1
|
Dubreil E, Darney K, Delignette-Muller ML, Barranger A, Huet S, Hogeveen K, Léger T, Fessard V, Hégarat LL. Modeling HepaRG metabolome responses to pyrrolizidine alkaloid exposure for insight into points of departure and modes of action. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134721. [PMID: 38843629 DOI: 10.1016/j.jhazmat.2024.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The new challenges in toxicology demand novel and innovative in vitro approaches for deriving points of departure (PODs) and determining the mode of action (MOA) of chemicals. Therefore, the aim of this original study was to couple in vitro studies with untargeted metabolomics to model the concentration-response of extra- and intracellular metabolome data on human HepaRG cells treated for 48 h with three pyrrolizidine alkaloids (PAs): heliotrine, retrorsine and lasiocarpine. Modeling revealed that the three PAs induced various monotonic and, importantly, biphasic curves of metabolite content. Based on unannotated metabolites, the endometabolome was more sensitive than the exometabolome in terms of metabolomic effects, and benchmark concentrations (BMCs) confirmed that lasiocarpine was the most hepatotoxic PA. Regarding its MOA, impairment of lipid metabolism was highlighted at a very low BMC (first quartile, 0.003 µM). Moreover, results confirmed that lasiocarpine targets bile acids, as well as amino acid and steroid metabolisms. Analysis of the endometabolome, based on coupling concentration-response and PODs, gave encouraging results for ranking toxins according to their hepatotoxic effects. Therefore, this novel approach is a promising tool for next-generation risk assessment, readily applicable to a broad range of compounds and toxic endpoints.
Collapse
Affiliation(s)
- Estelle Dubreil
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France.
| | - Keyvin Darney
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Marie-Laure Delignette-Muller
- University of Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Audrey Barranger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
2
|
Martínez-Sena T, Moro E, Moreno-Torres M, Quintás G, Hengstler J, Castell JV. Metabolomics-based strategy to assess drug hepatotoxicity and uncover the mechanisms of hepatotoxicity involved. Arch Toxicol 2023; 97:1723-1738. [PMID: 37022445 PMCID: PMC10182947 DOI: 10.1007/s00204-023-03474-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Toxicity studies, among them hepatotoxicity, are key throughout preclinical stages of drug development to minimise undesired toxic effects that might eventually appear in the course of the clinical use of the new drug. Understanding the mechanism of injury of hepatotoxins is essential to efficiently anticipate their potential risk of toxicity in humans. The use of in vitro models and particularly cultured hepatocytes represents an easy and robust alternative to animal drug hepatotoxicity testing for predicting human risk. Here, we envisage an innovative strategy to identify potential hepatotoxic drugs, quantify the magnitude of the alterations caused, and uncover the mechanisms of toxicity. This strategy is based on the comparative analysis of metabolome changes induced by hepatotoxic and non-hepatotoxic compounds on HepG2 cells, assessed by untargeted mass spectrometry. As a training set, we used 25 hepatotoxic and 4 non-hepatotoxic compounds and incubated HepG2 cells for 24 h at a low and a high concentration (IC10 and IC50) to identify mechanism-related and cytotoxicity related metabolomic biomarkers and to elaborate prediction models accounting for global hepatotoxicity and mechanisms-related toxicity. Thereafter, a second set of 69 chemicals with known predominant mechanisms of toxicity and 18 non-hepatotoxic compounds were analysed at 1, 10, 100 and 1000 µM concentrations from which and based on the magnitude of the alterations caused as compared with non-toxic compounds, we defined a "toxicity index" for each compound. In addition, we extracted from the metabolome data the characteristic signatures for each mechanism of hepatotoxicity. The integration of all this information allowed us to identify specific metabolic patterns and, based on the occurrence of that specific metabolome changes, the models predicted the likeliness of a compound to behave as hepatotoxic and to act through a given toxicity mechanism (i.e., oxidative stress, mitochondrial disruption, apoptosis and steatosis) for each compound and concentration.
