1
|
Ruszkiewicz J, Papatheodorou Y, Jäck N, Melzig J, Eble F, Pirker A, Thomann M, Haberer A, Rothmiller S, Bürkle A, Mangerich A. NAD + Acts as a Protective Factor in Cellular Stress Response to DNA Alkylating Agents. Cells 2023; 12:2396. [PMID: 37830610 PMCID: PMC10572126 DOI: 10.3390/cells12192396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Sulfur mustard (SM) and its derivatives are potent genotoxic agents, which have been shown to trigger the activation of poly (ADP-ribose) polymerases (PARPs) and the depletion of their substrate, nicotinamide adenine dinucleotide (NAD+). NAD+ is an essential molecule involved in numerous cellular pathways, including genome integrity and DNA repair, and thus, NAD+ supplementation might be beneficial for mitigating mustard-induced (geno)toxicity. In this study, the role of NAD+ depletion and elevation in the genotoxic stress response to SM derivatives, i.e., the monofunctional agent 2-chloroethyl-ethyl sulfide (CEES) and the crosslinking agent mechlorethamine (HN2), was investigated with the use of NAD+ booster nicotinamide riboside (NR) and NAD+ synthesis inhibitor FK866. The effects were analyzed in immortalized human keratinocytes (HaCaT) or monocyte-like cell line THP-1. In HaCaT cells, NR supplementation, increased NAD+ levels, and elevated PAR response, however, did not affect ATP levels or DNA damage repair, nor did it attenuate long- and short-term cytotoxicities. On the other hand, the depletion of cellular NAD+ via FK866 sensitized HaCaT cells to genotoxic stress, particularly CEES exposure, whereas NR supplementation, by increasing cellular NAD+ levels, rescued the sensitizing FK866 effect. Intriguingly, in THP-1 cells, the NR-induced elevation of cellular NAD+ levels did attenuate toxicity of the mustard compounds, especially upon CEES exposure. Together, our results reveal that NAD+ is an important molecule in the pathomechanism of SM derivatives, exhibiting compound-specificity. Moreover, the cell line-dependent protective effects of NR are indicative of system-specificity of the application of this NAD+ booster.
Collapse
Affiliation(s)
- Joanna Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ylea Papatheodorou
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Nathalie Jäck
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jasmin Melzig
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Franziska Eble
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Annika Pirker
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Marius Thomann
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Andreas Haberer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany;
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Nutritional Toxicology, Institute Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
2
|
Hao B, Wei L, Cheng Y, Ma Z, Wang J. Advanced nanomaterial for prostate cancer theranostics. Front Bioeng Biotechnol 2022; 10:1046234. [PMID: 36394009 PMCID: PMC9663994 DOI: 10.3389/fbioe.2022.1046234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
Prostate cancer (PC) has the second highest incidence in men, according to global statistical data. The symptoms of PC in the early stage are not obvious, causing late diagnosis in most patients, which is the cause for missing the optimal treatment time. Thus, highly sensitive and precise early diagnosis methods are very important. Additionally, precise therapy regimens for good targeting and innocuous to the body are indispensable to treat cancer. This review first introduced two diagnosis methods, containing prostate-specific biomarkers detection and molecular imaging. Then, it recommended advanced therapy approaches, such as chemotherapy, gene therapy, and therapeutic nanomaterial. Afterward, we summarized the development of nanomaterial in PC, highlighting the importance of integration of diagnosis and therapy as the future direction against cancer.
