1
|
González-Martínez F, Johnson-Restrepo B, Quiñones LA. Arsenic inorganic exposure, metabolism, genetic biomarkers and its impact on human health: A mini-review. Toxicol Lett 2024; 398:105-117. [PMID: 38901734 DOI: 10.1016/j.toxlet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 04/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Inorganic arsenic species exist in the environment as a result of both natural sources, such as volcanic and geothermal activities, and geological formations, as well as anthropogenic activities, including smelting, exploration of fossil fuels, coal burning, mining, and the use of pesticides. These species deposit in water, rocks, soil, sediments, and the atmosphere. Arsenic-contaminated drinking water is a global public health issue because of its natural prevalence and toxicity. Therefore, chronic exposure to arsenic can have deleterious effect on humans, including cancer and other diseases. This work describes the mechanisms of environmental exposure to arsenic, molecular regulatory factors involved in its metabolism, genetic polymorphisms affecting individual susceptibility and the toxic effects of arsenic on human health (oxidative stress, DNA damage and cancer). We conclude that the role of single nucleotide variants affecting urinary excretion of arsenic metabolites are highly relevant and can be used as biomarkers of the intracellular retention rates of arsenic, showing new avenues of research in this field.
Collapse
Affiliation(s)
- Farith González-Martínez
- Faculty of Dentistry and Faculty of Exact Sciences, University of Cartagena, Colombia; Public Health Research Group, University of Cartagena, Colombia; Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile.
| | | | - Luis A Quiñones
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Santiago, Chile; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Chile; Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Chile.
| |
Collapse
|
2
|
Jorgensen A, Brandslund I, Ellervik C, Henriksen T, Weimann A, Andersen PK, Poulsen HE. Specific prediction of mortality by oxidative stress-induced damage to RNA vs. DNA in humans. Aging Cell 2023:e13839. [PMID: 37190886 DOI: 10.1111/acel.13839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Modifications of nucleic acids (DNA and RNA) from oxidative stress is a potential driver of aging per se and of mortality in age-associated medical disorders such as type 2 diabetes (T2D). In a human cohort, we found a strong prediction of all-cause mortality by a marker of systemic oxidation of RNA in patients with T2D (n = 2672) and in nondiabetic control subjects (n = 4079). The finding persisted after the adjustment of established modifiers of oxidative stress (including BMI, smoking, and glycated hemoglobin). In contrast, systemic levels of DNA damage from oxidation, which traditionally has been causally linked to both T2D and aging, failed to predict mortality. Strikingly, these findings were subsequently replicated in an independent general population study (n = 3649). The data demonstrate a specific importance of RNA damage from oxidation in T2D and general aging.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christina Ellervik
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Data Support, Region Zealand, Sorø, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Henrik E Poulsen
- Department of Cardiology, Copenhagen University Hospital Hillerød, Hillerød, Denmark
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg-Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
3
|
Zou Y, Ma X, Chen Q, Xu E, Yu J, Tang Y, Wang D, Yu S, Qiu L. Nightshift work can induce oxidative DNA damage: a pilot study. BMC Public Health 2023; 23:891. [PMID: 37189122 DOI: 10.1186/s12889-023-15742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Regular sleep is very important for human health; however, the short-term and long-term effects of nightshift with sleep deprivation and disturbance on human metabolism, such as oxidative stress, have not been effectively evaluated based on a realistic cohort. We conducted the first long-term follow-up cohort study to evaluate the effect of nightshift work on DNA damage. METHODS We recruited 16 healthy volunteers (aged 33 ± 5 years) working night shifts at the Department of Laboratory Medicine at a local hospital. Their matched serum and urine samples were collected at four time points: before, during (twice), and after the nightshift period. The levels of 8-oxo-7,8-dihydroguanosine (8-oxoG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), two important nucleic-acid damage markers, were accurately determined based on a robust self-established LC‒MS/MS method. The Mann-Whitney U or Kruskal-Wallis test was used for comparisons, and Pearson's or Spearman's correlation analysis was used to calculate the correlation coefficients. RESULTS The levels of serum 8-oxodG, estimated glomerular filtration rate-corrected serum 8-oxodG, and the serum-to-urine 8-oxodG ratio significantly increased during the nightshift period. These levels were significantly higher than pre-nightshift work level even after 1 month of discontinuation, but no such significant change was found for 8-oxoG. Moreover, 8-oxoG and 8-oxodG levels were significantly positively associated with many routine biomarkers, such as total bilirubin and urea levels, and significantly negatively associated with serum lipids, such as total cholesterol levels. CONCLUSION The results of our cohort study suggested that working night shifts may increase oxidative DNA damage even after a month of discontinuing nightshift work. Further studies with large-scale cohorts, different nightshift modes, and longer follow-up times are needed to clarify the short- and long-term effects of night shifts on DNA damage and find effective solutions to combat the negative effects.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
- Medical Science Research Center (MRC), Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Chen
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
| | - Ermu Xu
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
| | - Jialei Yu
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, PR China.