Collapse
Affiliation(s)
- Teresa Martínez-Sena
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Química Analítica, Facultad de Químicas, Universidad de Valencia, Valencia, Spain
| | - Erika Moro
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Marta Moreno-Torres
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- Instituto de Salud Carlos III, CIBEREHD, Madrid, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Valencia, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Jan Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| | - José V Castell
- Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Unidad Mixta de Hepatologia Experimental, Valencia, Spain.
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain.
- Instituto de Salud Carlos III, CIBEREHD, Madrid, Spain.
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
3
|
Quintás G, Castell JV, Moreno-Torres M. The assessment of the potential hepatotoxicity of new drugs by in vitro metabolomics. Front Pharmacol 2023; 14:1155271. [PMID: 37214440 PMCID: PMC10196061 DOI: 10.3389/fphar.2023.1155271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Drug hepatotoxicity assessment is a relevant issue both in the course of drug development as well as in the post marketing phase. The use of human relevant in vitro models in combination with powerful analytical methods (metabolomic analysis) is a promising approach to anticipate, as well as to understand and investigate the effects and mechanisms of drug hepatotoxicity in man. The metabolic profile analysis of biological liver models treated with hepatotoxins, as compared to that of those treated with non-hepatotoxic compounds, provides useful information for identifying disturbed cellular metabolic reactions, pathways, and networks. This can later be used to anticipate, as well to assess, the potential hepatotoxicity of new compounds. However, the applicability of the metabolomic analysis to assess the hepatotoxicity of drugs is complex and requires careful and systematic work, precise controls, wise data preprocessing and appropriate biological interpretation to make meaningful interpretations and/or predictions of drug hepatotoxicity. This review provides an updated look at recent in vitro studies which used principally mass spectrometry-based metabolomics to evaluate the hepatotoxicity of drugs. It also analyzes the principal drawbacks that still limit its general applicability in safety assessment screenings. We discuss the analytical workflow, essential factors that need to be considered and suggestions to overcome these drawbacks, as well as recent advancements made in this rapidly growing field of research.
Collapse
Affiliation(s)
- Guillermo Quintás
- Metabolomics and Bioanalysis, Health and Biomedicine, Leitat Technological Center, Barcelona, Spain
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - José V. Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Moreno-Torres
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria del Hospital La Fe (IIS La Fe), Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
- CIBEREHD, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Li Y, Wang Y, Liu S. Bosentan combined with sildenafil in the treatment of COPD patients with pulmonary arterial hypertension. Am J Transl Res 2021; 13:11522-11530. [PMID: 34786078 PMCID: PMC8581888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To explore the impacts of bosentan combined with sildenafil on chronic obstructive pulmonary disease (COPD) patients with pulmonary arterial hypertension (PAH). METHODS From April 2019 to October 2020, 90 COPD patients with PAH diagnosed in our hospital were recruited and divided into groups A and B. The patients in group A (50 cases) were treated with bosentan combined with sildenafil, and the patients in group B (40 cases) were administered bosentan combined with iloprost solution for inhalation. The PAH conditions, the heart rates (HR), the cardiac function, the pulmonary function, the blood gas indexes, the inflammatory factor expressions, the incidences of adverse reactions, the overall response rates (ORR), and the patient satisfaction levels were determined or evaluated. RESULTS Compared with group B, the patients in group A had better recovered PAH, HR, cardiac function, pulmonary function, and blood gas indexes, lower inflammatory factor expression levels and a lower incidence of adverse reactions, as well as higher ORR and higher satisfaction levels. CONCLUSION Bosentan combined with sildenafil can reduce pulmonary artery pressure and promote the recovery of cardiopulmonary function in COPD patients with PAH.
