1
|
Li MD, Chen LH, Xiang HX, Jiang YL, Lv BB, Xu DX, Zhao H, Fu L. Benzo[a]pyrene evokes epithelial-mesenchymal transition and pulmonary fibrosis through AhR-mediated Nrf2-p62 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134560. [PMID: 38759404 DOI: 10.1016/j.jhazmat.2024.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Benzo[a]pyrene (BaP) and its metabolic end product benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), are known toxic environmental pollutants. This study aimed to analyze whether sub-chronic BPDE exposure initiated pulmonary fibrosis and the potential mechanisms. In this work, male C57BL6/J mice were exposed to BPDE by dynamic inhalation exposure for 8 weeks. Our results indicated that sub-chronic BPDE exposure evoked pulmonary fibrosis and epithelial-mesenchymal transition (EMT) in mice. Both in vivo and in vitro, BPDE exposure promoted nuclear translocation of Snail. Further experiments indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) and p62 were upregulated in BPDE-exposed alveolar epithelial cells. Moreover, Nrf2 siRNA transfection evidently attenuated BPDE-induced p62 upregulation. Besides, p62 shRNA inhibited BPDE-incurred Snail nuclear translocation and EMT. Mechanically, BPDE facilitated physical interaction between p62 and Snail in the nucleus, then repressed Snail protein degradation by p62-dependent autophagy-lysosome pathway, and finally upregulated transcriptional activity of Snail. Additionally, aryl hydrocarbon receptor (AhR) was activated in BPDE-treated alveolar epithelial cells. Dual-luciferase assay indicated activating AhR could bind to Nrf2 gene promoter. Moreover, pretreatment with CH223191 or α-naphthoflavone (α-NF), AhR antagonists, inhibited BPDE-activated Nrf2-p62 signaling, and alleviated BPDE-induced EMT and pulmonary fibrosis in mice. Taken together, AhR-mediated Nrf2-p62 signaling contributes to BaP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Li-Hong Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hui-Xian Xiang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Germin-Aizac J, Maitre A, Balducci F, Montlevier S, Marques M, Tribouiller J, Demeilliers C, Persoons R. Bitumen fumes and PAHs in asphalt road paving: Emission characteristics, determinants of exposure and environmental impact. ENVIRONMENTAL RESEARCH 2023; 228:115824. [PMID: 37030408 DOI: 10.1016/j.envres.2023.115824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Asphalt road paving and its subsequent complex airborne emissions have raised concerns about occupational exposures and environmental impacts. Although several studies described bitumen fumes or Polycyclic Aromatic Hydrocarbons (PAH) emissions at specific worksites, no comprehensive studies have characterised road paving emissions and identified the main determinants of exposure. METHODS A 10-year study from 2012 to 2022 was performed to examine the pollutants resulting from bitumen fume emissions and covering the main processes used in road paving (asphalt production, mechanical rolled asphalt paving, manual paving, mastic asphalt paving, emulsion paving, and coal-tar asphalt milling). A total of 623 air samples were collected at 63 worksites (on 290 workers, in the environment and near emission sources), and bitumen fumes, PAHs, aldehydes and volatile organic compounds were analysed. Biomonitoring campaigns were performed on 130 workers to assess internal exposure to PAHs. RESULTS Fume emissions revealed complex mixtures of C10-C30 compounds, including linear saturated hydrocarbons (C6-C12), alicyclic hydrocarbons and aliphatic ketones. PAHs were dominated by 2-3 aromatic ring compounds (naphthalene, fluorene, and phenanthrene), and C1-C13 aldehydes were identified. Binder proportion, paving temperature, outdoor temperature, workload and job category influenced airborne concentrations. A significant temporal trend was observed over the time period of the study, with decreasing BF and PAH exposures. PAH biomonitoring was consistent with air samples, and urinary metabolites of 2-3 ring PAHs dominated over 4-5 ring PAHs. Occupational exposures were generally far lower than exposure limits, except coal-tar asphalt milling activities. Very low environmental concentrations were measured, which highlights a negligible contribution of paving emissions to global environmental pollution. CONCLUSION The present study confirmed the complex nature of bitumen fumes and characterised the main determinants of exposure. The results highlight the need to reduce the paving temperature and binder proportion. Recycled asphalt pavement use was not associated with higher emissions. The impact of paving activities on environmental airborne pollution was deemed negligible.
Collapse
Affiliation(s)
- Julie Germin-Aizac
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Anne Maitre
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Franck Balducci
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Sarah Montlevier
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Marie Marques
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Justine Tribouiller
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Christine Demeilliers
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Renaud Persoons
- University of Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France.
| |
Collapse
|
3
|
Boom YJ, Enfrin M, Grist S, Giustozzi F. Recycled plastic modified bitumen: Evaluation of VOCs and PAHs from laboratory generated fumes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155037. [PMID: 35395294 DOI: 10.1016/j.scitotenv.2022.155037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
A key aspect when investigating the use of recycled plastics in bitumen relates considerably to the issues relating to occupational, health and safety for humans and the environment from a fuming and emissions perspective. This research investigates laboratory-generated fumes in the forms of volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) generated from producing polymer modified bitumen using five different types of recycled plastics. A comparative analysis of recycled plastic modified bitumen fumes was conducted based on a series of optimized parameters, including working temperatures (160 °C, 180 °C and 200 °C) and polymer contents (1%, 2%, 4% and 6% by weight of bitumen) against neat bitumen and polymer-modified bitumen. Forty-eight volatile organic compounds (VOCs) and sixteen polycyclic aromatic hydrocarbons (PAHs) were quantified using gas chromatography-mass spectrometry (GC-MS). The results from the comparative analysis revealed that the incorporation of recycled plastics could reduce overall emissions from both VOCs and PAHs perspectives. The reduction in emissions can be attributed to the enhancement in thermal stability of the bitumen blend when recycled plastics are added. The reduction rate is heavily dependent on the type and source of recycled plastics used in the blending process. Furthermore, a specific compound concentration analysis of the top-four weighted compounds emitted reveals that the total concentration of emissions can be deceiving as specific compounds can spike when adding recycled plastics in bitumen despite a reduction trend for the overall concentration.