| |
Collapse
|
4
|
Zou Y, Ma X, Tang Y, Lin L, Yu J, Zhong J, Wang D, Cheng X, Gao J, Yu S, Qiu L. A robust LC-MS/MS method to measure 8-oxoGuo, 8-oxodG, and NMN in human serum and urine. Anal Biochem 2023; 660:114970. [PMID: 36341768 DOI: 10.1016/j.ab.2022.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To establish and validate a robust LC-MS/MS method for simultaneously measuring 8-oxoGuo, 8-oxodG, and NMN in serum and urine to evaluate the oxidative stress status. METHODS A Waters TQ-XS triple quadrupole mass spectrometer system coupled with an Acquity UPLC Primer HSS T3 column was chosen. The clinical performance was verified according to the CLSI C62-A and EP-15 guidelines. Furthermore, matched serum and urine samples from 22 apparently healthy check-ups, 20 patients with atherosclerosis, and 18 individuals with dementia were evaluated. RESULTS The recovery for serum 8-oxoGuo, urine 8-oxoGuo, serum 8-oxodG, urine 8-oxodG, serum NMN, and urine NMN was 88.8-112.4%, 102.4-114.1%, 88.5-107.7%, 94.9-102.6%, 98.4-108.9%, and 88.5-108.6%, respectively. Based on the inter-assay results, total coefficient of variation, matrix effect, and carryover, the LC-MS/MS method was deemed robust. The limit of quantification was 0.017, 0.018, and 0.150 nmol/L for 8-oxoGuo, 8-oxodG, and NMN, respectively, which are suitable for accurate measurements in human serum and urine samples. Higher 8-oxoGuo and 8-oxodG levels and lower NMN levels, indicative of significantly higher oxidative stress status, were found in patients with dementia compared to healthy subjects. CONCLUSION We established and validated a robust LC-MS/MS method to simultaneously measure 8-oxoGuo, 8-oxodG, and NMN in serum and urine.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China; Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yueming Tang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liling Lin
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jialei Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinqi Cheng
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
5
|
Hong X, Hu Y, Yuan Z, Fang Z, Zhang X, Yuan Y, Guo C. Oxidatively Damaged Nucleic Acid: Linking Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1153-1167. [PMID: 35946074 DOI: 10.1089/ars.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Our current knowledge of the mechanism between diabetes and cancer is limited. Oxidatively damaged nucleic acid is considered a critical factor to explore the connections between these two diseases. Recent Advances: The link between diabetes mellitus and cancer has attracted increasing attention in recent years. Emerging evidence supports that oxidatively damaged nucleic acid caused by an imbalance between reactive oxygen species generation and elimination is a bridge connecting diabetes and cancer. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydroguanosine assume important roles as biomarkers in assessing the relationship between oxidatively damaged nucleic acid and cancer. Critical Issues: The consequences of diabetes are extensive and may lead to the occurrence of cancer by influencing a combination of factors. At present, there is no direct evidence that diabetes causes cancer by affecting a single factor. Furthermore, the difficulty in controlling variables and differences in detection methods lead to poor reliability and repeatability of results, and there are no clear cutoff values for biomarkers to indicate cancer risk. Future Directions: A better understanding of connections as well as mechanisms between diabetes and cancer is still needed. Both diabetes and cancer are currently intractable diseases. Further exploration of the specific mechanism of oxidatively damaged nucleic acid in the connection between diabetes and cancer is urgently needed. In the future, it is necessary to further take oxidatively damaged nucleic acid as an entry point to provide new ideas for the diagnosis and treatment of diabetes and cancer. Experimental drugs targeting the repair process of oxidatively generated damage require an extensive preclinical evaluation and could ultimately provide new treatment strategies for these diseases. Antioxid. Redox Signal. 37, 1153-1167.
Collapse
Affiliation(s)
- Xiujuan Hong
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqiu Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijun Yuan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihao Fang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zou Y, Ma X, Yu S, Qiu L. Is pre-heat necessary for the measurement of 8-oxo-7,8-dihydroguanosine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in urine samples. J Clin Lab Anal 2022; 36:e24674. [PMID: 36036744 PMCID: PMC9550956 DOI: 10.1002/jcla.24674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Accepted: 08/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND It is currently unclear for the necessary of pre-heating urine samples for the accurate determination of 8-oxo-7,8-dihydroguanosine (8-oxoG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). Thus, we conducted this study to evaluate the effect of pre-heat (i.e., to 37°C) on the accurate measurement of 8-oxoG and 8-oxodG in frozen urine samples. METHODS Random urine samples from six healthy volunteers, six patients with renal dysfunction, and six patients with systematic diseases such as diabetes were collected, split, and stored at -80°C for up to 1 month. The frozen samples were thawed at room temperature (RT) or 37°C for different time, 10-fold diluted with ddH2O containing 1% formic acid, and determined by self-established LC-MS/MS method coupled with an ACQUITY™ Primer HSS T3 column. RESULTS Thawing the samples at RT for 30 or 120 min, or at 37°C for 15 or 90 min did not affect the determination of 8-oxoG and 8-oxodG in urine samples. Moreover, no significant difference between thawing the urine samples at RT and 37°C was found after storing at -80°C for 1-3 months. CONCLUSION It is not always necessary to pre-heat the frozen urine samples to release 8-oxoG and 8-oxodG from precipitates, which is associated with different pre-treatment and determination methods.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Jorgensen A, Thygesen MB, Kristiansen U, Poulsen HE. An in silico kinetic model of 8-oxo-7,8-dihydro-2-deoxyguanosine and 8-oxo-7,8-dihydroguanosine metabolism from intracellular formation to urinary excretion. Scandinavian Journal of Clinical and Laboratory Investigation 2021; 81:540-545. [PMID: 34511003 DOI: 10.1080/00365513.2021.1969682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Oxidatively generated DNA damage is of paramount importance in a wide range of physiological and pathophysiological processes. Urinary 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is often used as an outcome marker in studies on the role of oxidatively generated DNA damage, but its exact relation to intracellular damage levels and variations in DNA repair have been unclear. Using a new approach of quantitative kinetic modeling inspired by pharmacokinetics, we find evidence that in steady state - i.e. when systemic consequences of given change in damage or cellular removal rates have stabilized - the urinary excretion of 8-oxodG is closely correlated to rates of damage and intracellular 8-oxodG levels, but independent of the rate of cellular removal. Steady state was calculated to occur within approximately 12 h. A similar pattern was observed in a model of the corresponding RNA marker 8-oxo-7,8-dihydroguanosine (8-oxoGuo), but with steady-state occurring slower (up to 5 d). These data have significant implications for the planning of studies and interpretation of data involving urinary 8-oxodG/8-oxoGuo excretion as outcome.HighlightsThe kinetics of 8-oxodG/8-oxoGuo formation, removal and excretion were simulated in silico.The model was based on existing data on 8-oxodG/8-oxoGuo levels and removal/excretion rates.Intracellular 8-oxodG/8-oxoGuo was closely correlated with urinary excretion in steady state.Changes in removal rates did not influence urinary excretion of 8-oxodG/8-oxoGuo.
