11.0). The enzyme had a wide substrate specificity: it acted on aliphatic saturated and unsaturated as well as aromatic nitriles. The N-terminus of the beta-subunit showed good sequence similarities with those of other nitrile hydratases. Nitrile hydratase is part of the metabolic pathway for aldoximes in microorganisms.
Collapse
Affiliation(s)
- Y Kato
- Biotech ology Research Center, Faculty of Engineering, Toyama Prefectural University, Japan
| | | | | |
Collapse
|