Collapse
Affiliation(s)
- Yeong Jia Boom
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Marie Enfrin
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Stephen Grist
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia
| | - Filippo Giustozzi
- Civil and Infrastructure Engineering, Royal Melbourne Institute of Technology (RMIT) University, 376392 Swanston St, VIC, 3000 Melbourne, Australia.
| |
Collapse
|
4
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X, Zhang M, Wang B, Tao Q, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis. Biomed Pharmacother 2021; 146:112547. [PMID: 34929579 DOI: 10.1016/j.biopha.2021.112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
Collapse
Affiliation(s)
- Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
5
|
Boogaard PJ, Buschmann J, Fuhst R, Blümlein K, Koch W, Schaudien D, Schwarz K, McAlinden C, Deferme L, Vaissiere M, Ketelslegers HB, Steneholm A. Prenatal developmental toxicity studies on fumes from oxidised asphalt (OA) in the rat. Reprod Toxicol 2021; 102:67-79. [PMID: 33781938 DOI: 10.1016/j.reprotox.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
The prenatal developmental toxicity of the fumes of oxidised asphalt (OA) was tested by nose-only inhalation in the rat. The test material was generated by collecting fumes from the headspace of storage tanks filled with OA. The composition of these fumes was matched to fumes sampled at a workplace where the same OA was applied in a pour-and-roll operation, representing occupational exposure with high concentrations of fumes to not underestimate the possible hazard. In the main study, dams were exposed to 0, 53, 158 and 536 mg/m3 of fume (as total organic mass), for 6 h/day for 19 days p.c. The maternal NOAEC was 53 mg/m³ (lowest dose tested). In the high-dose group treatment-related effects on body weight gain were seen. In the mid- and high-dose groups treatment-related effects on food consumption, lung weights, and histopathological changes in lungs and the upper respiratory tract were observed. The NOAEC for prenatal developmental toxicity was 536 mg/m³ since no exposure-related effects were found in any of the exposure groups for any of the investigated reproductive endpoints. Furthermore, nose-only exposure to OA fumes in concentrations up to 536 mg/m³ from days 1-19 p.c. did not induce any significant fetal abnormalities.
Collapse
Affiliation(s)
- Peter J Boogaard
- Shell Health, Shell International bv, PO Box 162, 2501 AN The Hague, The Netherlands; Toxicology Group in CONCAWE, Brussels, Belgium.
| | - Jochen Buschmann
- General and Reproductive Toxicology Consultancy, Haegewiesen 93, 30657 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.
| | - Rainer Fuhst
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Katharina Blümlein
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Wolfgang Koch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Katharina Schwarz
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Christine McAlinden
- toXcel International, PO Box 93, Ledbury, Herefordshire HR8 9JE, United Kingdom.
| | - Lize Deferme
- ExxonMobil Petroleum and Chemical bv, Hermeslaan 2, 1831 Machelen, Belgium; Toxicology Group in CONCAWE, Brussels, Belgium.
| | - Mathieu Vaissiere
- Total, 24 cours Michelet, 92800 Puteaux, France; Toxicology Group in CONCAWE, Brussels, Belgium.
| | | | - Anna Steneholm
- Nynas, P.O. Box 10 700, SE-121 29 Stockholm, Sweden; Toxicology Group in CONCAWE, Brussels, Belgium.
| |
Collapse
|
6
|
Boogaard PJ, Buschmann J, Fuhst R, Blümlein K, Schwarz K, Schaudien D, Koch W, McAlinden C, Deferme L, Vaissiere M, Ketelslegers HB, Steneholm A. Prenatal developmental toxicity studies on fumes from bitumen in the rat. Reprod Toxicol 2021; 99:15-26. [PMID: 33249228 DOI: 10.1016/j.reprotox.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 11/24/2022]
Abstract
The prenatal developmental toxicity of bitumen fume was tested by nose-only inhalation in the rat. The fumes for exposure were collected from the headspace of a storage tank filled with a bitumen corresponding in composition to an anticipated worst-case occupational exposure. The composition of these fumes was compared to actual paving site fumes to ensure its representativeness for workplace exposures. In a dose-range-finding study male and female rats were exposed to 0, 103, 480 or 1043 mg/m3 of fume (as total organic mass), for 6 h/day during 20 days post conception (p.c.). Dose-related effects on body weight and lungs were observed in the mid- and high-dose groups. In the main study, dams were exposed to 0, 52, 151 and 482 mg/m3 of fume, for 6 h/day during 19 days p.c. The maternal NOAEL was 52 mg/m³. In the high-dose group treatment-related effects on body weight (gain), food consumption, lung weights, and histopathological changes in lungs and larynx were observed. In the mid-dose group only histopathological changes in the larynx and lungs were found. The NOAEL for prenatal developmental toxicity was 151 mg/m³ based on reduced fetal weight in the high-dose group (482 mg/m³). However, these changes are most likely a consequence of the maternal toxicity, in particular the reduction of maternal body weight gain by 26 % as compared to control. Nose-only exposure to bitumen fumes in concentrations up to 482 mg/m³ from days 1-19 p.c. did not induce any significant fetal anomalies.