Collapse
Affiliation(s)
- Anders Jorgensen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Psychiatric Center Copenhagen (Rigshospitalet), Mental Health Services of the Capital Region, Copenhagen, Denmark
| | - Maria Bremholm Thygesen
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
8
|
Henriksen T, Weimann A, Larsen EL, Poulsen HE. Quantification of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-oxo-7,8-dihydro-guanosine concentrations in urine and plasma for estimating 24-h urinary output. Free Radic Biol Med 2021; 172:350-357. [PMID: 34166769 DOI: 10.1016/j.freeradbiomed.2021.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Among markers for oxidative stress urinary excretion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydro-guanosine (8-oxoGuo) have been widely used in controlled and epidemiological studies, and are considered to represent intracellular markers of oxidation of DNA and RNA in the entire organism, respectively. Although being non-invasive, urinary methods have shortcomings. There is no established method for analysis of 8-oxodGuo and 8-oxoGuo in plasma and the few plasma values presented in the literature vary greatly. We here present a liquid chromatography mass spectrometry method with full validation for analysis of 8-oxodGuo and 8-oxoGuo in plasma. Further, we investigated the basis for our previously physiological model and show that a single plasma sample can be used to estimate the 24-h production of 8-oxoGuo, whereas we challenge the use of urinary 8-oxodGuo/creatinine ratio or plasma 8-oxodGuo as measures of oxidative stress.
Collapse
Affiliation(s)
- Trine Henriksen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Emil List Larsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, North Zealand, Hillerød, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Cardiology, Copenhagen University Hospital, North Zealand, Hillerød, Denmark; Department of Clinical Medicine, Health Science Faculty, University of Copenhagen, Denmark; Department of Endochrinology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|
9
|
Mello LD. Potential contribution of ELISA and LFI assays to assessment of the oxidative stress condition based on 8-oxodG biomarker. Anal Biochem 2021; 628:114215. [PMID: 33957135 DOI: 10.1016/j.ab.2021.114215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/13/2023]
Abstract
Immunoassays have been extensively applied in the medical diagnostic field. Enzyme-Linked Immunosorbent Assay (ELISA) and Lateral Flow Immunochemical Assay (LFIA) are methods that have been well established to analysis of clinical substances such as protein, hormones, drugs, identification of antibodies and in the quantification of antigen. Over the past years, the application of these methods has been extended to assess the clinical oxidative stress condition based on monitoring of the 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) biomarker levels. The present manuscript provides an overview of the current immunoassays based on ELISA and LFIA technologies applied for a quantitative analysis of the 8-oxodG. The discussion focuses on the principles of development, improvement and analytical performance of these assays. The relationship of the molecule 8-oxodG as a clinical biomarker of the assessment of the oxidative stress condition is also discussed. Commercially available products to 8-oxodG analysis are also presented.
Collapse
|
10
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
11
|
Matulakul P, Vongpramate D, Kulchat S, Chompoosor A, Thanan R, Sithithaworn P, Sakonsinsiri C, Puangmali T. Development of Low-Cost AuNP-Based Aptasensors with Truncated Aptamer for Highly Sensitive Detection of 8-Oxo-dG in Urine. ACS OMEGA 2020; 5:17423-17430. [PMID: 32715227 PMCID: PMC7377066 DOI: 10.1021/acsomega.0c01834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), an oxidized form of guanosine residues, is a critical biomarker for various cancers. Herein, a sensitive citrate-capped gold nanoparticle-based aptasensor device has been developed for the detection of 8-oxo-dG in urine. We previously designed a 38-nt anti-8-oxo-dG-aptamer by a computer simulation and the experimental validation has been performed in the present work. The analytical performance of the 38-nt aptamer from the in silico design was compared with the parent 66-nt aptamer. This assay is based on the principle of salt-induced aggregation of citrate-capped gold nanoparticles. Based on this sensing mechanism, the difference between the absorbance in the presence and absence of 8-oxo-dG at λ = 525 nm (ΔA525) increased linearly as a function of 8-oxo-dG concentrations in the ranges of 10-100 and 15-100 nM for 38-nt and 66-nt aptasensors, respectively. This method can provide detection limits of 6.4 nM for 8-oxo-dG in the 38-nt aptasensor and 13.2 nM in the 66-nt aptasensor. Similar to the 66-nt aptamer, the shortened aptamer, 38-nt long, can provide high sensitivity and selectivity with rapid detection time. In addition, using the 38-nt aptamer as a recognition component in the developed portable low-cost device showed high sensitivity in the detection range of 15-100 nM with a detection limit of 12.9 nM, which is much lower than the threshold value (280 nM) for normal human urine. This easy-to-use device could effectively and economically be utilized for monitoring 8-oxo-dG in real urine samples and potentially serve as a prototype for a commercial device.
Collapse
Affiliation(s)
- Piyaporn Matulakul
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Drusawin Vongpramate
- Department
of Information Technology, Faculty of Science, Buriram Rajabhat University, Buriram 31000, Thailand
| | - Sirinan Kulchat
- Department
of Chemistry, Faculty of Science, Khon Kaen
University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department
of Chemistry, Faculty of Science, Ramkhamhaeng
University, Bangkok 10240, Thailand
| | - Raynoo Thanan
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Paiboon Sithithaworn
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
- Department
of Parasitology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Research Institute (CARI), Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma
Screening and Care Program (CASCAP), Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Materials
Science and Nanotechnology Program, Department of Physics, Faculty
of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
12
|
Sisto R, Capone P, Cerini L, Paci E, Pigini D, Gherardi M, Gordiani A, L'Episcopo N, Tranfo G, Chiarella P. Occupational exposure to volatile organic compounds affects microRNA profiling: Towards the identification of novel biomarkers. Toxicol Rep 2020; 7:700-710. [PMID: 32551232 PMCID: PMC7287141 DOI: 10.1016/j.toxrep.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
Exposure to volatile organic compounds represents a threat for workers' health and safety, even using protective equipment. Spray-painting exposure is at higher risk than roller-painting. Exposure to organic solvents may induce DNA and RNA oxidation, urine metabolite excretion and miRNA up- or down-regulation. miR-589-5p and miR-941, miR-146b-3p and miR-27a-3p have been identified as potential biomarkers of effect in exposed workers. KEGG pathway analysis showed that miRNA-1, related to lung cancer, is significantly downregulated in exposed workers.
