1
|
Vera MC, Lucci A, Ferretti AC, Abbondanzieri AA, Comanzo CG, Lorenzetti F, Pisani GB, Ceballos MP, Alvarez MDL, Carrillo MC, Quiroga AD. The chemoprotective effects of IFN-α-2b on rat hepatocarcinogenesis are blocked by vitamin E supplementation. J Nutr Biochem 2021; 96:108806. [PMID: 34147603 DOI: 10.1016/j.jnutbio.2021.108806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 01/28/2023]
Abstract
Many cancer patients receive their classical therapies together with vitamin supplements. However, the effectiveness of these strategies is on debate. Here we aimed to evaluate how vitamin E supplementation affects the anticancer effects of interferon (IFN-α) using an early-model of liver cancer development (initiation-promotion, IP). Male Wistar rats subjected to this model were divided as follows: untreated (IP), IP treated with recombinant IFN-α-2b (6.5 × 105 U/kg), IP treated with vitamin E (50 mg/kg), and IP treated with combination of vitamin E and IFN-α-2b. After treatments rats were fasted and euthanized and plasma and livers were collected. Combined administration of vitamin E and IFN-α-2b induced body weight drop, increased liver apoptosis, and low levels of hepatic lipids. Interestingly, vitamin E and IFN-α-2b combination also induced an increase in altered hepatic foci number, but not in size. It seems that vitamin E acts on its antioxidant capability in order to block the oxidative stress induced by IFN-α-2b, blocking in turn its beneficial effects on preneoplastic livers, leading to harmful final effects. In conclusion, this study shows that vitamin E supplementation in IFN-α-2b-treated rats exerts unwanted effects; and highlights that in spite of being natural, nutritional supplements may not always exert beneficial outcomes when used as complementary therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Marina C Vera
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Alvaro Lucci
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Anabela C Ferretti
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | | | - Carla G Comanzo
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Gerardo B Pisani
- Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - María P Ceballos
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Maria de L Alvarez
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; CAECIHS, Universidad Abierta Interamericana, Rosario, Argentina
| | - María C Carrillo
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina
| | - Ariel D Quiroga
- Instituto de Fisiología Experimental (IFISE)-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Argentina; CAECIHS, Universidad Abierta Interamericana, Rosario, Argentina.
| |
Collapse
|
2
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
3
|
Parody JP, Alvarez ML, Quiroga AD, Ceballos MP, Frances DE, Pisani GB, Pellegrino JM, Carnovale CE, Carrillo MC. Attenuation of the Wnt/beta-catenin/TCF pathway by in vivo interferon-alpha2b (IFN-alpha2b) treatment in preneoplastic rat livers. Growth Factors 2010; 28:166-77. [PMID: 20109105 DOI: 10.3109/08977190903547863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wnt/beta-catenin/T cell factor (TCF) pathway is activated in several types of human cancers, promoting cell growth and proliferation. Forkhead box containing protein class O (FOXO) transcription factors compete with TCF for beta-catenin binding, particularly under cellular oxidative stress conditions. Contrary to beta-catenin/TCF, beta-catenin/FOXO promotes the transcription of genes involved in cell cycle arrest and apoptosis. We have previously demonstrated that in vivo interferon-alpha2b (IFN-alpha2b) administration induces apoptosis in preneoplastic livers, a mechanism mediated by reactive oxygen species (ROS) and transforming growth factor-beta(1) (TGF-beta(1)). This study was aimed to assess the status of the Wnt/beta-catenin/TCF pathway in a very early stage of rat hepatocarcinogenesis and to further evaluate the effects of in vivo IFN-alpha2b treatment on it. We demonstrated that the Wnt/beta-catenin/TCF pathway is activated in preneoplastic rat livers. More important, in vivo IFN-alpha2b treatment inhibits Wnt/beta-catenin/TCF pathway and promotes programed cell death possibly providing a link with FOXO pathway.
Collapse
Affiliation(s)
- Juan P Parody
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y T écnicas (CONICET), 2000 Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alvarez MDL, Quiroga AD, Parody JP, Ronco MT, Francés DE, Carnovale CE, Carrillo MC. Cross-talk between IFN-alpha and TGF-beta1 signaling pathways in preneoplastic rat liver. Growth Factors 2009; 27:1-11. [PMID: 19003557 DOI: 10.1080/08977190802547357] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interferon-gamma/transforming growth factor-beta (IFN-gamma/TGF-beta) pathways have opposite effects on diverse cellular functions. However, little is known about interactions between IFN-alpha/TGF-beta. In previous studies, we showed that IFN-alpha2b increases TGF-beta(1) production and secretion in hepatocytes from preneoplastic rat livers. Here, the interaction between IFN-alpha/TGF-beta(1) pathways was explored. We observed a positive cross-talk between IFN-alpha and TGF-beta(1) signaling, with activation of both pathways. p300 protein levels in hepatocytes from preneoplastic livers were enough to interact with both activated Stat1 and Smad2/3. Besides, Smad7 was not directly related with TGF-beta(1) and IFN-alpha signals. Interestingly, we reported the novel finding that the autocrine TGF-beta(1) up-regulates TGF-betaRII at protein and mRNA levels. In conclusion, the intracellular signals triggered by IFN-alpha2b and by autocrine TGF-beta(1) are integrated at the nuclear level, where activated Stat1 and Smad2/3 are capable of interact with p300, present in no restrictive cellular amounts.
Collapse
Affiliation(s)
- María De Luján Alvarez
- Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Instituto de Fisiologia Experimental, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
7
|
Bolt HM, Hengstler JG. A new series of review articles on drug metabolizing enzymes: nomenclature of isoenzyme families, genetic organization, polymorphisms, substrate specificities, clinical relevance and role in carcinogenesis. Arch Toxicol 2008; 82:413-4. [DOI: 10.1007/s00204-008-0321-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|