Collapse
Affiliation(s)
- Peter J Boogaard
- Shell Health, Shell International Bv, PO Box 162, The Hague, 2501 AN, The Netherlands; Toxicology Group in CONCAWE, Belgium.
| | - Jochen Buschmann
- General and Reproductive Toxicology Consultancy, Haegewiesen 93, Hannover, 30657, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, Hannover, 30625, Germany.
| | - Rainer Fuhst
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, Hannover, 30625, Germany
| | - Katharina Blümlein
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, Hannover, 30625, Germany
| | - Katharina Schwarz
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, Hannover, 30625, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, Hannover, 30625, Germany
| | - Wolfgang Koch
- Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, Hannover, 30625, Germany.
| | - Christine McAlinden
- toXcel International, PO Box 93, Ledbury, Herefordshire, HR8 9JE, United Kingdom.
| | - Lize Deferme
- ExxonMobil Petroleum and Chemical Bv, Hermeslaan 2, Machelen, 1831, Belgium; Toxicology Group in CONCAWE, Belgium.
| | - Mathieu Vaissiere
- Total, 24 Cours Michelet, Puteaux, 92800, France; Toxicology Group in CONCAWE, Belgium.
| | | | - Anna Steneholm
- Nynas AB, P.O. Box 10 700, Stockholm, SE-121 29, Sweden; Toxicology Group in CONCAWE, Belgium.
| |
Collapse
|
7
|
Evaluation of Reductions in Fume Emissions (VOCs and SVOCs) from Warm Mix Asphalt Incorporating Natural Zeolite and Reclaimed Asphalt Pavement for Sustainable Pavements. SUSTAINABILITY 2020. [DOI: 10.3390/su12229546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventional asphalt mixtures used for road paving require high manufacturing temperatures and therefore high energy expenditure, which has a negative environmental impact and creates risk in the workplace owing to high emissions of pollutants, greenhouse gases, and toxic fumes. Reducing energy consumption and emissions is a continuous challenge for the asphalt industry. Previous studies have focused on the reduction of emissions without characterizing their composition, and detailed characterization of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) in asphalt fumes is scarce. This communication describes the characterization and evaluation of VOCs and SVOCs from asphalt mixtures prepared at lower production temperatures using natural zeolite; in some cases, reclaimed asphalt pavement (RAP) was used. Fumes were extracted from different asphalt mix preparations using a gas syringe and then injected into hermetic gas sample bags. The compounds present in the fumes were sampled with a fiber and analyzed by gas-liquid chromatography coupled to mass spectrometry (GC/MS). In general, the preparation of warm mix asphalts (WMA) using RAP and natural zeolite as aggregates showed beneficial effects, reducing VOCs and SVOCs compared to hot mix asphalts (HMA). The fumes captured presented a similar composition to those from HMA, consisting principally of saturated and unsaturated aliphatic hydrocarbons and aromatic compounds but with few halogenated compounds and no polycyclic aromatic hydrocarbons. Thus, the paving mixtures described here are a friendlier alternative for the environment and for the health of road workers, in addition to permitting the re-use of RAP.
Collapse
|
8
|
Dragan GC, Kohlmeier V, Orasche J, Schnelle-Kreis J, Forbes PBC, Breuer D, Zimmermann R. Development of a Personal Aerosol Sampler for Monitoring the Particle-Vapour Fractionation of SVOCs in Workplaces. Ann Work Expo Health 2020; 64:903-908. [PMID: 32720693 DOI: 10.1093/annweh/wxaa059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/14/2020] [Accepted: 05/20/2020] [Indexed: 11/14/2022] Open
Abstract
Semi-volatile organic compounds (SVOCs), partitioned between particulates and vapours of an aerosol, require special attention. The toxicological effects caused by the inhalation of such aerosols may depend on the concentration and in which phase the organic compounds are found. A personal denuder-gas-particle separation aerosol sampler was developed to provide information about the partitioning of aerosols from organic compounds. The sampler was tested in a series of controlled laboratory experiments, which confirmed the capability and accuracy of the sampler to measure gas-particle mixtures. An average difference of 14.8 ± 4.8% was found between sampler and reference laboratory instruments. The obtained results showed that our sampler enables a more accurate measurement of the SVOC aerosols' gas-particle fractionation, compared with that of conventional samplers.