In the framework of a project aimed at finding novel predictive biomarkers of VOCs exposure-related diseases, the effect of exposure to ethylbenzene, toluene, and xylene has been analyzed in a group of painters (spray- and roller-painters) working in the shipyard industry. Airborne levels of solvents were higher in spray- than in roller-painters, and comparable to the Occupational Exposure Limits (OELs), particularly for toluene and xylene. The urinary concentration of each volatile organic compound (VOC) and of the corresponding metabolites were also concurrently measured. A set of oxidative stress biomarkers, i.e., the products of DNA and RNA oxidation, RNA methylation, and protein nitration, were measured, and found significantly higher at the end of the work shift. MicroRNA (MiRNA) expression was analyzed in the VOC-exposed workers and in a control group, finding 56 differentially expressed (DE) miRNAs at a statistically significant level (adjusted p ≤ 0.01). The Receiver-Operating Characteristic curves, computed for each identified miRNA, showed high sensitivity and specificity. A pathway analysis in the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that miRNA-1, which was found downregulated in exposed workers, is involved in the lung cancer oncogenesis. A subset of 10 miRNAs (out of the 56 DE) was selected, including those with the highest correlation to the urinary dose biomarkers measured at the end of work-shift. Multivariate ANOVA analysis showed a statistically significant correlation between the urinary dose biomarkers (both the VOCs urinary concentration and the VOCs’ metabolite concentration), and the identified miRNA subset, indicating that the exposure to low VOC doses may be sufficient to activate the miRNA response. Four miRNAs belonging to the subset strongly related to the VOCs and VOCs’ metabolites concentration were individuated, miR-589-5p, miR-941, miR-146b-3p and miR-27a-3p, with well-known implications in oxidative stress and inflammation processes.
Collapse
Affiliation(s)
- Renata Sisto
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Pasquale Capone
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Luigi Cerini
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Enrico Paci
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Daniela Pigini
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Monica Gherardi
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Andrea Gordiani
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Nunziata L'Episcopo
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Giovanna Tranfo
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| | - Pieranna Chiarella
- Italian Workers Compensation Authority (INAIL), Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, via di Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy
| |
Collapse
|
13
|
Effects of Tomato Juice Intake on Salivary 8-Oxo-dG Levels as Oxidative Stress Biomarker after Extensive Physical Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8948723. [PMID: 32377311 PMCID: PMC7193759 DOI: 10.1155/2020/8948723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
Reactive oxygen species (ROS) at a normal level are important molecules involved in several cellular processes including immune response and cell signalling. Overproduction of ROS may lead to elevated oxidative stress and consequently to age-related diseases. Most of the studies related to oxidative stress in humans have been done on blood samples. However, blood sampling might be painful, requires special qualified personnel, and has to be performed at medical centers. An alternative to blood is saliva. Saliva sampling is noninvasive and can be performed by the donor. Biomarker determination in saliva is becoming an important part of laboratory diagnosis, but method development is needed before it can be used in the clinics. In the present investigation, 16 donors performed extensive physical exercise by cycling and keeping their heart rate at 80% of maximum for 20 minutes. The physical activity was repeated 3 times: before tomato juice intake, after daily intake of 100 ml tomato juice during 3 weeks, and finally 3 weeks after finishing tomato juice intake (washout period). The level of the stress biomarker, salivary 8-oxo-dG, was determined before and after the physical activity. The results indicate that (a) 20 min extensive physical activity increases the level of 8-oxo-dG in saliva significantly (p = 0.0078) and (b) daily intake of 100 ml tomato juice may inhibit (p = 0.052) overproduction of salivary 8-oxo-dG by 20 min physical activity. We conclude that the 20 min extensive physical activity increases the level of salivary 8-oxo-dG in healthy donors and 100 ml daily intake of tomato juice may inhibit the increase of 8-oxo-dG in saliva.
Collapse
|
14
|
Arsenic Exposure and Methylation Efficiency in Relation to Oxidative Stress in Semiconductor Workers. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study examined associations between oxidative stress and arsenic (As) exposure and methylation efficiency in semiconductor workers. An As-exposed group (n = 427) and a control group (n = 91) were included. The As-exposure group (n = 427) included 149 maintenance staff members and 278 production staff members representing high As exposure and low As exposure, respectively. The control group included 91 administrative staff members with no or minimal As exposure. An occupational exposure assessment was conducted to assess personal As exposure by measuring As concentrations in urine, hair, and fingernails of the subjects. Urinary As(III), As(V), monomethylarsonic (MMA), and dimethylarsinic acid (DMA) were quantified to assess an internal dose of inorganic As. Urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) were measured to asses oxidative DNA damage and lipid peroxidation, respectively. As concentrations in urine, hair, and fingernails significantly increased (p < 0.05) in the As-exposed group in comparison to the control group. Geometric mean urinary concentrations of As, 8-OHdG, and MDA in the As-exposed group significantly exceeded those in the control group. As exposure to As-exposed workers had increased concentrations of 8-OHdG in contrast to those in control subjects. Moreover, urinary 8-OHdG concentrations in the semiconductor workers were positively correlated with urinary total As metabolite (As(III) + As(V) + MMA + DMA) concentrations. Furthermore, urinary excretion of 8-OHdG concentrations in As-exposed workers were positively associated with urinary excretion of MMA concentrations and primary methylation index values (the ration of MMA/inorganic As). However, fingernail and hair samples did not perform as well as urinary samples to measure oxidative stress induced by As exposure. 8-OHdG could serve as a more reliable biomarker for assessing As methylation than MDA did. Occupational exposure to inorganic As was associated with increased oxidative stress among semiconductor workers.