Collapse
Affiliation(s)
- Ying Li
- Department of Cardiology, Pingxiang People’s HospitalPingxiang 337000, Jiangxi Province, China
| | - Yao Wang
- Department of Health Management, Pingxiang People’s HospitalPingxiang 337000, Jiangxi Province, China
| | - Shaohua Liu
- Department of Surgery, Pingxiang People’s HospitalPingxiang 337000, Jiangxi Province, China
| |
Collapse
|
5
|
Oorts M, Van Brantegem P, Deferm N, Chatterjee S, Dreesen E, Cooreman A, Vinken M, Richert L, Annaert P. Bosentan Alters Endo- and Exogenous Bile Salt Disposition in Sandwich-Cultured Human Hepatocytes. J Pharmacol Exp Ther 2021; 379:20-32. [PMID: 34349015 DOI: 10.1124/jpet.121.000695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/28/2021] [Indexed: 01/29/2023] Open
Abstract
Bosentan, a well-known cholestatic agent, was not identified as cholestatic at concentrations up to 200 µM based on the drug-induced cholestasis (DIC) index value, determined in a sandwich-cultured human hepatocyte (SCHH)-based DIC assay. To obtain further quantitative insights into the effects of bosentan on cellular bile salt handling by human hepatocytes, the present study determined the effect of 2.5-25 µM bosentan on endogenous bile salt levels and on the disposition of 10 µM chenodeoxycholic acid (CDCA) added to the medium in SCHHs. Bosentan reduced intracellular as well as extracellular concentrations of both endogenous glycochenodeoxycholic acid (GCDCA) and glycocholic acid in a concentration-dependent manner. When exposed to 10 µM CDCA, bosentan caused a shift from canalicular efflux to sinusoidal efflux of GCDCA. CDCA levels were not affected. Our mechanistic model confirmed the inhibitory effect of bosentan on canalicular GCDCA clearance. Moreover, our results in SCHHs also indicated reduced GCDCA formation. We confirmed the direct inhibitory effect of bosentan on CDCA conjugation with glycine in incubations with liver S9 fraction. SIGNIFICANCE STATEMENT: Bosentan was evaluated at therapeutically relevant concentrations (2.5-25 µM) in sandwich-cultured human hepatocytes. It altered bile salt disposition and inhibited canalicular secretion of glycochenodeoxycholic acid (GCDCA). Within 24 hours, bosentan caused a shift from canalicular to sinusoidal efflux of GCDCA. These results also indicated reduced GCDCA formation. This study confirmed a direct effect of bosentan on chenodeoxycholic acid conjugation with glycine in liver S9 fraction.
Collapse
Affiliation(s)
- Marlies Oorts
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Pieter Van Brantegem
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Neel Deferm
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Sagnik Chatterjee
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Erwin Dreesen
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Axelle Cooreman
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Mathieu Vinken
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Lysiane Richert
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| | - Pieter Annaert
- Drug Delivery and Disposition (M.O., P.V.B., N.D., P.A.) and Clinical Pharmacology and Pharmacotherapy (E.D.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium (A.C.); Pharmaceutical Candidate Optimization, Biocon Bristol-Myers Squibb Research Center, Syngene International, Bangalore, India (S.C.); Uppsala Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden (E.D.); Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium (M.V.); KaLy-Cell, Plobsheim, France (L.R.); and BioNotus, Niel, Belgium (P.A.)
| |
Collapse
|
6
|
Sonoi R, Hagihara Y. Tight junction stabilization prevents HepaRG cell death in drug-induced intrahepatic cholestasis. Biol Open 2021; 10:269189. [PMID: 34151938 PMCID: PMC8272035 DOI: 10.1242/bio.058606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Entacapone (ENT), a catechol-O-methyltransferase inhibitor, causes liver injury by inducing bile canaliculi (BC) dilation through inhibition of the myosin light kinase pathway. Loss of tight junctions (TJs) induces hepatocyte depolarization, which causes bile secretory failure, leading to liver damage. To understand the influence of TJ structural changes as a consequence of BC dynamics, we compared the datasets of time-lapse and immunofluorescence images for TJ protein ZO-1 in hepatocytes cultured with ENT, forskolin (FOR), ENT/FOR, and those cultured without any drugs. Retrospective analysis revealed that the drastic change in BC behaviors caused TJ disruption and apoptosis in cells cultured with ENT. Exposure to FOR or sodium taurocholate facilitated TJ formation in the cells cultured with ENT and suppressed BC dynamic changes, leading to the inhibition of TJ disruption and apoptosis. Our findings clarify that hepatocyte TJ stabilization protects against cell death induced by BC disruption.