Collapse
Affiliation(s)
- George C Dragan
- Joint Mass Spectrometry Centre, Department of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Vesta Kohlmeier
- Joint Mass Spectrometry Centre, Department of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Juergen Orasche
- Joint Mass Spectrometry Centre, Department of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Juergen Schnelle-Kreis
- Joint Mass Spectrometry Centre, Department of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Oberschleißheim, Germany
| | - Patricia B C Forbes
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Dietmar Breuer
- German Social Accident Insurance, Department, Institute for Occupational Safety and Health, Sankt Augustin, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Department of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Oberschleißheim, Germany.,Joint Mass Spectrometry Centre, Department of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Environmental and biological monitoring of occupational exposure to polynuclear aromatic hydrocarbons during highway pavement construction in Italy. Toxicol Lett 2018; 298:134-140. [DOI: 10.1016/j.toxlet.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/10/2018] [Accepted: 06/08/2018] [Indexed: 11/19/2022]
|
10
|
Sutter B, Pelletier E, Blaskowitz M, Ravera C, Stolze C, Reim C, Langlois E, Breuer D. Sampling and Analysis of Bitumen Fumes: Comparison of German and French Methods to Determine a Conversion Formula. Ann Work Expo Health 2018; 62:721-732. [PMID: 29985976 DOI: 10.1093/annweh/wxy029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Bitumen is classed as possibly carcinogenic to humans according to the International Agency for Research on Cancer. Data on individual exposure to bitumen fumes is therefore required to highlight the exposing situations and develop methods to prevent them. The Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA) and the French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS) have both developed methods to measure individual exposure. The objective of this study was to determine a conversion factor to allow interconversion of data acquired by the two methods. To develop this conversion factor, comparative laboratory and workplace tests were performed according to both the IFA method (No. 6305) and the INRS method (MetroPol M-2). The amounts of organic material collected on the filters and XAD-2 beds were compared. The results revealed differences between the sampling and analytical methods that could be linked to sampler design, extraction solvent, and the detection method used. The total quantification returned by the two methods-the sum of the masses quantified on filter and XAD-2 bed for each sampler-were correlated in both controlled and real-life tests. A conversion equation was therefore determined, based on field tests: CIFA = 1.76 CINRS ± 0.39 (R2 = 0.99) that is applicable to total quantification data. This formula can be applied to data acquired by the two institutes to increase the number of data points available on exposure to bitumen fumes in various conditions, and thus increase the statistical power of studies into occupational prevention.
Collapse
Affiliation(s)
- Benjamin Sutter
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre les Nancy Cedex, France
| | - Eric Pelletier
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre les Nancy Cedex, France
| | - Morten Blaskowitz
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| | - Christel Ravera
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre les Nancy Cedex, France
| | - Christopher Stolze
- BG BAU - Berufsgenossenschaft der Bauwirtschaft, Gebersdorfer Straße, Nürnberg, Germany
| | - Christian Reim
- BG BAU - Berufsgenossenschaft der Bauwirtschaft, Landsberger Straße, München, Germany
| | - Eddy Langlois
- French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Vandoeuvre les Nancy Cedex, France
| | - Dietmar Breuer
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin, Germany
| |
Collapse
|
11
|
Boczkaj G, Gągol M, Klein M, Przyjazny A. Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants. ULTRASONICS SONOCHEMISTRY 2018; 40:969-979. [PMID: 28946509 DOI: 10.1016/j.ultsonch.2017.08.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/23/2017] [Accepted: 08/27/2017] [Indexed: 05/23/2023]
Abstract
Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O3/H2O2/Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H2O2, hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H2O2 as an external oxidant and it should be controlled during treatment processes.
Collapse
Affiliation(s)
- Grzegorz Boczkaj
- Department of Chemical and Process Engineering, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland.
| | - Michał Gągol
- Department of Chemical and Process Engineering, Faculty of Chemistry, Gdańsk University of Technology, Gdansk, Poland; Department of Polymer Technology, Gdańsk University of Technology, Faculty of Chemistry, Gdansk, Poland
| | - Marek Klein
- Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk, Poland
| | - Andrzej Przyjazny
- Kettering University, 1700 University Avenue, Department of Chemistry & Biochemistry, Flint, MI 48504, USA
| |
Collapse
|
12
|
Kohlmeier V, Dragan GC, Karg EW, Schnelle-Kreis J, Breuer D, Forbes PBC, Rohwer ER, Zimmermann R. Multi-channel silicone rubber traps as denuders for gas-particle partitioning of aerosols from semi-volatile organic compounds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:676-686. [PMID: 28378867 DOI: 10.1039/c7em00044h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During many measurements it is important to account for possible changes in the gas-particle distribution of aerosols containing semi-volatile organic compounds (SVOCs). If denuders are combined with currently used personal air samplers, a simultaneous differential sampling of the gas and particle phase is possible. Here we analysed the transmission efficiency of denuders based on multi-channel silicone rubber traps (setup: 9 cm long glass liner (ID 4 mm), containing 22 parallel silicone rubber tubes (55 mm long, ID 0.3 mm, OD 0.5 mm)) with polystyrene latex (PSL) particles for different scenarios. n-Hexadecane, dimethyl phthalate and diethylene glycol gases were used to measure the time-dependent gas phase collection efficiency of a denuder. Additionally, the evaporation of n-hexadecane aerosol particles passing through the denuders was investigated. Our results showed high transmission efficiencies from 91 to 100% (variation coefficients 3.69-9.65%) for the denuders operated vertically at a flow rate of 0.5 l min-1. With regard to the gas phase collection efficiency, nonpolar n-hexadecane gas was trapped with higher efficiency (87% after 22 h) than dimethyl phthalate gas (27% after 22 h), while for highly polar diethylene glycol the gas phase collection efficiency was 50% after 2 h. Regarding the evaporation of aerosol particles, smaller particles and lower flow rates led to higher particle volume reduction inside the denuders. In conclusion, the tested denuders are suitable for determining the gas-particle partitioning of SVOC aerosols of nonpolar substances and show above 90% transmission for all tested particle sizes.