Collapse
Affiliation(s)
- Bin Hao
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Li Wei
- Internal Medicine, Rongjun Hospital of Shanxi Province, Shanxi, China
| | - Yusheng Cheng
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Shanxi, China
| | - Jingyu Wang
- College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Ghavami Shahri SH, Balali-Mood M, Heidarzadeh HR, Abrishami M. Ophthalmic Complications and Managements of Sulfur Mustard Exposure: A Narrative Review. ARCHIVES OF IRANIAN MEDICINE 2022; 25:647-657. [PMID: 37543890 PMCID: PMC10685765 DOI: 10.34172/aim.2022.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 08/07/2023]
Abstract
Sulfur mustard (SM) is a lethal chemical agent that affects many organs, particularly the eyes, respiratory system and skin. Even asymptomatic patients with documented SM vapor exposure may develop organ disorder many years later. Patients with even minor signs in the acute stage may experience late complications that necessitate surgery. Early decontamination and conservative measures could help the patients and decrease the complications. Despite decades of research, there is still no effective treatment for either acute or long-term SM-induced ocular complications. Even after multiple medications and surgical procedures, the majority of patients continue to have symptoms. For dry eye, punctual occlusion, autologous eye drops, and aggressive lubrication are used; for persistent epithelial defects (PED), tarsorrhaphy, amniotic membrane transplant, and stem cell transplantation are used; for total limbal stem cell deficiency (LSCD), living-related conjunctivolimbal allograft and keratolimbal allograft are used; for corneal vascularization, steroids, non-steroidal anti-inflammatory drugs, and anti-vascular endothelial growth factor prescribed; and for corneal opacities, corneal transplantation is done. Platelet rich plasma and topical drops containing stem cell transplantation for LSCD, photodynamic therapy paired with subconjunctival or topical anti-vascular endothelial growth factors for corneal vascularization, topical curcumin and topical ciclosporin-A for dry eye, and orbital fat-derived stem cells for PED are all alternative treatments that can be suggested. Despite the experimental and clinical research on the complications of SM exposure over the past decades, there is still no effective treatment for eye complications. However, supportive medical and surgical management has been applied with relatively good outcome.
Collapse
Affiliation(s)
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Mojtaba Abrishami
- Eye Research Center, Mashhad University of Medical Sciences, Birjand, Iran
- Ocular Oncology Service, Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Timperley CM, Forman JE, Abdollahi M, Al-Amri AS, Baulig A, Benachour D, Borrett V, Cariño FA, Curty C, Geist M, Gonzalez D, Kane W, Kovarik Z, Martínez-Álvarez R, Mourão NMF, Neffe S, Raza SK, Rubaylo V, Suárez AG, Takeuchi K, Tang C, Trifirò F, van Straten FM, Vanninen PS, Vučinić S, Zaitsev V, Zafar-Uz-Zaman M, Zina MS, Holen S, Alwan WS, Suri V, Hotchkiss PJ, Ghanei M. Advice on assistance and protection provided by the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons: Part 3. On medical care and treatment of injuries from sulfur mustard. Toxicology 2021; 463:152967. [PMID: 34619302 DOI: 10.1016/j.tox.2021.152967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022]
Abstract
Blister agents damage the skin, eyes, mucous membranes and subcutaneous tissues. Other toxic effects may occur after absorption. The response of the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) to a request from the OPCW Director-General in 2013 on the status of medical countermeasures and treatments to blister agents is updated through the incorporation of the latest information. The physical and toxicological properties of sulfur mustard and clinical effects and treatments are summarised. The information should assist medics and emergency responders who may be unfamiliar with the toxidrome of sulfur mustard and its treatment.
Collapse
Affiliation(s)
- Christopher M Timperley
- Chair of the OPCW SAB from 2015-2018, Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, Wiltshire, United Kingdom.