Collapse
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| |
Collapse
|
7
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
8
|
Gijbels E, Devisscher L, Vinken M. Testing in vitro tools for the prediction of cholestatic liver injury induced by non-pharmaceutical chemicals. Food Chem Toxicol 2021; 152:112165. [PMID: 33819548 DOI: 10.1016/j.fct.2021.112165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Bile acid accumulation and subsequent liver damage is a frequent adverse effect induced by drugs. Considerable efforts have therefore been focused on the introduction and characterization of tools that allow reliable prediction of this type of drug-induced liver injury. Among those are the cholestatic index and transcriptomic profiling, which are typically assessed in in vitro settings. The present study was set up to test the applicability of both tools to non-pharmaceutical compounds with cholestatic potential, including the industrial compound bis(2-ethylhexyl)phthalate, the cosmetic ingredients triclosan and octynoic acid, the herbicides paraquat and quizalofop-para-ethyl, and the food additives sunset yellow and tartrazine, in a human hepatoma cell culture model of cholestatic liver injury. The cholestatic index method showed cholestatic liability of sunset yellow, tartrazine and triclosan. Of those, tartrazine induced transcriptional changes reminiscent of the transcriptional profile of cholestatic drugs. Furthermore, a number of genes were found to be uniquely modulated by tartrazine, in accordance with the cholestatic drugs atazanavir, cyclosporin A and nefazodone, which may have potential as novel transcriptomic biomarkers of chemical-induced cholestatic liver injury. In conclusion, unambiguous identification of the non-pharmaceutical compounds tested in this study as inducers of cholestasis could not be achieved.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium; Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
9
|
Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med 2021; 15:437-454. [PMID: 33709780 DOI: 10.2217/bmm-2020-0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Alanah Pieters
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine & Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, SP, 05508-270, Brazil
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, Katholieke Universiteit Leuven, ON II Herestraat 49, Box 921, Leuven, 3000, Belgium
| | - Lindsey Devisscher
- Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine & Health Sciences, Ghent University, C Heymanslaan 10, Ghent, 9000, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
10
|
Lauschke VM. Toxicogenomics of drug induced liver injury - from mechanistic understanding to early prediction. Drug Metab Rev 2021; 53:245-252. [PMID: 33683927 DOI: 10.1080/03602532.2021.1894571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Despite rigorous preclinical testing, clinical attrition rates in drug development remain high with drug-induced liver injury (DILI) remaining one of the most frequent causes of project failures. To understand DILI mechanisms, major efforts are put into the development of physiologically relevant cell models and culture paradigms with the aim to enhance preclinical to clinical result translation. While the majority of toxicogenomic studies have been based on cell lines, there are emerging trends toward the predominant use of stem cell-derived organoids and primary human hepatocytes in complex 3D cell models. Such studies have been successful in disentangling diverse toxicity mechanisms, including genotoxicity, mitochondrial injury, steatogenesis and cholestasis and can aid in distinguishing hepatotoxic from nontoxic structural analogs. Furthermore, by leveraging inter-individual differences of cells from different donors, these approaches can emulate the complexity of polygenic risk scores, which facilitates personalized drug-specific DILI risk analyses. In summary, toxicogenomic studies into drug-induced hepatotoxicity have majorly contributed to our mechanistic understanding of DILI and the incorporation of organotypic human 3D liver models into the preclinical testing arsenal promises to enhance biological insights during drug discovery, increase confidence in preclinical safety and minimize the translational gap.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Sonoi R, Yamakawa T, Nakatani N, Kokubo M, Hagihara Y. Noninvasive Evaluation of HepaRG Aggregates during Drug‐Induced Intrahepatic Cholestasis Using Optical Coherence Tomography. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rie Sonoi
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology 1‐8‐31 Midorigaoka Ikeda Osaka 563‐8577 Japan
| | - Takeshi Yamakawa
- R&D Department 1 Screen Holdings Co., Ltd. 322 Furukawa‐cho, Hazukashi Fushimi‐ku Kyoto 612‐8486 Japan
| | - Noriyuki Nakatani
- R&D Department 1 Screen Holdings Co., Ltd. 322 Furukawa‐cho, Hazukashi Fushimi‐ku Kyoto 612‐8486 Japan