Collapse
Affiliation(s)
- Vesta Kohlmeier
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Serdar B, Brindley S, Dooley G, Volckens J, Juarez-colunga E, Gan R. Short-term markers of DNA damage among roofers who work with hot asphalt. Environ Health 2016; 15:99. [PMID: 27765036 PMCID: PMC5072307 DOI: 10.1186/s12940-016-0182-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Roofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors. The overall goal of this project was to investigate the usefulness of phosphorylated histone H2AX (γH2AX) as a short-term biomarker of DNA damage among roofers. METHODS Blood, urine, and dermal wipe samples were collected from 20 roofers who work with hot asphalt before and after 6 h of work on Monday and Thursday of the same week (4 sampling periods). Particle-bound and gas-phase PAHs were collected using personal monitors during work hours. γH2AX was quantified in peripheral lymphocytes using flow cytometry and 8-hydroxy-2-deoxyguanosine (8-OHdG) was assessed in urine using ELISA. General linear mixed models were used to evaluate associations between DNA damage and possible predictors (such as sampling period, exposure levels, work- and life-style factors). Differences in mean biomarker and DNA damage levels were tested via ANOVA contrasts. RESULTS Exposure measurements did not show an association with any of the urinary biomarkers or the measures of DNA damage. Naphthalene was the most abundant PAH in gas-phase, while benzo(e)pyrene was the most abundant particle-bound PAH. Post-shift levels of γH2AX and 8-OHdG were higher on both study days, when compared to pre-shift levels. Cigarette smoking was a predictor of γH2AX and urinary creatinine was a predictor of urinary 8-OHdG. Between-subject variance to total variance ratio was 35.3 % for γH2ax and 4.8 % for 8-OHdG. CONCLUSION γH2AX is a promising biomarker of DNA damage in occupational epidemiology studies. It has a lower within-subject variation than urinary 8-OHdG and can easily be detected in large scale groups. Future studies that explore the kinetics of H2AX phosphorylation in relation to chemical exposures may reveal the transient and persistent nature of this sensitive biomarker of early DNA damage.
Collapse
Affiliation(s)
- Berrin Serdar
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
- Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Mail Stop B119-V20, 12850 East Montview Boulevard, Rm. V20-3126, Aurora, CO 80045 USA
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Greg Dooley
- Analytical Toxicology Laboratory, Center for Environmental Medicine, Colorado State University, Fort Collins, USA
| | - John Volckens
- Department of Mechanical Engineering, Colorado State University, Fort Collins, USA
| | - Elizabeth Juarez-colunga
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| | - Ryan Gan
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Denver, USA
| |
Collapse
|
14
|
Metabolites of the PAH diol epoxide pathway and other urinary biomarkers of phenanthrene and pyrene in workers with and without exposure to bitumen fumes. Int Arch Occup Environ Health 2016; 89:1251-1267. [DOI: 10.1007/s00420-016-1160-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
|
15
|
Sutter B, Ravera C, Hussard C, Langlois E. Alternatives for Benzene in the Extraction of Bitumen Fume from Exposure Sample Media. ANNALS OF OCCUPATIONAL HYGIENE 2015; 60:101-12. [PMID: 26400870 DOI: 10.1093/annhyg/mev068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
Benzene is frequently used to extract collected bitumen fumes from personal sampler substrates. However, this solvent is particularly dangerous because of its carcinogenicity (group 1 of the International Agency for Research on Cancer classification). Therefore, to prevent the exposure of laboratory technicians to benzene during the fume extraction step from samplers, a compromise had to be found to identify a less toxic solvent with the same extraction capacity. To compare the extraction capacities of selected solvents, bitumen fumes were generated in the laboratory from three different batches of road surfacing bitumen collected on dedicated bitumen fume samplers. The samplers were then extracted by benzene and the solvents tested. Of 11 selected solvents less toxic than benzene and used in studies on bitumen and bitumen fume analyses, n-hexane and n-heptane were identified as alternatives to benzene. In particular, the results demonstrated that n-heptane was the best candidate solvent for benzene replacement, due to its extraction efficiency comparable to benzene for the three bitumen fumes tested and its low toxicity, which is highly compatible with benzene replacement.