Collapse
|
15
|
Larsen EL, Weimann A, Poulsen HE. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic Biol Med 2019; 145:256-283. [PMID: 31563634 DOI: 10.1016/j.freeradbiomed.2019.09.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Oxidative stress is associated with the development and progression of numerous diseases. However, targeting oxidative stress has not been established in the clinical management of any disease. Several methods and markers are available to measure oxidative stress, including direct measurement of free radicals, antioxidants, redox balance, and oxidative modifications of cellular macromolecules. Oxidatively generated nucleic acid modifications have attracted much interest due to the pre-mutagenic oxidative modification of DNA into 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), associated with cancer development. During the last decade, the perception of RNA has changed from that of a 'silent messenger' to an 'active contributor', and, parallelly oxidatively generated RNA modifications measured as 8-oxo-7,8-dihydro-guanosine (8-oxoGuo), has been demonstrated as a prognostic factor for all-caused and cardiovascular related mortality in patients with type 2 diabetes. Several attempts have been made to modify the amount of oxidative nucleic acid modifications. Thus, this review aims to introduce researchers to the measurement of oxidatively generated nucleic acid modifications as well as critically review previous attempts and provide future directions for targeting oxidatively generated nucleic acid modifications.
Collapse
Affiliation(s)
- Emil List Larsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark.
| | - Allan Weimann
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| | - Henrik Enghusen Poulsen
- Department of Clinical Pharmacology, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Tranfo G, Paci E, Carrieri M, Marchetti E, Sisto R, Gherardi M, Costabile F, Bauleo L, Ancona C, Pigini D. Levels of Urinary Biomarkers of Oxidatively Generated Damage to DNA and RNA in Different Groups of Workers Compared to General Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162995. [PMID: 31434269 PMCID: PMC6719150 DOI: 10.3390/ijerph16162995] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
(1) Background: The products of guanine oxidation in DNA and RNA excreted in urine are 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydroguanosine (8-oxoGuo), and 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodGuo). Despite intra and inter-individual variability, it is possible to identify situations that significantly increase the levels of these compounds when comparing urinary concentrations of some workers to those of the general population. (2) Methods: urines from gasoline pump attendants (58 from Saudi Arabia and 102 from Italy), 24 workers of a fiberglass reinforced plastics plant, 17 painters and 6 divers were analyzed by HPLC/MS-MS. To test the individual variability, two subjects provided daily samples for one month, and 132 urine samples from the general population were analyzed. (3) Results: We summarized the results for each biomarker, and found the following were statistically higher than in the general population: 8-oxoGua in fiberglass and Italian gasoline workers; 8-oxodGuo in fiberglass and both Saudi Arabian and Italian gasoline workers; 8-oxoGuo in fiberglass workers, both Saudi Arabian and Italian gasoline workers, and painters after the working shift. (4) Conclusions: these results confirm that both 8-oxodGuo and 8-oxoGuo are valuable biomarkers for occupational exposures to dangerous chemicals and seem to suggest that 8-oxoGuo, related to RNA oxidation, is a suitable biomarker to evaluate short term, reversible effects of occupational exposures even within the health-based limit values.
Collapse
Affiliation(s)
- Giovanna Tranfo
- Department of Occupational Medicine, Epidemiology, Occupational and Environmental Hygiene, INAIL Research, via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy.
| | - Enrico Paci
- Department of Occupational Medicine, Epidemiology, Occupational and Environmental Hygiene, INAIL Research, via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Mariella Carrieri
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, via Giustiniani 2, 35128 Padova, Italy
| | - Enrico Marchetti
- Department of Occupational Medicine, Epidemiology, Occupational and Environmental Hygiene, INAIL Research, via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Renata Sisto
- Department of Occupational Medicine, Epidemiology, Occupational and Environmental Hygiene, INAIL Research, via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Monica Gherardi
- Department of Occupational Medicine, Epidemiology, Occupational and Environmental Hygiene, INAIL Research, via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Francesca Costabile
- CNR-ISAC-Italian National Research Council, Institute of Atmospheric Science and Climate, via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Lisa Bauleo
- Department of Epidemiology, Lazio Regional Health Service, Via Cristoforo Colombo 112, 00147 Rome, Italy
| | - Carla Ancona
- Department of Epidemiology, Lazio Regional Health Service, Via Cristoforo Colombo 112, 00147 Rome, Italy
| | - Daniela Pigini
- Department of Occupational Medicine, Epidemiology, Occupational and Environmental Hygiene, INAIL Research, via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| |
Collapse
|
17
|
Oxidized Cell-Free DNA Role in the Antioxidant Defense Mechanisms under Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1245749. [PMID: 31360293 PMCID: PMC6644271 DOI: 10.1155/2019/1245749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/08/2019] [Indexed: 12/15/2022]
Abstract
The present study focuses on the investigation of the oxidized cell-free DNA (cfDNA) properties in several experimental models, including cultured cerebellum cells, peripheral blood lymphocytes (PBL), plasma, and hippocampus under an acute and chronic unpredictable stress model in rats. Firstly, our study shows that Spectrum Green fluorescence-labeled oxidized cfDNA fragments were transferred into the cytoplasm of 80% of the cerebellum culture cells; meanwhile, the nonoxidized cfDNA fragments do not pass into the cells. Oxidized cfDNA stimulates the antioxidant mechanisms and induction of transcription factor NRF2 expression, followed by an activation of NRF2 signaling pathway genes-rise of Nrf2 and Hmox1 gene expression and consequently NRF2 protein synthesis. Secondly, we showed that stress increases plasma cfDNA concentration in rats corresponding with the duration of the stress exposure. At the same time, our study did not reveal any significant changes of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) level in PBL of rats under acute or chronic stress, probably due to the significantly increased Nrf2 expression, that we found in such conditions. 8-oxodG is one of the most reliable markers of DNA oxidation. We also found an increased level of 8-oxodG in the hippocampal homogenates and hippocampal dentate gyrus in rats subjected to acute and chronic stress. Taken together, our data shows that oxidized cfDNA may play a significant role in systemic and neuronal physiological mechanisms of stress and adaptation.