| | - Jonathan E Forman
- Science Policy Adviser and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands, from 2015-2018
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Augustin Baulig
- Secrétariat Général de la Défense et de la Sécurité Nationale (SGDSN), Paris, France
| | - Djafer Benachour
- LMPMP, Faculty of Technology, Ferhat Abbas University, Setif-1, Algeria
| | - Veronica Borrett
- La Trobe Institute for Agriculture and Food, La Trobe University, Victoria, 3086, Australia
| | | | | | | | - David Gonzalez
- Facultad De Química, Universidad de la República, Montevideo, Uruguay
| | | | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | | | | | - Syed K Raza
- Chairperson Accreditation Committee, National Accreditation Board for Testing and Calibration Laboratories (NABL), India
| | - Valentin Rubaylo
- State Scientific Research Institute of Organic Chemistry and Technology (GosNIIOKhT), Moscow, Russian Federation
| | - Alejandra Graciela Suárez
- Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Koji Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Cheng Tang
- Office for the Disposal of Japanese Abandoned Chemical Weapons, Ministry of National Defence, Beijing, China
| | - Ferruccio Trifirò
- Department of Industrial Chemistry, University of Bologna, Bologna, Italy
| | | | - Paula S Vanninen
- VERIFIN, Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Slavica Vučinić
- National Poison Control Centre, Military Medical Academy, Belgrade, Serbia
| | | | | | | | - Stian Holen
- Head of Strategy and Policy at the OPCW from 2009 to 2015
| | - Wesam S Alwan
- Medicinal Chemistry Department, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
| | - Vivek Suri
- Intern in the OPCW Office of Strategy and Policy, Summer 2018
| | - Peter J Hotchkiss
- Senior Science Policy Officer and Secretary to the SAB, OPCW, The Hague, 2417, JR, the Netherlands.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
5
|
Toxicology of Blister Agents: Is Melatonin a Potential Therapeutic Option? Diseases 2021; 9:diseases9020027. [PMID: 33920224 PMCID: PMC8167553 DOI: 10.3390/diseases9020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Blister or vesicant chemical warfare agents (CWAs) have been widely used in different military conflicts, including World War I and the Iran-Iraq War. However, their mechanism of action is not fully understood. Sulfur and nitrogen mustard exert toxic effects not only through the alkylation of thiol-bearing macromolecules, such as DNA and proteins, but also produce free radicals that can develop direct toxic effects in target organs such as the eyes, skin, and respiratory system. The lack of effective treatments against vesicant CWAs-induced injury makes us consider, in this complex scenario, the use and development of melatonin-based therapeutic strategies. This multifunctional indoleamine could facilitate neutralization of the oxidative stress, modulate the inflammatory response, and prevent the DNA damage, as well as the long-term health consequences mediated by vesicant CWAs-induced epigenetic mechanisms. In this context, it would be essential to develop new galenic formulations for the use of orally and/or topically applied melatonin for the prophylaxis against vesicant CWAs, as well as the development of post-exposure treatments in the near future.
Collapse
|
6
|
NAD + in sulfur mustard toxicity. Toxicol Lett 2020; 324:95-103. [PMID: 32017979 DOI: 10.1016/j.toxlet.2020.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) is a toxicant and chemical warfare agent with strong vesicant properties. The mechanisms behind SM-induced toxicity are not fully understood and no antidote or effective therapy against SM exists. Both, the risk of SM release in asymmetric conflicts or terrorist attacks and the usage of SM-derived nitrogen mustards as cancer chemotherapeutics, render the mechanisms of mustard-induced toxicity a highly relevant research subject. Herein, we review a central role of the abundant cellular molecule nicotinamide adenine dinucleotide (NAD+) in molecular mechanisms underlying SM toxicity. We also discuss the potential beneficial effects of NAD+ precursors in counteracting SM-induced damage.
Collapse
|
7
|
Li R, Yin YH, Jin J, Liu X, Zhang MY, Yang YE, Qu YQ. Integrative analysis of DNA methylation-driven genes for the prognosis of lung squamous cell carcinoma using MethylMix. Int J Med Sci 2020; 17:773-786. [PMID: 32218699 PMCID: PMC7085273 DOI: 10.7150/ijms.43272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/16/2020] [Indexed: 12/18/2022] Open
Abstract
Background: DNA methylation acts as a key component in epigenetic modifications of genomic function and functions as disease-specific prognostic biomarkers for lung squamous cell carcinoma (LUSC). This present study aimed to identify methylation-driven genes as prognostic biomarkers for LUSC using bioinformatics analysis. Materials and Methods: Differentially expressed RNAs were obtained using the edge R package from 502 LUSC tissues and 49 adjacent non-LUSC tissues. Differentially methylated genes were obtained using the limma R package from 504 LUSC tissues and 69 adjacent non-LUSC tissues. The methylation-driven genes were obtained using the MethylMix R package from 500 LUSC tissues with matched DNA methylation data and gene expression data and 69 non-LUSC tissues with DNA methylation data. Gene ontology and ConsensusPathDB pathway analysis were performed to analyze the functional enrichment of methylation-driven genes. Univariate and multivariate Cox regression analyses were performed to identify the independent effect of differentially methylated genes for predicting the prognosis of LUSC. Results: A total of 44 methylation-driven genes were obtained. Univariate and multivariate Cox regression analyses showed that twelve aberrant methylated genes (ATP6V0CP3, AGGF1P3, RP11-264L1.4, HIST1H4K, LINC01158, CH17-140K24.1, CTC-523E23.14, ADCYAP1, COX11P1, TRIM58, FOXD4L6, CBLN1) were entered into a Cox predictive model associated with overall survival in LUSC patients. Methylation and gene expression combined survival analysis showed that the survival rate of hypermethylation and low-expression of DQX1 and WDR61 were low. The expression of DQX1 had a significantly negatively correlated with the methylation site cg02034222. Conclusion: Methylation-driven genes DQX1 and WDR61 might be potential biomarkers for predicting the prognosis of LUSC.