| | - Masahiko Kokubo
- R&D Department 1 Screen Holdings Co., Ltd. 322 Furukawa‐cho, Hazukashi Fushimi‐ku Kyoto 612‐8486 Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology 1‐8‐31 Midorigaoka Ikeda Osaka 563‐8577 Japan
| |
Collapse
|
12
|
Cox CR, Lynch S, Goldring C, Sharma P. Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:611913. [PMID: 35047893 PMCID: PMC8757888 DOI: 10.3389/fmedt.2020.611913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a leading cause for the withdrawal of approved drugs. This has significant financial implications for pharmaceutical companies, places increasing strain on global health services, and causes harm to patients. For these reasons, it is essential that in-vitro liver models are capable of detecting DILI-positive compounds and their underlying mechanisms, prior to their approval and administration to patients or volunteers in clinical trials. Metabolism-dependent DILI is an important mechanism of drug-induced toxicity, which often involves the CYP450 family of enzymes, and is associated with the production of a chemically reactive metabolite and/or inefficient removal and accumulation of potentially toxic compounds. Unfortunately, many of the traditional in-vitro liver models fall short of their in-vivo counterparts, failing to recapitulate the mature hepatocyte phenotype, becoming metabolically incompetent, and lacking the longevity to investigate and detect metabolism-dependent DILI and those associated with chronic and repeat dosing regimens. Nevertheless, evidence is gathering to indicate that growing cells in 3D formats can increase the complexity of these models, promoting a more mature-hepatocyte phenotype and increasing their longevity, in vitro. This review will discuss the use of 3D in vitro models, namely spheroids, organoids, and perfusion-based systems to establish suitable liver models to investigate metabolism-dependent DILI.
Collapse
Affiliation(s)
- Christopher R. Cox
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Christopher R. Cox
| | - Stephen Lynch
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Goldring
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Parveen Sharma
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
13
|
Abstract
Drug induced liver injury (DILI) is a relatively rare hepatic condition in response to the use of medications, illegal drugs, herbal products or dietary supplements. It occurs in susceptible individuals through a combination of genetic and environmental risk factors believed to modify drug metabolism and/or excretion leading to a cascade of cellular events, including oxidative stress formation, apoptosis/necrosis, haptenization, immune response activation and a failure to adapt. The resultant liver damage can present with an array of phenotypes, which mimic almost every other liver disorder, and varies in severity from asymptomatic elevation of liver tests to fulminant hepatic failure. Despite recent research efforts specific biomarkers are not still available for routine use in clinical practice, which makes the diagnosis of DILI uncertain and relying on a high degree of awareness of this condition and the exclusion of other causes of liver disease. Diagnostic scales such as the CIOMS/RUCAM can support the causality assessment of a DILI suspicion, but need refinement as some criteria are not evidence-based. Prospective collection of well-vetted DILI cases in established DILI registries has allowed the identification and validation of a number of clinical variables, and to predict a more severe DILI outcome. DILI is also in need of properly designed clinical trials to evaluate the efficacy of new DILI treatments as well as older drugs such as ursodeoxycholic acid traditionally used to ameliorate cholestasis or corticosteroids now widely tried in the oncology field to manage the emergent type of hepatotoxicity related to immune checkpoint inhibitors.
Collapse
|
14
|
Dataset on transcriptomic profiling of cholestatic liver injury in an in vitro and in vivo animal model. Data Brief 2020; 32:106156. [PMID: 32904329 PMCID: PMC7452704 DOI: 10.1016/j.dib.2020.106156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
The transcriptomic dataset (whole genome microarray Affymetrix Human U133 plus 2.0 and Affymetrix Mouse Genome 430 2.0) presented in this paper describes the differential gene expression profile of a human in vitro model of drug-induced cholestasis and a well-known mouse in vivo model of cholestasis. The in vitro model consists of human hepatoma HepaRG cells in monolayer configuration exposed to 3 different cholestatic drugs with or without bile acids. For in vivo modelling of cholestasis, mice were subjected to bile duct ligation surgery. Consecutive normalization, summarization and background adjustments have been made by means of Robust Multichip Average Express software.