Collapse
|
18
|
Jeličová M, Metelka R, Pejchal J, Lierová A, Šinkorová Z. Electrochemical detection of 8-hydroxyguanine using screen-printed carbon electrodes modified with carboxy-functionalized multi-walled carbon nanotubes. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02433-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Chao MR, Cooke MS, Kuo CY, Pan CH, Liu HH, Yang HJ, Chen SC, Chiang YC, Hu CW. Children are particularly vulnerable to environmental tobacco smoke exposure: Evidence from biomarkers of tobacco-specific nitrosamines, and oxidative stress. ENVIRONMENT INTERNATIONAL 2018; 120:238-245. [PMID: 30103123 DOI: 10.1016/j.envint.2018.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Worldwide, smoking is a major public health problem, with exposure to environmental tobacco smoke (ETS) affecting both smokers, and passive smokers, including children. Despite ETS also describing secondhand, and thirdhand smoke (SHS, and THS respectively), the health effects of exposure to passive smoking via these sources are not fully understood, particularly in children. Although cotinine, the primary proximate metabolite of nicotine, has been widely used as a biomarker of ETS exposure, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), the metabolite of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), provides a uniquely important contribution, both as a biomarker of exposure, and as a specific risk indicator for pulmonary carcinogenesis. METHODS We used LC-MS/MS to study NNK metabolites, cotinine, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (a biomarker of oxidative stress), in the urine of 110 non-smoking adults (age range: 23-62) and 101 children (age range: 9-11), exposed to ETS. RESULTS In our study of passive smoking adults, and children exposed to ETS, we showed that although the children had a similar urinary level of cotinine compared to the adults, the children had approximately two times higher levels of urinary total NNAL (P = 0.002), and free NNAL (P = 0.01), than adults. The children also had three times lower ability to detoxify NNK than adults (P < 0.001). Furthermore, the children showed 1.5 times higher ratio of total NNAL/cotinine than adults (P = 0.01), implying that THS is another important source of ETS in this population. Furthermore, ETS exposure in children appeared to lead to an increase in levels of oxidative stress. CONCLUSIONS Taken together, our results demonstrate that, in children, THS may play an important role in the ETS exposure, and that children are at particular risk of ETS-induced health effects.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Chung-Yih Kuo
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Hung-Hsin Liu
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Jan Yang
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Szu-Chieh Chen
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yi-Chen Chiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
20
|
Omaga CA, Fleming AM, Burrows CJ. The Fifth Domain in the G-Quadruplex-Forming Sequence of the Human NEIL3 Promoter Locks DNA Folding in Response to Oxidative Damage. Biochemistry 2018; 57:2958-2970. [PMID: 29718661 DOI: 10.1021/acs.biochem.8b00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA oxidation is an inevitable and usually detrimental process, but the cell is capable of reversing this state because the cell possesses a highly developed set of DNA repair machineries, including the DNA glycosylase NEIL3 that is encoded by the NEIL3 gene. In this work, the G-rich promoter region of the human NEIL3 gene was shown to fold into a dynamic G-quadruplex (G4) structure under nearly physiological conditions using spectroscopic techniques (e.g., nuclear magnetic resonance, circular dichroism, fluorescence, and ultraviolet-visible) and DNA polymerase stop assays. The presence of 8-oxo-7,8-dihydroguanine (OG) modified the properties of the NEIL3 G4 and entailed the recruitment of the fifth domain to function as a "spare tire", in which an undamaged fifth G-track is swapped for the damaged section of the G4. The polymerase stop assay findings also revealed that owing to its dynamic polymorphism, the NEIL3 G4 is more readily bypassed by DNA polymerase I (Klenow fragment) than well-known oncogene G4s are. This study identifies the NEIL3 promoter possessing a G-rich element that can adopt a G4 fold, and when OG is incorporated, the sequence can lock into a more stable G4 fold via recruitment of the fifth track of Gs.
Collapse
Affiliation(s)
- Carla A Omaga
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
21
|
Kawai K, Kasai H, Li YS, Kawasaki Y, Watanabe S, Ohta M, Honda T, Yamato H. Measurement of 8-hydroxyguanine as an oxidative stress biomarker in saliva by HPLC-ECD. Genes Environ 2018; 40:5. [PMID: 29632621 PMCID: PMC5883350 DOI: 10.1186/s41021-018-0095-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 12/14/2022] Open
Abstract
Introduction Oxidative stress leads to many kinds of diseases. Currently, urinary 8-hydroxydeoxyguanosine (8-OHdG) is widely measured as an oxidative stress biomarker. There is a specific advantage if saliva can be used as the sample to measure the oxidative stress biomarker, because saliva is much easier to collect than urine. In this study, we investigated the measurement of 8-hydroxyguanine (8-OHGua) as an oxidative stress marker in saliva, by a column switching HPLC system equipped with an electrochemical detector (HPLC-ECD). Findings The 8-OHGua in saliva could be detected as a single peak by HPLC-ECD. The average level of 8-OHGua in saliva was 3.80 ng/mL in ordinary, non-smoking subjects. The salivary 8-OHGua levels of smokers were significantly higher than those of non-smokers. Conclusions Salivary 8-OHGua may be a useful noninvasive and promising oxidative stress biomarker.