Collapse
Affiliation(s)
- Benjamin Sutter
- Pollutants Metrology Department, Institut National de Recherche et Sécurité (INRS), Vandoeuvre les Nancy, France
| | - Christel Ravera
- Pollutants Metrology Department, Institut National de Recherche et Sécurité (INRS), Vandoeuvre les Nancy, France
| | - Caroline Hussard
- Pollutants Metrology Department, Institut National de Recherche et Sécurité (INRS), Vandoeuvre les Nancy, France
| | - Eddy Langlois
- Pollutants Metrology Department, Institut National de Recherche et Sécurité (INRS), Vandoeuvre les Nancy, France
| |
Collapse
|
16
|
Breuer D, Dragan GC, Friedrich C, Möhlmann C, Zimmermann R. Development and field testing of a miniaturized sampling system for simultaneous sampling of vapours and droplets. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:278-287. [PMID: 25503956 DOI: 10.1039/c4em00602j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The sampling of semi volatiles (SV) in workplaces may lead to different results as measurements may be affected by sampling bias. The new European Standard EN 13936 defines "semi-volatiles" as substances with vapour pressures in the range between 0.001 and 100 Pa at room temperature. EN 13936 regulates the basic requirements for SV compounds that can occur as vapour and particle at the same time. Vapour and particles shall not be sampled separately and particles have to be sampled as inhalable fraction. Following EN 13936, the Institute for Occupational Safety and Health (Institut für Arbeitsschutz - IFA) has developed a miniaturized droplet-vapour sampler (GGP-Mini) which is designed to sample the inhalable aerosol fraction at low flow rates. The GGP-Mini uses 13 mm filters for particle sampling combined with adsorption tubes for vapour sampling. Laboratory tests were performed on 11 polar and non-polar compounds in a boiling point range from 188 °C to 318 °C. The substances were spiked directly on the filter followed by aspiration of 40 litres of air. Substances with boiling points below 230 °C were almost completely evaporated. Substances with boiling points above 230 °C up to 300 °C were found on both filter and charcoal tube. Lower-volatile compounds remained almost completely on the filter. For polar substances, the atmospheric humidity had a considerable influence upon the distribution of the liquid and vaporous components. A strong influence of the sampling temperature was found in the range from 0 °C to 50 °C. Droplet-vapour mixtures of n-hexadecane and diethylene glycol with droplet sizes between 1 μm and 4 μm were generated in a flow tube to verify the laboratory results. The aerosol concentrations were analysed on-line with a particle sizer and a flame ionisation detector, while parallel off-line samples were taken with the GGP-Mini. Evaporation losses from filters could be studied by comparing the on-line with off-line measurements. All sampling simulations, both spiking and tests on a droplet aerosol, have shown that the distribution between vapour and droplets is not constant and influenced e. g. by volatility, concentration, temperature and humidity. Only the sum of vapour and droplets constitutes a reproducible result.
Collapse
Affiliation(s)
- Dietmar Breuer
- Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), 53757 Sankt Augustin, Germany.
| | | | | | | | | |
Collapse
|
17
|
Dragan GC, Breuer D, Blaskowitz M, Karg E, Schnelle-Kreis J, Arteaga-Salas JM, Nordsieck H, Zimmermann R. An evaluation of the "GGP" personal samplers under semi-volatile aerosols: sampling losses and their implication on occupational risk assessment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:270-277. [PMID: 25345615 DOI: 10.1039/c4em00468j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semi-volatile (SV) aerosols still represent an important challenge to occupational hygienists due to toxicological and sampling issues. Particularly problematic is the sampling of hazardous SV that are present in both particulate and vapour phases at a workplace. In this study we investigate the potential evaporation losses of SV aerosols when using off-line filter-adsorber personal samplers. Furthermore, we provide experimental data showing the extent of the evaporation loss that can bias the workplace risk assessment. An experimental apparatus consisting of an aerosol generator, a flow tube and an aerosol monitoring and sampling system was set up inside a temperature controlled chamber. Aerosols from three n-alkanes were generated, diluted with nitrogen and sampled using on-line and off-line filter-adsorber methods. Parallel measurements using the on-line and off-line methods were conducted to quantify the bias induced by filter sampling. Additionally, two mineral oils of different volatility were spiked on filters and monitored for evaporation depending on the samplers flow rate. No significant differences between the on-line and off-line methods were detected for the sum of particles and vapour. The filter-adsorber method however tended to underestimate up to 100% of the particle mass, especially for the more volatile compounds and lower concentrations. The off-line sampling method systematically returned lower particle and higher vapour values, an indication for particle evaporation losses. We conclude that using only filter sampling for the assessment of semi-volatiles may considerably underestimate the presence of the particulate phase due to evaporation. Thus, this underestimation can have a negative impact on the occupational risk assessment if the evaporated particle mass is no longer quantified.
Collapse
Affiliation(s)
- George C Dragan
- Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics", Helmholtz Zentrum München, D-85758 Neuherberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Boczkaj G, Przyjazny A, Kamiński M. Characteristics of volatile organic compounds emission profiles from hot road bitumens. CHEMOSPHERE 2014; 107:23-30. [PMID: 24875867 DOI: 10.1016/j.chemosphere.2014.02.070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
A procedure for the investigation and comparison of volatile organic compounds (VOCs) emission profiles to the atmosphere from road bitumens with various degrees of oxidation is proposed. The procedure makes use of headspace analysis and gas chromatography with universal as well as selective detection, including gas chromatography-mass spectrometry (GC-MS). The studies revealed that so-called vacuum residue, which is the main component of the charge, contains variable VOC concentrations, from trace to relatively high ones, depending on the extent of thermal cracking in the boiler of the vacuum distillation column. The VOC content in the oxidation product, so-called oxidized paving bitumen, is similarly varied. There are major differences in VOC emission profiles between vacuum residue and oxidized bitumens undergoing thermal cracking. The VOC content in oxidized bitumens, which did not undergo thermal cracking, increases with the degree of oxidation of bitumens. The studies revealed that the total VOC content increases from about 120 ppm for the raw vacuum residue to about 1900 ppm for so-called bitumen 35/50. The amount of volatile sulfur compounds (VSCs) in the volatile fraction of fumes of oxidized bitumens increases with the degree of oxidation of bitumen and constitutes from 0.34% to 3.66% (w/w). The contribution of volatile nitrogen compounds (VNCs) to total VOC content remains constant for the investigated types of bitumens (from 0.16 to 0.28% (w/w) of total VOCs). The results of these studies can also find use during the selection of appropriate bitumen additives to minimize their malodorousness. The obtained data append the existing knowledge on VOC emission from oxidized bitumens. They should be included in reports on the environmental impact of facilities in which hot bitumen binders are used.