Collapse
|
15
|
Halappanavar S, van den Brule S, Nymark P, Gaté L, Seidel C, Valentino S, Zhernovkov V, Høgh Danielsen P, De Vizcaya A, Wolff H, Stöger T, Boyadziev A, Poulsen SS, Sørli JB, Vogel U. Adverse outcome pathways as a tool for the design of testing strategies to support the safety assessment of emerging advanced materials at the nanoscale. Part Fibre Toxicol 2020; 17:16. [PMID: 32450889 PMCID: PMC7249325 DOI: 10.1186/s12989-020-00344-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
Toxicity testing and regulation of advanced materials at the nanoscale, i.e. nanosafety, is challenged by the growing number of nanomaterials and their property variants requiring assessment for potential human health impacts. The existing animal-reliant toxicity testing tools are onerous in terms of time and resources and are less and less in line with the international effort to reduce animal experiments. Thus, there is a need for faster, cheaper, sensitive and effective animal alternatives that are supported by mechanistic evidence. More importantly, there is an urgency for developing alternative testing strategies that help justify the strategic prioritization of testing or targeting the most apparent adverse outcomes, selection of specific endpoints and assays and identifying nanomaterials of high concern. The Adverse Outcome Pathway (AOP) framework is a systematic process that uses the available mechanistic information concerning a toxicological response and describes causal or mechanistic linkages between a molecular initiating event, a series of intermediate key events and the adverse outcome. The AOP framework provides pragmatic insights to promote the development of alternative testing strategies. This review will detail a brief overview of the AOP framework and its application to nanotoxicology, tools for developing AOPs and the role of toxicogenomics, and summarize various AOPs of relevance to inhalation toxicity of nanomaterials that are currently under various stages of development. The review also presents a network of AOPs derived from connecting all AOPs, which shows that several adverse outcomes induced by nanomaterials originate from a molecular initiating event that describes the interaction of nanomaterials with lung cells and involve similar intermediate key events. Finally, using the example of an established AOP for lung fibrosis, the review will discuss various in vitro tests available for assessing lung fibrosis and how the information can be used to support a tiered testing strategy for lung fibrosis. The AOPs and AOP network enable deeper understanding of mechanisms involved in inhalation toxicity of nanomaterials and provide a strategy for the development of alternative test methods for hazard and risk assessment of nanomaterials.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Toxicology, Misvik Biology, Turku, Finland
| | - Laurent Gaté
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Carole Seidel
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Sarah Valentino
- Institut National de Recherche et de Sécurité, Vandoeuvre-lès-Nancy, France
| | - Vadim Zhernovkov
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | - Andrea De Vizcaya
- Departamento de Toxicologia, CINVESTAV-IPN, Ciudad de México, Mexico
- Sabbatical leave at Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tobias Stöger
- Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Lung Research (DZL), Giessen, Germany
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München - German, Oberschleißheim, Germany
| | - Andrey Boyadziev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
- DTU Health Tech, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Behr AC, Kwiatkowski A, Ståhlman M, Schmidt FF, Luckert C, Braeuning A, Buhrke T. Impairment of bile acid metabolism by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in human HepaRG hepatoma cells. Arch Toxicol 2020; 94:1673-1686. [PMID: 32253466 PMCID: PMC8241792 DOI: 10.1007/s00204-020-02732-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are man-made chemicals that are used for the fabrication of many products with water- and dirt-repellent properties. The toxicological potential of both substances is currently under debate. In a recent Scientific Opinion, the European Food Safety Authority (EFSA) has identified increased serum total cholesterol levels in humans as one major critical effect being associated with exposure to PFOA or PFOS. In