Collapse
Affiliation(s)
- Kazuaki Kawai
- 1Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Hiroshi Kasai
- 1Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Yun-Shan Li
- 1Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Yuya Kawasaki
- 1Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shintaro Watanabe
- 1Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Masanori Ohta
- 2Department of Health Development, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan.,3Department of Food and health Sciences, International Collage of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-ku, Fukuoka, 813-8529 Japan
| | - Toru Honda
- 2Department of Health Development, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Hiroshi Yamato
- 2Department of Health Development, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555 Japan
| |
Collapse
|
22
|
Chernikov AV, Gudkov SV, Usacheva AM, Bruskov VI. Exogenous 8-oxo-7,8-dihydro-2′-deoxyguanosine: Biomedical properties, mechanisms of action, and therapeutic potential. BIOCHEMISTRY (MOSCOW) 2018. [DOI: 10.1134/s0006297917130089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Pan CH, Jeng HA, Lai CH. Biomarkers of oxidative stress in electroplating workers exposed to hexavalent chromium. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2018; 28:76-83. [PMID: 28120834 DOI: 10.1038/jes.2016.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
This study evaluates levels of biomarkers of oxidative DNA damage and lipid peroxidation in 105 male workers at 16 electroplating companies who had been exposed to hexavalent chromium (Cr(VI)). The study participants were 230 non-smoking male workers, comprising 105 electroplating workers who had been exposed to chromium and 125 control subjects who performed office tasks. Personal air samples, spot urine samples, hair samples, fingernail samples and questionnaires were used to quantify exposure to Cr(VI), oxidative DNA damage, lipid peroxidation, and environmental pollutants. Both the geometric mean personal concentrations of Cr(VI) of the Cr-exposed workers and the total Cr concentrations in the air to which they were exposed significantly exceeded those for the control subjects. The geometric mean concentrations of Cr in urine, hair and fingernails, and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), and malondialdehyde (MDA) levels in the Cr(VI) exposed workers exceeded those in the control subjects. Daily cumulative Cr(VI) exposure and urinary Cr were significantly correlated with urinary 8-OHdG levels following adjustments for covariates. A ten-fold increase in urinary Cr level was associated with a 1.73-fold increase in urinary 8-OHdG level. Daily cumulative Cr(VI) exposure and urinary Cr level were significantly correlated with urinary MDA level following adjustments for covariates. A ten-fold increase in urinary Cr was associated with a 1.45-fold increase in urinary MDA. Exposure to Cr(VI) increased oxidative DNA injury and the oxidative deterioration of lipids in electroplating workers.
Collapse
Affiliation(s)
- Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hueiwang Anna Jeng
- School of Community and Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - Ching-Huang Lai
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
24
|
Mao YH, Weng QH, Xu LN, Li XY, Zhao B, Sun Y, Nie JJ, Hu JH, Zhou Q, Zhang LQ, Guo J, Zuo MZ, Ito S, Cai JP. Levels of 8-oxo-dGsn and 8-oxo-Gsn in random urine are consistent with 24 h urine in healthy subjects and patients with renal disease. Free Radic Res 2017. [PMID: 28641500 DOI: 10.1080/10715762.2017.1346249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidatively generated damage to nucleic acids may play an important role in the pathophysiological processes of a variety of diseases. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGsn) and 8-oxo-7,8-dihydroguanosine (8-oxo-Gsn) are oxidatively generated products of DNA and RNA, respectively. Our previous studies have suggested that the amounts of 8-oxo-dGsn and 8-oxo-Gsn in urine were considerably higher than other body fluid or tissue. The aim of this study was to investigate whether 8-oxo-dGsn and 8-oxo-Gsn levels in random urine samples are consistent with those in 24 h urine samples in healthy subjects and patients with renal disease. A total of 16 healthy subjects and 104 renal disease patients were enrolled in this study, and their random and 24 h urine samples were collected. The levels of urinary 8-oxo-dGsn and 8-oxo-Gsn were quantified by LC-MS/MS and corrected by creatinine. Regardless of healthy subjects or renal disease patients, the levels of oxidised nucleosides in random urine samples were consistent with 24 h urine samples. Regardless of the age bracket, there is no significant difference between random samples and 24 h urine samples. In conclusion, 8-oxo-dGsn and 8-oxo-Gsn levels in random urine samples could replace those in 24 h urine samples, and were considered as the representative of the level of systemic oxidative stress for the whole day.
Collapse
Affiliation(s)
- Yong-Hui Mao
- a Department of Nephrology , Beijing Hospital , Beijing , PR China
| | - Qing-Hua Weng
- b The MOH Key Laboratory of Geriatrics , Beijing Hospital, National Center of Gerontology , Beijing , PR China.,c School of Pharmacy , Wenzhou Medical University , Wenzhou , PR China
| | - Leng-Nan Xu
- a Department of Nephrology , Beijing Hospital , Beijing , PR China
| | - Xiang-Yu Li
- b The MOH Key Laboratory of Geriatrics , Beijing Hospital, National Center of Gerontology , Beijing , PR China.,c School of Pharmacy , Wenzhou Medical University , Wenzhou , PR China
| | - Ban Zhao
- a Department of Nephrology , Beijing Hospital , Beijing , PR China
| | - Ying Sun
- a Department of Nephrology , Beijing Hospital , Beijing , PR China
| | - Jing-Jing Nie
- d National Center for Clinical Laboratories , Beijing Hospital, National Center of Gerontology , Beijing , PR China
| | - Ji-Hong Hu
- d National Center for Clinical Laboratories , Beijing Hospital, National Center of Gerontology , Beijing , PR China
| | - Qi Zhou
- d National Center for Clinical Laboratories , Beijing Hospital, National Center of Gerontology , Beijing , PR China
| | - Li-Qun Zhang
- b The MOH Key Laboratory of Geriatrics , Beijing Hospital, National Center of Gerontology , Beijing , PR China
| | - Jian Guo
- b The MOH Key Laboratory of Geriatrics , Beijing Hospital, National Center of Gerontology , Beijing , PR China
| | - Ming-Zhang Zuo
- e Department of Anesthesiology , Beijing Hospital , Beijing , PR China
| | - Sadayoshi Ito
- f The Second Department of Internal Medicine , Tohoku University School of Medicine , Sendai , Japan
| | - Jian-Ping Cai
- b The MOH Key Laboratory of Geriatrics , Beijing Hospital, National Center of Gerontology , Beijing , PR China
| |
Collapse
|
25
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
26
|
Highlight report: high-resolution mass spectrometry. Arch Toxicol 2016; 90:3149-3150. [PMID: 27815600 DOI: 10.1007/s00204-016-1883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
27
|
Guo C, Li X, Wang R, Yu J, Ye M, Mao L, Zhang S, Zheng S. Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2'-deoxyguanosine by UPLC-MS/MS Analysis. Sci Rep 2016; 6:32581. [PMID: 27585556 PMCID: PMC5009303 DOI: 10.1038/srep32581] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 01/12/2023] Open
Abstract
Oxidative DNA damage plays crucial roles in the pathogenesis of numerous diseases including cancer. 8-hydroxy-2′-deoxyguanosine (8-OHdG) is the most representative product of oxidative modifications of DNA, and urinary 8-OHdG is potentially the best non-invasive biomarker of oxidative damage to DNA. Herein, we developed a sensitive, specific and accurate method for quantification of 8-OHdG in human urine. The urine samples were pretreated using off-line solid-phase extraction (SPE), followed by ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. By the use of acetic acid as an additive to the mobile phase, we improved the UPLC-MS/MS detection of 8-OHdG by 2.7−5.3 times. Using the developed strategy, we measured the contents of 8-OHdG in urine samples from 142 healthy volunteers and 84 patients with colorectal cancer (CRC). We observed increased levels of urinary 8-OHdG in patients with CRC and patients with tumor metastasis, compared to healthy controls and patients without tumor metastasis, respectively. Additionally, logistic regression analysis and receiver operator characteristic (ROC) curve analysis were performed. Our findings implicate that oxidative stress plays important roles in the development of CRC and the marked increase of urinary 8-OHdG may serve as a potential liquid biomarker for the risk estimation, early warning and detection of CRC.