Collapse
Affiliation(s)
- Grzegorz Boczkaj
- Gdansk University of Technology, Chemical Faculty, Department of Chemical and Process Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| | | | - Marian Kamiński
- Gdansk University of Technology, Chemical Faculty, Department of Chemical and Process Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
19
|
Van Thriel C, Marchan R. The human bitumen study hits the headlines. Arch Toxicol 2012; 86:1803-5. [PMID: 23108913 DOI: 10.1007/s00204-012-0959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Pesch B, Weiss T, Kendzia B, Henry J, Lehnert M, Lotz A, Heinze E, Käfferlein HU, Van Gelder R, Berges M, Hahn JU, Mattenklott M, Punkenburg E, Hartwig A, Brüning T. Levels and predictors of airborne and internal exposure to manganese and iron among welders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:291-298. [PMID: 22377681 DOI: 10.1038/jes.2012.9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/03/2011] [Indexed: 05/28/2023]
Abstract
We investigated airborne and internal exposure to manganese (Mn) and iron (Fe) among welders. Personal sampling of welding fumes was carried out in 241 welders during a shift. Metals were determined by inductively coupled plasma mass spectrometry. Mn in blood (MnB) was analyzed by graphite furnace atom absorption spectrometry. Determinants of exposure levels were estimated with multiple regression models. Respirable Mn was measured with a median of 62 (inter-quartile range (IQR) 8.4-320) μg/m(3) and correlated with Fe (r=0.92, 95% CI 0.90-0.94). Inhalable Mn was measured with similar concentrations (IQR 10-340 μg/m(3)). About 70% of the variance of Mn and Fe could be explained, mainly by the welding process. Ventilation decreased exposure to Fe and Mn significantly. Median concentrations of MnB and serum ferritin (SF) were 10.30 μg/l (IQR 8.33-13.15 μg/l) and 131 μg/l (IQR 76-240 μg/l), respectively. Few welders were presented with low iron stores, and MnB and SF were not correlated (r=0.07, 95% CI -0.05 to 0.20). Regression models revealed a significant association of the parent metal with MnB and SF, but a low fraction of variance was explained by exposure-related factors. Mn is mainly respirable in welding fumes. Airborne Mn and Fe influenced MnB and SF, respectively, in welders. This indicates an effect on the biological regulation of both metals. Mn and Fe were strongly correlated, whereas MnB and SF were not, likely due to higher iron stores among welders.
Collapse
Affiliation(s)
- Beate Pesch
- Center of Epidemiology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz, Bochum, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lehnert M, Pesch B, Lotz A, Pelzer J, Kendzia B, Gawrych K, Heinze E, Van Gelder R, Punkenburg E, Weiss T, Mattenklott M, Hahn JU, Möhlmann C, Berges M, Hartwig A, Brüning T. Exposure to inhalable, respirable, and ultrafine particles in welding fume. ACTA ACUST UNITED AC 2012; 56:557-67. [PMID: 22539559 PMCID: PMC3387834 DOI: 10.1093/annhyg/mes025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m(-3) for inhalable and 1.29 mg m(-3) for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m(-3)). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements <LOD from the regression equation with manganese to estimate determinants of the exposure to welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging.
Collapse
Affiliation(s)
- Martin Lehnert
- Center of Epidemiology, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Welge P, Marczynski B, Raulf-Heimsoth M, Spickenheuer A, Kendzia B, Heinze E, Angerer J, Käfferlein HU, Pesch B, Brüning T. Assessment of micronuclei in lymphocytes from workers exposed to vapours and aerosols of bitumen. Arch Toxicol 2011; 85 Suppl 1:S65-71. [PMID: 21399969 DOI: 10.1007/s00204-011-0683-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/10/2011] [Indexed: 12/01/2022]
Abstract
We investigated the micronucleus frequencies in peripheral blood lymphocytes of 225 mastic asphalt workers (age 17-62 years) and 69 non-bitumen-exposed road construction workers (age 18-64 years) in Germany before and after the working shift. Median shift exposure to vapours and aerosols of bitumen of exposed workers was 3.0 mg/m³. Micronuclei (MN) were determined with a standard method using cytochalasin B. Median MN frequency was 6.0 (interquartile range (IQR) 4.0-8.5) MN/1,000 binucleated lymphocytes (MN/1,000 BNC) in exposed workers and 6.0 (IQR 4.0-8.3) MN/1,000 BNC in non-exposed workers before shift. After shift, we observed 6.5 (IQR 4.4-9.3) MN/1,000 BNC in exposed workers and 6.5 (IQR 4.0-9.0) MN/1,000 BNC in non-exposed workers. Regression models were applied with the log-transformed MN frequency as the dependent variable in order to estimate the effects of exposure to vapours and aerosols of bitumen and of potential confounders. Age was the strongest predictor of MN formation in both exposed workers and referents. Our data suggest that MN formation was not associated with concentration of vapours and aerosols of bitumen during shift at the individual level. Although similar MN frequencies were observed in both groups, the modelling of factors potentially influencing MN frequency revealed a weak group difference in the post-shift model. We conclude that this small difference cannot be judged to be a relevant mutagenic effect of exposure to vapours and aerosols of bitumen, also with regard to the lack of adjustment for multiple testing and the lack of a group effect in the original data.