animal studies, both substances induced a decrease of serum cholesterol levels, and the underlying molecular mechanism(s) for these opposed effects are unclear so far. In the present study, we examined the impact of PFOA and PFOS on cholesterol homoeostasis in the human HepaRG cell line as a model for human hepatocytes. Cholesterol levels in HepaRG cells were not affected by PFOA or PFOS, but both substances strongly decreased synthesis of a number of bile acids. The expression of numerous genes whose products are involved in synthesis, metabolism and transport of cholesterol and bile acids was strongly affected by PFOA and PFOS at concentrations above 10 µM. Notably, both substances led to a strong decrease of CYP7A1, the key enzyme catalyzing the rate-limiting step in the synthesis of bile acids from cholesterol, both at the protein level and at the level of gene expression. Moreover, both substances led to a dilatation of bile canaliculi that are formed by differentiated HepaRG cells in vitro. Similar morphological changes are known to be induced by cholestatic agents in vivo. Thus, the strong impact of PFOA and PFOS on bile acid synthesis and bile canalicular morphology in our in vitro experiments may allow the notion that both substances have a cholestatic potential that is connected to the observed increased serum cholesterol levels in humans in epidemiological studies.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anna Kwiatkowski
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| | | | - Claudia Luckert
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
17
|
Gijbels E, Vilas-Boas V, Annaert P, Vanhaecke T, Devisscher L, Vinken M. Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury. Arch Toxicol 2020; 94:1151-1172. [PMID: 32152650 DOI: 10.1007/s00204-020-02691-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) have been recently introduced as tools to map the mechanisms underlying toxic events relevant for chemical risk assessment. AOPs particularly depict the linkage between a molecular initiating event and an adverse outcome through a number of intermediate key events. An AOP has been previously introduced for cholestatic liver injury. The objective of this study was to test the robustness of this AOP for different types of cholestatic insult and the in vitro to in vivo extrapolation. For this purpose, in vitro samples from human hepatoma HepaRG cell cultures were exposed to cholestatic drugs (i.e. intrahepatic cholestasis), while in vivo samples were obtained from livers of cholestatic mice (i.e. extrahepatic cholestasis). The occurrence of cholestasis in vitro was confirmed through analysis of bile transporter functionality and bile acid analysis. Transcriptomic analysis revealed inflammation and oxidative stress as key events in both types of cholestatic liver injury. Major transcriptional differences between intrahepatic and extrahepatic cholestatic liver insults were observed at the level of cell death and metabolism. Novel key events identified by pathway analysis included endoplasmic reticulum stress in intrahepatic cholestasis, and autophagy and necroptosis in both intrahepatic as extrahepatic cholestasis. This study demonstrates that AOPs constitute dynamic tools that should be frequently updated with new input information.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Herestraat 49-box 921, 3000, Leuven, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
18
|
Li ZQ, Wang LL, Zhou J, Zheng X, Jiang Y, Li P, Li HJ. Integration of transcriptomics and metabolomics profiling reveals the metabolic pathways affected in dictamnine-induced hepatotoxicity in mice. J Proteomics 2020; 213:103603. [DOI: 10.1016/j.jprot.2019.103603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/12/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
|
19
|
|
20
|
Omics-based input and output in the development and use of adverse outcome pathways. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Bolt HM. Highlight Report: Adverse outcome pathways: the need of research on mechanisms of toxicity. Arch Toxicol 2019; 93:3385-3386. [PMID: 31637479 DOI: 10.1007/s00204-019-02596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Hermann M Bolt
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
22
|
The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Arch Toxicol 2019; 93:3067-3098. [PMID: 31586243 DOI: 10.1007/s00204-019-02585-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.