Collapse
Affiliation(s)
- Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaofen Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Rong Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jiekai Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Minfeng Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, China
| | - Lingna Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,International Health Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Suzhan Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
28
|
Selvaratnam J, Robaire B. Overexpression of catalase in mice reduces age-related oxidative stress and maintains sperm production. Exp Gerontol 2016; 84:12-20. [PMID: 27575890 DOI: 10.1016/j.exger.2016.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
Advanced paternal age is associated with increased complications in pregnancy and genetic diseases in offspring. Oxidative stress is a major contributor to the damage accumulated in sperm during aging. Complex networks of antioxidants regulate reactive oxygen species (ROS) in the testis. While mounting evident shows that redox dysfunction compromises the quality of developing male germ cells, the mechanisms by which aging causes this remain unclear. Furthermore, therapies to successfully alleviate aging-associated loss in germ cell quality are limited. The antioxidant catalase (CAT) has been used in aging-associated pathologies to alleviate oxidative stress. We used mice overexpressing CAT (MCAT) to determine whether CAT overexpression alleviates the redox dysfunction observed with aging. We found that MCAT mice did not exhibit the age-dependent loss of spermatozoa, nor did they show aging associated loss in testicular germ and Sertoli cells seen in wild type (WT). Low overall ROS and reduced peroxynitrite levels were detected in spermatocytes from aged MCAT mice, following exposure to the pro-oxidant tert-butyl hydroperoxide. Germ cells from young MCATs showed elevated levels of DNA-damage repair markers, γ-H2AX and 53BP1, but this response was lost with aging. Finally, we found oxidative stress induced 8-oxodG lesions to increase in sperm with aging; these lesions were significantly reduced in aged MCAT and these mice showed no decrease in the age-dependent number of pups per litter. Thus we conclude that aged MCAT mice generate sperm at the same rate as young mice; these sperm are protected from oxidative stress associated damage.
Collapse
Affiliation(s)
- Johanna Selvaratnam
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada; Obstetrics and Gynecology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
29
|
Liou SH, Chen YC, Liao HY, Wang CJ, Chen JS, Lee HL. Increased levels of oxidative stress biomarkers in metal oxides nanomaterial-handling workers. Biomarkers 2016; 21:600-6. [DOI: 10.3109/1354750x.2016.1160432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Saou-Hsing Liou
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yu-Cheng Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Yi Liao
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chien-Jen Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jhih-Sheng Chen
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
30
|
Karpouzi C, Nikolaidis S, Kabasakalis A, Tsalis G, Mougios V. Exercise-induced oxidatively damaged DNA in humans: evaluation in plasma or urine? Biomarkers 2016; 21:204-7. [DOI: 10.3109/1354750x.2015.1134667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Pesch B, Lotz A, Koch HM, Marczynski B, Casjens S, Käfferlein HU, Welge P, Lehnert M, Heinze E, Van Gelder R, Hahn JU, Behrens T, Raulf M, Hartwig A, Weiss T, Brüning T. Oxidatively damaged guanosine in white blood cells and in urine of welders: associations with exposure to welding fumes and body iron stores. Arch Toxicol 2014; 89:1257-69. [PMID: 25107450 PMCID: PMC4508371 DOI: 10.1007/s00204-014-1319-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 01/05/2023]
Abstract
The International Agency for Research on Cancer considers the carcinogenicity of welding fume of priority for re-evaluation. Genotoxic effects in experimental animals are still inconclusive. Here, we investigated the association of personal exposure to metals in respirable welding fumes during a working shift with oxidatively damaged guanosine in DNA of white blood cells (WBC) and in postshift urine samples from 238 welders. Medians of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) were 2.35/106 dGuo in DNA of WBC and 4.33 µg/g creatinine in urine. The median of 8-oxo-7,8-dihydroguanosine (8-oxoGuo) was 7.03 µg/g creatinine in urine. The extent of both urinary parameters was higher in welders applying techniques with high particle emission rates to stainless steel than in tungsten inert gas welders (8-oxodGuo: 9.96 vs. 4.49 µg/L, 8-oxoGuo: 15.7 vs. 7.7 µg/L), but this apparent difference diminished after creatinine adjustment. We applied random intercept models to estimate the influence of airborne and systemic exposure to metals on oxidatively damaged guanosine in WBC and urine together with covariates. We observed a highly significant nonlinear association of urinary 8-oxoGuo with serum ferritin (P < 0.0001) and higher 8-oxoGuo concentrations for respirable iron >1,000 µg/m3 compared to ≤57 µg/m3. Similar effects were found for manganese. Airborne chromium but not nickel was associated with all oxidatively modified guanosine measures, whereas urinary chromium as well as nickel showed associations with urinary modified guanosines. In summary, oxidatively damaged urinary guanosine was associated with airborne and systemic exposure to metals in welders and showed a strong relation to body iron stores.
Collapse
Affiliation(s)
- Beate Pesch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-Universität Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|