Collapse
Affiliation(s)
- Peter Welge
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Irritative effects of vapours and aerosols of bitumen on the airways assessed by non-invasive methods. Arch Toxicol 2011; 85 Suppl 1:S41-52. [PMID: 21373872 DOI: 10.1007/s00204-011-0681-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
Abstract
Irritative effects caused by vapours and aerosols of bitumen were assessed by non-invasive methods including spirometry, nasal lavage fluid (NALF) and induced sputum (IS) in a cross-shift study comparing 320 bitumen-exposed workers with 118 road construction workers as the reference group. Lung function parameters, forced vital capacity (FVC) and forced expiratory volume in one second (FEV(1)) were within normal ranges in both the reference and the bitumen-exposed groups pre- and post-shift with marginally lower values in smokers of both groups. During the shift, a slight decline in FEV(1) and FVC was observed in the bitumen-exposed group independent of their smoking habits, whereas in the non-smoking reference group, the decline in FEV(1) was not observed. No significant differences between bitumen-exposed workers and the reference group and no significant shift effect were observed on the upper airways using NALF analysis. The IS concentrations of interleukin (IL)-8, total protein and matrix metalloproteinase-9 were significantly higher in bitumen-exposed workers than in the reference group. However, the concentration of these three biomarkers in the IS samples, which are indicators of inflammatory effects on the lower airways of bitumen-exposed workers, was already higher in exposed workers before shift and did not show an increase during the shift. Therefore, the key finding of this aspect of the Human Bitumen Study is the detection of potentially (sub-) chronic irritative inflammatory effects in the lower airways of bitumen-exposed workers.
Collapse
|
24
|
The Human Bitumen Study: executive summary. Arch Toxicol 2011; 85 Suppl 1:S3-9. [PMID: 21369765 DOI: 10.1007/s00204-011-0679-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/10/2011] [Indexed: 01/29/2023]
Abstract
Bitumen has attracted attention from the scientific community and regulating agencies. The debate on health effects of exposure to vapours and aerosols of bitumen during the hot application of bitumen ranges from respiratory and neurological effects to carcinogenicity. In 2000, the German Hazardous Substances Committee (AGS), in collaboration with the German Bitumen Forum, initiated the examination of a group of mastic asphalt workers and a same number of construction workers without exposure bitumen using a cross-shift design. The study was then extended to the Human Bitumen Study, and the recruitment was finished in 2008 after examination of 500 workers on 80 construction sites. Three hundred and twenty workers exposed to vapours and aerosols of bitumen at high processing temperatures and 118 workers at outdoor construction sites were included. In the Human Bitumen Study external exposure to vapours and aerosols of bitumen, internal exposure to PAH by analysing urinary 1-hydroxypyrene, the sum of hydroxyphenanthrenes and the sum of 1- and 2-hydroxynaphthalenes, irritative effects in the upper and lower airways and genotoxic effects in blood cells were investigated. The study turned out to be one of the largest investigations of workers exposed to vapours and aerosols of bitumen under current exposure conditions. The present paper summarizes its background and main topics.
Collapse
|
25
|
Pesch B, Spickenheuer A, Kendzia B, Schindler BK, Welge P, Marczynski B, Rihs HP, Raulf-Heimsoth M, Angerer J, Brüning T. Urinary metabolites of polycyclic aromatic hydrocarbons in workers exposed to vapours and aerosols of bitumen. Arch Toxicol 2011; 85 Suppl 1:S29-39. [PMID: 21359563 DOI: 10.1007/s00204-011-0680-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/10/2011] [Indexed: 11/30/2022]
Abstract
Urinary hydroxylated metabolites of polycyclic aromatic hydrocarbons (PAH) were investigated as potential biomarkers of bitumen exposure in a cross-shift study in 317 exposed and 117 non-exposed workers. Personal measurements of the airborne concentration of vapours and aerosols of bitumen during a working shift were weakly associated with post-shift concentrations of 1-hydroxypyrene (1-OHP) and 1-, 2+9-, 3- and 4-hydroxyphenanthrenes (further referred to their sum as OHPHE), but not 1- and 2-hydroxynaphthalene (OHNA). Smoking showed a strong influence on the metabolite concentrations, in particular on OHNA. Pre-shift concentrations of 1-OHP and OHPHE did not differ between the study groups (P = 0.16 and P = 0.89, respectively). During shift, PAH metabolite concentrations increased in exposed workers and non-exposed smokers. Statistical modelling of post-shift concentrations revealed a small increase in 1-OHP by a factor of 1.02 per 1 mg/m(3) bitumen (P = 0.02) and 1.04 for OHPHE (P < 0.001). A group difference was observed that was diminished in non-smokers. Exposed non-smokers had a median post-shift 1-OHP concentration of 0.42 μg/l, and non-smoking referents 0.13 μg/l. Although post-shift concentrations of 1-OHP and OHPHE were slightly higher than those in the general population, they were much lower than in coke-oven workers. The small content of PAHs in vapours and aerosols of bitumen, the increasing use of additives to asphalt mixtures, the strong impact of smoking and their weak association with airborne bitumen limit the use of PAH metabolites as specific biomarkers of bitumen exposure.
Collapse
Affiliation(s)
- Beate Pesch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Modulation of urinary polycyclic aromatic hydrocarbon metabolites by enzyme polymorphisms in workers of the German Human Bitumen Study. Arch Toxicol 2011; 85 Suppl 1:S73-9. [DOI: 10.1007/s00204-011-0684-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
|
27
|
Levels and determinants of exposure to vapours and aerosols of bitumen. Arch Toxicol 2011; 85 Suppl 1:S21-8. [DOI: 10.1007/s00204-011-0677-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/10/2011] [Indexed: 10/18/2022]
|