Collapse
Affiliation(s)
- Rui Li
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yun-Hong Yin
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jia Jin
- Department of Cardiology, Zhangqiu District People's Hospital of Jinan, 250200, Shandong, China
| | - Xiao Liu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Meng-Yu Zhang
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yi-E Yang
- Department of Clinical Laboratory, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, China
| | - Yi-Qing Qu
- Department of Respiratory and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
8
|
Khan F, Momtaz S, Abdollahi M. The relationship between mercury exposure and epigenetic alterations regarding human health, risk assessment and diagnostic strategies. J Trace Elem Med Biol 2019; 52:37-47. [PMID: 30732897 DOI: 10.1016/j.jtemb.2018.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to the environmental toxicants poses a serious threat to human health. The extent of exposure and the development of diseases are interrelated with each other. Chronic exposure to mercury (Hg) increases the risk of developing serious human disorders from embryo to adulthood. OBJECTIVES The purpose of this review is to highlight the most common human disorders induced by Hg exposure on the basis of epigenetic mechanisms. A growing body of evidence shows that Hg exposure leads to alterations in the epigenetic markers. METHODS We performed an organized search of the available literature using PubMed, Google Scholar, Medline, Reaxys, EMBASE and Scopus databases. All the relevant citations, including research and review articles in English were evaluated. The search terms included mercury, Hg, epigenetics, epigenetic alterations, DNA methylation, histone modifications, microRNAs (miRNAs), and risk assessment. RESULTS Data on human toxicity due to Hg exposure shows broad variations in terms of chemical nature, doses, and the rate of exposure. Hg consumption either via foods or environmental sources may create deleterious health effects on various physiological systems at least partially through an epigenetic mechanism. CONCLUSION Hg exposure could trigger epigenetic alterations, hence leading to various human disorders including reduced newborn cerebellum size, adverse behavioral outcomes, atherosclerosis and myocardial infarction. Similarly, in adults, occupational Hg exposure has been associated with an increased risk of autoimmunity. It has been revealed that miRNAs in the woman's cervix are a novel responder to maternal Hg exposure during pregnancy. Hg-induced epigenetic alterations analysis of kidney tissues showed a significant interruption in renal function. DNA methylation and histone post-translation modifications are predominant types of Hg epigenetic alterations.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA. Therapeutic options to treat mustard gas poisoning - Review. CASPIAN JOURNAL OF INTERNAL MEDICINE 2019; 10:241-264. [PMID: 31558985 PMCID: PMC6729161 DOI: 10.22088/cjim.10.3.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 11/14/2022]
Abstract
Among the blistering (vesicant) chemical warfare agents (CWA), sulfur mustard is the most important since it is known as the "King of chemical warfare agents". The use of sulfur mustard has caused serious damages in several organs, especially the eyes, skin, respiratory, central and peripheral nervous systems after short and long term exposure, incapacitating and even killing people and troops. In this review, chemical properties, mechanism of actions and their effects on each organ, clinical manifestations, diagnostic evaluation of the actions triage, and treatment of injuries have been described.
Collapse
Affiliation(s)
- Mehrdad Rafati-Rahimzadeh
- Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Akbar Moghadamnia
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|