Collapse
|
23
|
Pharmacological inhibition of the ideal apical sodium-dependent bile acid transporter ASBT ameliorates cholestatic liver disease in mice. Arch Toxicol 2019; 93:3039-3040. [DOI: 10.1007/s00204-019-02583-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 01/17/2023]
|
24
|
Bolt HM. Highlight report: caspase 8 as a therapeutic target in chronic liver disease. Arch Toxicol 2019; 93:2709-2710. [PMID: 31422437 DOI: 10.1007/s00204-019-02535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Hermann M Bolt
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|
25
|
Cuykx M, Beirnaert C, Rodrigues RM, Laukens K, Vanhaecke T, Covaci A. Untargeted liquid chromatography-mass spectrometry metabolomics to assess drug-induced cholestatic features in HepaRG® cells. Toxicol Appl Pharmacol 2019; 379:114666. [PMID: 31323262 DOI: 10.1016/j.taap.2019.114666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 02/09/2023]
Abstract
Cholestasis is a liver disease associated with retention of bile in the liver, which leads to local hepatic inflammation and severe liver damage. In order to investigate the mode of action of drug-induced cholestasis, in vitro models have shown to be able to recapitulate important elements of this disease. In this study, we applied untargeted metabolomics to investigate the metabolic perturbances in HepaRG® cells exposed for 24 h and 72 h to bosentan, a cholestatic reference toxicant. Intracellular profiles were extracted and analysed with liquid chromatography and accurate-mass spectrometry. Metabolites of interest were selected using partial least-squares discriminant analysis and random forest classifier models. The observed metabolic patterns associated with cholestasis in vitro were complex. Acute (24 h) exposure revealed metabolites related to apoptosis, such as ceramide and triglyceride accumulation, in combination with phosphatidylethanolamine, choline and carnitine depletion. Metabolomic alterations during exposure to lower dosages and a prolonged exposure (72 h) included carnitine upregulation and changes in the polyamine metabolism. These metabolites were linked to changes in phospholipid metabolism, mitochondrial pathways and energy homeostasis. The metabolic changes confirmed the mitotoxic effects of bosentan and revealed the potential involvement of phospholipid metabolism as part of the mode of action of drug-induced cholestasis.
Collapse
Affiliation(s)
- Matthias Cuykx
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium.
| | - Charlie Beirnaert
- Department of Mathematics & Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium; Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
| | - Robim M Rodrigues
- Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Kris Laukens
- Department of Mathematics & Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium; Biomedical Informatics Network Antwerpen (Biomina), University of Antwerp, Middelheimlaan 1, 2020 Antwerp, Belgium
| | - Tamara Vanhaecke
- Research group In Vitro Toxicology and Dermato-Cosmetology (IVTD), Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Jette, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
26
|
Seidel F. Highlight report: Toxicogenomics atlas of rat hepatotoxicants. EXCLI JOURNAL 2019; 17:1196-1197. [PMID: 30713482 PMCID: PMC6341424 DOI: 10.17179/excli2018-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Florian Seidel
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139 Dortmund
| |
Collapse
|
27
|
Abstract
Over the last decade, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has become the method of choice for the quantification of bile acids (BA) and their conjugates in different matrices, such as plasma, blood, urine, and cell lysates. Numerous reports have indeed been published describing methods for quantitative determination of bile acids in plasma samples obtained during in vivo studies. However, information on bioanalytical methods suitable for determination of bile acids in in vitro samples remained scarce. Therefore, we presently report a simple and accurate LC-MS/MS method for the quantification of BA in cells (e.g., cultured human hepatocytes) and corresponding cell culture medium, obtained during in vitro experiments.
Collapse
Affiliation(s)
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
28
|
Ghallab A. Highlight report: Necrosis-apoptosis conundrum of hepatocytes: mode of hepatocyte death after acetaminophen intoxication. EXCLI JOURNAL 2018; 17:1191-1193. [PMID: 30713480 PMCID: PMC6341448 DOI: 10.17179/excli2018-2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022]
Affiliation(s)
- Ahmed Ghallab
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt,*To whom correspondence should be addressed: Ahmed Ghallab, Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, E-mail:
| |
Collapse
|
29
|
Highlight report the food additive dammar resin is a rat hepatocarcinogen. Arch Toxicol 2018; 92:3611-3612. [PMID: 30467585 DOI: 10.1007/s00204-018-2362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
|
30
|
3D visualization of the biliary tree by X-ray phase-contrast computed tomography. Arch Toxicol 2018; 92:3601-3602. [DOI: 10.1007/s00204-018-2346-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022]
|
31
|
Highlight report: spheroids from stem cell-derived hepatocyte-like cells. Arch Toxicol 2018; 92:3603-3604. [PMID: 30446774 DOI: 10.1007/s00204-018-2347-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 01/26/2023]
|
32
|
In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol 2018; 92:3007-3029. [DOI: 10.1007/s00204-018-2286-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
|